@ Gravity and Cosmology 2024 (Feb. 26th, 2024)

Relation of observables and the internal physics of neutron stars under F(R) gravity

Kota Numajiri (Nagoya U.) Collaborators: Y.-X. Cui, Z. Yan, R. Huang, T. Katsuragawa (CCNU), and S. Nojiri (Nagoya U./KMI) Based on PRD 107 104019 (2023), and on-going works.

Problems of GR and Modified Gravity

\Rightarrow GR can be effective theory. More accurate gravity theory can be exist.

K. Numajiri (Nagoya U.)

Present universe model with GR & SM matters has several problems in wide range of energy-scale.

⇒ Modified Gravity

F(R) Gravity theory

Metric Description

Action:
$$S_F = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} F(R)$$

EOM: $F_R(R)R_{\mu\nu} - \frac{1}{2}F(R)g_{\mu\nu} - \frac{1}{2}F(R)g_{\mu\nu} - [\nabla_\mu \nabla_\nu - g_{\mu\nu}\Box]F_R(R) = \kappa^2 T_\mu$
Auxiliary
equation: $F_R(R)R - 2F(R) + 3\Box F_R(R) = \kappa^2 T$

K. Numajiri (Nagoya U.)

Dark energy [S. Capozziello, 2002], [S. M. Carroll+, 2004], etc... [S. Nojiri+, 2008], [T. Katsuragawa+, 2017], etc...

Probe: Neutron Stars (NSs)

From observational point of view

- Compact \rightarrow Strong gravity
- Accessible through various obs. ways (GWs, X-ray, etc...)
- → Deviation from GR can be found in NSs' physical quantities.

Probe: Neutron Stars (NSs)

From observational point of view

- Compact \rightarrow Strong gravity
- Accessible through various obs. ways (GWs, X-ray, etc...)
- \rightarrow Deviation from GR can be found in NSs' physical quantities.

From theoretical point of view

- **Background**: TOV problem \leftrightarrow M-R relation
- (Static) perturbation: Tidal deformation \leftrightarrow Love number
- Time evolution: Thermal evolution \leftrightarrow Surface temp.

How does additional DOF affect NS physics & observables? (internal behavior? scalar-hair?)

K. Numajiri (Nagoya U.)

R² Model as Massive Scalar Case

Model

$$F(R) = R + \alpha R^2$$

Minimal modification for high curvature regime

Chameleon potential (effective potential of scalar):

 $V_{\rm eff}(\Phi, T) = \frac{1}{12\alpha} (\Phi - \Phi_{\rm min})^2 - \frac{\Phi_{\rm min}^2}{12\alpha} \quad \Phi_{\rm min} = 1 - 2\kappa^2 \alpha T$ **Chameleon mass (effective mass):** $m_{\Phi} = \frac{1}{\sqrt{6\alpha}},$

 \Rightarrow Scalar behaves as a massive particle everywhere.

K. Numajiri (Nagoya U.)

Rel. of observables and the int. phy. of NS under F(R) gravity

[A. A. Starobinsky, 1980] etc...

Problems in Previous Works

Several problems still remain in TOV problem under R^2 model:

• "Asymptotic solution" outside the star

"Asymptotically flat" was often assumed.

 \rightarrow How do solutions become "flat"?

Scalar's behavior inside the star

Its (internal) behavior and influences had not been well investigated.

 \rightarrow Tidal deformation / NS cooling etc...

Exp. decay? [A. V. Astashenok+, 2018] etc... Exact Schwarzscild? [A. Ganguly+, 2014] etc... Damping oscillation? [M. A. Resco+, 2016] etc...

Problems in Previous Works

Several problems still remain in TOV problem under R^2 model:

* "Asymptotic solution" outside the star

"Asymptotically flat" was often assumed.

 \rightarrow How do solutions become "flat"?

Scalar's behavior inside the star

Its (internal) behavior and influences had not been well investigated.

 \rightarrow Tidal deformation / NS cooling etc...

Our aim

- Asymptotic behaviors of solutions
- Scalar = curvature profile inside the star

K. Numajiri (Nagoya U.)

Rel. of observables and the int. phy. of NS under F(R) gravity

Exp. decay? [A. V. Astashenok+, 2018] etc... Exact Schwarzscild? [A. Ganguly+, 2014] etc... Damping oscillation? [M. A. Resco+, 2016] etc...

Revisit TOV problem in R^2 gravity, paying attention on

Proper Boundary Conditions in R² Model

Assumption Static, spherical symmetric, and asymptotically flat

$$ds^2 = -e^{2\nu}dt^2 + e^{2\lambda}dr^2 + r^2\Omega_{AB}dx^A dx^B$$

Uniquely reduces to Schwarzschild sol in GR (: Birkoff-Jebsen's theorem)

EOM for scalar (deviation from GR solution):

$$\Box \Phi = m_{\Phi}^2 (\Phi - \Phi_{\min}),$$

 \Rightarrow For distant vacuum region ($r \gg \alpha^{-1/2}$) Φ

Rel. of observables and the int. phy. of NS under F(R) gravity

K. Numajiri (Nagoya U.)

$$m_{\Phi} = \frac{1}{\sqrt{6\alpha}}, \ \Phi_{\min} = 1 - 2\kappa^2 \alpha T \bigg)$$

$$\sim 1 + \frac{C}{r} \mathrm{e}^{-m_{\Phi}r}$$

Proper Boundary Conditions in R² Model

Assumption Static, spherical symmetric, and asymptotically flat

$$ds^2 = -e^{2\nu}dt^2 + e^{2\lambda}dr^2 + r^2\Omega_{AB}dx^A dx^B$$

Uniquely reduces to Schwarzschild sol in GR (: Birkoff-Jebsen's theorem)

EOM for scalar (deviation from GR solution):

$$\Box \Phi = m_{\Phi}^2 (\Phi - \Phi_{\min}),$$

 \Rightarrow For distant vacuum region ($r \gg \alpha^{-1/2}$) Φ

Rel. of observables and the int. phy. of NS under F(R) gravity

K. Numajiri (Nagoya U.)

$$m_{\Phi} = \frac{1}{\sqrt{6\alpha}}, \ \Phi_{\min} = 1 - 2\kappa^2 \alpha T$$

$$\sim 1 + \frac{C}{r} \mathrm{e}^{-m_{\Phi}r}$$

GR Modification effect: exponentially decreasing

→ Asymptotic Schwarzschild

Results of R^2 **case: Geometry**

Largely deviate for large α

K. Numajiri (Nagoya U.)

- Coincides with Sch. as distant from surface
- Exponentially decreasing (scalar-hair)

Results of R^2 **case: Scalar Distribution**

Takes non-trivial value (particularly around **the center**)

Not necessarily decrease monotonically (depending on central energy density)

K. Numajiri (Nagoya U.)

Rel. of observables and the int. phy. of NS under F(R) gravity

Exponentially decreasing scalar-hair Hair radius \propto Compton length of scalar

Results of R^2 **case: M-R Relation**

K. Numajiri (Nagoya U.)

The mass curve "rotates" as α increases. Consistent with [A. V. Astashenok+, 2018] etc...

Effective energy-momentum of scalar:

$$T^{(\Phi)}_{\mu\nu} = \frac{1}{\kappa^2 \Phi} \left[\nabla_\mu \nabla_\nu \Phi - g_{\mu\nu} \left(\Box \Phi + \frac{1}{2} V(\Phi) \right) \right]$$

Weak energy condition (~effective energy density)

K. Numajiri (Nagoya U.)

Effective energy-momentum of scalar:

$$T^{(\Phi)}_{\mu\nu} = \frac{1}{\kappa^2 \Phi} \left[\nabla_\mu \nabla_\nu \Phi - g_{\mu\nu} \left(\Box \Phi + \frac{1}{2} V(\Phi) \right) \right]$$

Weak energy condition (~effective energy density)

Outside: Positive \rightarrow Scalar hair weighs the mass.

K. Numajiri (Nagoya U.)

Effective energy-momentum of scalar:

$$T^{(\Phi)}_{\mu\nu} = \frac{1}{\kappa^2 \Phi} \left[\nabla_\mu \nabla_\nu \Phi - g_{\mu\nu} \left(\Box \Phi + \frac{1}{2} V(\Phi) \right) \right]$$

Weak energy condition (~effective energy density)

Outside: Positive \rightarrow Scalar hair weighs the mass.

Negative in almost everywhere (for low ρ_c). Inside: Negative partially (for high ρ_c).

\rightarrow Reduces the mass effectively.

- Total mass
 - Sch mass at the surface (\rightarrow Metric deviation)

K. Numajiri (Nagoya U.)

Summary

- We revisit the TOV problem in R^2 gravity enlightening the behavior of the additional scalar field.
- Stars gain mass for high central energy density region, while losing mass for low energy region.
- The scalar field becomes quintessential for interior region, while it satisfies all energy-condition at exterior. This effect is significant for lower ρ_c solutions.

Future works

- Scalar effect on tidal deformation (Behavior around core or surface? Which is responsible?)
- Scalar effect on thermal evolution

Rel. of observables and the int. phy. of NS under F(R) gravity

r [km]

B-Slides

Relation of B.C. and F(R) **Model**

Interior: hydrostatic sol.

EOS: Polytropic $p = K\rho^{1+\frac{1}{n}} (0.5 \le n \le 1)$

Pressure profile (around surface):

$$p(r) \sim p_0 \left(1 - \frac{r}{r_s}\right)^m \left[1 + p_1 \left(1 - \frac{r}{r_s}\right) + \cdots\right]$$

m: constant, r_s : surface radius

K. Numajiri (Nagoya U.)

Contraposition

Non-trivial exterior geometry would be realized for other F(R) models.

19

System and Equations

Equations:	Sols:	λ, ν,	<i>R</i> , <i>p</i> (E)	$ds^2 = -$	$e^{2\nu}dt^2 +$	$-\mathrm{e}^{2\lambda}dr$
Metric:	$\lambda' = -$	$e^{2\lambda} \left\{ 2\kappa^2 \right\}$	$r^2\epsilon + \alpha I$	$\frac{R(r^2R}{4r}$	$\frac{(\alpha - 4) - 2}{(\alpha (rR' - 4))}$	$\left\{\frac{2}{2}+4\alpha\left(\frac{1}{2}+2R\right)+2\right\}$	$\frac{r^2 R'' + 1}{1}$
Curvature (sca	alar):	R'' =	$\frac{1+2\alpha I}{2\alpha}$	$\frac{R}{r}\left[\frac{1}{r}\left(\frac{1}{r}\right)\right]$	$3\nu' - \lambda'$	$+\frac{2}{r}\Big)+$	$e^{2\lambda}\left(\frac{1}{2}\right)$
Matter: (Perfect fluid)	p' =	$-\nu'(\epsilon$	(+p)	<i>p</i> =	= $p(\epsilon)$	(EO	S: tab
r_0				r s			Ĩ
$ \lambda, R' \to 0 $ $ p \to p_c $ Power-law	behav	vior		So	olve		Mat
		p=0					

K. Numajiri (Nagoya U.)

$$\frac{dr^{2} + r^{2}\Omega_{AB}dx^{A}dx^{B}}{+2rR'+R) + 2} \qquad \nu' = \frac{e^{2\lambda}\left\{2\kappa^{2}r^{2}p - \alpha R(r^{2}R - 4) + 2\right\} - 2\left(4\alpha rR' + 2\alpha R + 1\right)}{4r\left(\alpha(rR'+2R) + 1\right)}$$
$$\frac{1}{2}R - \frac{2}{r^{2}}\right) \left[+ \left(\lambda' + \frac{1}{r}\right)R'$$

oulated SLy/APR4 [J. S. Read+, 2009])

Discussion for BC under R² Model

- Decreasing oscillation? [M. A. Resco+, 2016] etc... Correspond to $\alpha < 0$
 - \rightarrow Tachyonic due to $m_{\Phi}^2 < 0$
 - Dynamical instability
 - Stellar mass is not-well defined [A. V. Astashenok+, 2018] etc...
- EXACT Schwarzschild? [A. Ganguly+, 2014], [W.-X. Feng+, 2017] etc... Guessed from BH no-hair theorm [B. Whitt, 1984], [S. Mignemi+, 1992] → Strongly depend on the existence of horizon/vacuum system

K. Numajiri (Nagoya U.)

→ Non-trivial in the system composed of matter without conformal invariance

Effective energy-momentum of scalar:

$$T^{(\Phi)}_{\mu\nu} = \frac{1}{\kappa^2 \Phi} \left[\nabla_\mu \nabla_\nu \Phi - g_{\mu\nu} \left(\Box \Phi + \frac{1}{2} V(\Phi) \right) \right]$$

Null energy condition

Outside: Positive \rightarrow Scalar hair weighs the mass.

Inside: Negative in almost everywhere (for low ρ_c). Negative partially (for high ρ_c).

\rightarrow Reduces the mass effectively.

- **Total mass**
 - Sch mass at the surface (\rightarrow Metric deviation)

K. Numajiri (Nagoya U.)

