

the European Union

European Research Council Established by the European Commission

BH AND NS SOLUTIONS IN $f(\mathbb{Q})$ GRAVITY

- OR WHAT NOT TO DO WHEN LOOKING FOR BEYOND GR RESULTS -

CARLOS PASTOR MARCOS

FT. LAVINIA HEISENBERG, DANIELA D. DONEVA, STOYTCHO S. YAZADJIEV

Institut für Theoretische Physik - Universität Heidelberg

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Symmetric Teleparallel Gravity?

✓ Set of gravity theories that build on a geometry with no curvature and no torsion, where only the non-metricity is non-vanishing.

What is non-metricity?

How are these two descriptions equivalent?

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Our geometrical model

A manifold \mathcal{M} :

Points on the manifold, paths ($\gamma : [0,1] \to \mathcal{M}$), scalar ($\Phi : \mathcal{M} \to \mathbb{R}$), vector ($V : \mathcal{M} \to T\mathcal{M}$), tensor fields...

A metric tensor $g: T_p\mathcal{M} \times T_p\mathcal{M} \to \mathbb{R}$:

Length of paths, area of regions, geodesics...

A connection $\Gamma^{\rho}_{\mu\nu}$:

Parallel transport, covariant derivative.

 $\begin{tabular}{|c|c|} \hline (\mathcal{M},g,\Gamma) & \end{tabular} & \end{tabular} \text{Metric-Affine Geometry} \\ \hline \end{array} \end{tabular}$

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Curvature, torsion & non-metricity

 $\operatorname{Torsion}\left(\mathcal{M},g,\Gamma\right) \; : \; \; T^{\alpha}_{\ \ \mu\nu} \coloneqq \Gamma^{\alpha}_{\mu\nu} - \Gamma^{\alpha}_{\nu\mu}$

✓ Torsion affects how parallelograms formed by two vectors close when parallel transported along each other.

 $\mathbf{Curvature}(\mathcal{M}, g, \Gamma) : R^{\alpha}{}_{\mu\nu\rho} \coloneqq 2\partial_{[\mu}\Gamma^{\alpha}{}_{\nu]\beta} + 2\Gamma^{\alpha}{}_{[\mu|\lambda}\Gamma^{\lambda}{}_{\nu]\beta}$

 \checkmark Curvature modifies the direction of a vector parallel transported along a closed path.

Non-metricity (\mathcal{M}, g, Γ) : $Q_{\alpha\mu\nu} \coloneqq \nabla_{\alpha} g_{\mu\nu}$

✓ Non-metricity quantifies how the norm of a vector changes in this transport.

Figs. adapted from J. B. Jimenez, L. Heisenberg, and T. S. Koivisto, The geometrical trinity of gravity.

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Possible metric-affine geometries

[1] Borrowed from L. Järv, M. Rünkla, M. Saal, and O. Vilson, "Nonmetricity formulation of general relativity and its scalar-tensor extension".
 [2] Adapted from L. Heisenberg, "A systematic approach to generalisations of general relativity and their cosmological implications".

26/02/2024

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

A theory of gravity based on non-metricity

Most general second order quadratic form of the non-metricity: non-metricity scalar:

 $\mathbb{Q} \coloneqq c_1 Q_{\alpha\beta\gamma} Q^{\alpha\beta\gamma} + c_2 Q_{\alpha\beta\gamma} Q^{\beta\alpha\gamma} + c_3 Q_\alpha Q^\alpha + c_4 \tilde{Q}_\alpha \tilde{Q}^\alpha + c_5 Q_\alpha \tilde{Q}^\alpha.$

Most general action:

Lagrange multipliers

$$\mathcal{S}_{\mathbb{Q}}[g,\Gamma;\lambda,\rho] \coloneqq \int_{\mathcal{M}} d^4x \left(\frac{1}{2\kappa} \sqrt{-g} \mathbb{Q} + \lambda_{\alpha}^{\beta\mu\nu} R^{\alpha}_{\ \beta\mu\nu} + \rho^{\alpha}_{\ \mu\nu} \Gamma^{\alpha}_{\ \mu\nu} \right) + \mathcal{S}_{\text{matter}}$$

The variation w.r.t. the Lagrange multipliers imposes:

1. Vanishing torsion

$$\Gamma^{lpha}_{\mu
u}=rac{\partial x^{lpha}}{\partial \xi^{\lambda}}\partial_{\mu}\partial_{
u}\xi^{\lambda}$$

- 2. Vanishing curvature
- ✓ The connection can be **aribitrarily chosen** and there exists a special gauge choice, the socalled *coincident gauge* $\xi^{\alpha} = x^{\alpha}$, in which the it becomes trivial.

26/02/2024

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Symmetric Teleparallel Equivalent of GR

Most general second order quadratic form of the non-metricity: non-metricity scalar:

$$\mathbb{Q} \coloneqq c_1 Q_{\alpha\beta\gamma} Q^{\alpha\beta\gamma} + c_2 Q_{\alpha\beta\gamma} Q^{\beta\alpha\gamma} + c_3 Q_\alpha Q^\alpha + c_4 \tilde{Q}_\alpha \tilde{Q}^\alpha + c_5 Q_\alpha \tilde{Q}^\alpha,$$

but to recover GR limit (STEGR):

$$\{c_1, c_2, c_3, c_4, c_5\} = \left\{-\frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0, -\frac{1}{2}\right\} \quad \Box \searrow \quad \mathring{\mathbb{Q}} = -\frac{1}{4}Q_{\alpha\beta\gamma}Q^{\alpha\beta\gamma} + \frac{1}{2}Q_{\alpha\beta\gamma}Q^{\beta\alpha\gamma} + \frac{1}{4}Q_{\alpha}Q^{\alpha} - \frac{1}{2}Q_{\alpha}\tilde{Q}^{\alpha}.$$

How is that?

$$\longrightarrow \ \ \mathcal{R} = - \mathring{\mathbb{Q}} - \mathcal{D}_{lpha}(Q^{lpha} - ilde{Q}^{lpha})$$

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Symmetric Teleparallel Equivalent of GR

STEGR describes the same physics as GR:

$$\mathcal{S}_{\rm GR}[g] \coloneqq \frac{1}{2\kappa} \int_{\mathcal{M}} d^4x \sqrt{-g} \mathcal{R} \qquad \Longrightarrow \qquad \mathcal{S}_{\rm STEGR}[g,\Gamma] = -\frac{1}{2\kappa} \int_{\mathcal{M}} d^4x \sqrt{-g} \mathring{\mathbb{Q}}$$
$$\mathcal{R}^{\alpha}_{\ \beta\mu\nu} \stackrel{!}{=} 0 \qquad \qquad \mathcal{R}^{\alpha}_{\ \beta\mu\nu} \stackrel{!}{=} 0$$
$$\mathcal{R}^{\alpha}_{\ \beta\mu\nu} \stackrel{!}{=} 0$$
$$\mathcal{R}^{\alpha}_{\ \beta\mu\nu} \stackrel{!}{=} 0$$

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

$f(\mathbb{Q})$ gravity

Leap to $f(\mathbb{Q})$ gravity:

$$\mathcal{S}_{f(\mathbb{Q})}[g,\Gamma;\lambda,\rho] \coloneqq \int_{\mathcal{M}} d^4x \left(\frac{1}{2}\sqrt{-g} f(\mathbb{Q}) + \lambda_{\alpha}^{\ \beta\mu\nu} R^{\alpha}_{\ \beta\mu\nu} + \rho^{\alpha}_{\ \mu\nu} T^{\alpha}_{\ \mu\nu}\right) + \mathcal{S}_{\text{matter}}$$

Equations of Motion:

Variation w.r.t. the metric:

$$f'(\mathbb{Q})\mathcal{G}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\left[f(\mathbb{Q}) - f'(\mathbb{Q})\mathbb{Q}\right] + 2f''(\mathbb{Q})P^{\alpha}_{\ \mu\nu}\left(\partial_{\alpha}\mathbb{Q}\right) = \kappa\mathcal{T}_{\mu\nu}$$

Variation w.r.t. the connection:

$$\mathcal{C}_{\alpha} \coloneqq \nabla_{\mu} \nabla_{\nu} \left(\sqrt{-g} f'(\mathbb{Q}) P^{\mu\nu}_{\ \alpha} \right) = 0$$

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Spherically symmetric & stationary

Assume both the components of the metric and the affine connection can be expressed in the chart $(t, r, \theta, \phi) \in \mathbb{R} \times \mathbb{R}_{>0} \times [0, \pi] \times [0, 2\pi)$. Stationarity makes them ro be time-independent.

Metric tensor:

$$g_{\mu\nu} = \begin{pmatrix} g_{tt}(r) & 0 & 0 & 0\\ 0 & g_{rr}(r) & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Spherically symmetric & stationary

Connection components:

Independent components	All connection components can be expressed in terms of an arbitrary constant $\Gamma_{\theta\theta}^t$, the two functions $\Gamma_{rr}^r(r), \Gamma_{\theta\theta}^r(r)$, with $\Gamma_{\theta\theta}^r(r) \neq 0$; and trigonometric functions.		
Non-zero	There are 10 non-zero components: the three independent components		
components	$\Gamma^{t}_{\theta\theta} = \text{const.}, \ \Gamma^{r}_{rr}(r), \ \Gamma^{r}_{\theta\theta}(r); \text{ and}$ $\Gamma^{t}_{rr} = -\frac{\Gamma^{t}_{\theta\theta}}{(\Gamma^{r}_{\theta\theta})^{2}}, \qquad \Gamma^{\theta}_{r\theta} = -\frac{1}{\Gamma^{r}_{\theta\theta}}, \qquad \Gamma^{\phi}_{r\phi} = -\frac{1}{\Gamma^{r}_{\theta\theta}},$ $\Gamma^{t}_{\phi\phi} = \sin^{2}\theta \ \Gamma^{t}_{\theta\theta}, \qquad \Gamma^{\theta}_{\phi\phi} = -\cos\theta\sin\theta, \qquad \Gamma^{\phi}_{\theta\phi} = \cot\theta,$ $\Gamma^{r}_{\phi\phi} = \sin^{2}\theta \ \Gamma^{r}_{\theta\theta}.$		
Derivatives of	Of the two independent functions, the <i>r</i> -derivative of $\Gamma_{\theta\theta}^r$ can be expressed as		
independent	$\partial_r \Gamma_{\theta\theta}^r = -1 - \Gamma_{rr}^r \Gamma_{\theta\theta}^r$,		
components	while $\partial_r \Gamma_{rr}^r$ cannot be expressed in terms of other components.		

Adapted from Table 2 and Table 3 in F. D'Ambrosio, S. D. B. Fell, L. Heisenberg, and S. Kuhn, "Black holes in $f(\mathbb{Q})$ gravity".

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Spherically symmetric & stationary

Connection components:

Independent components	All connection components can be expressed in terms of an arbitrary constant $\Gamma_{\theta\theta}^t$, the two functions $\Gamma_{rr}^r(r), \Gamma_{\theta\theta}^r(r)$, with $\Gamma_{\theta\theta}^r(r) \neq 0$; and trigonometric functions.		
Non-zero	There are 10 non-zero components: the three independent components		
components	$\Gamma^t_{ heta heta} = ext{const.}, \Gamma^r_{rr}(r), \Gamma^r_{ heta heta}(r); ext{ and }$		
The background connection			
	$\Gamma_{\phi\phi}^{t} has one non-trivial \Gamma_{\theta\phi}^{\phi} = \cot \theta,$		
	$\Gamma^{r}_{\phi\phi} = \sin^{2} \theta \Gamma^{r}_{\phi\phi}$ component		
Derivatives of	Of the two independent functions, the r-derivative of $\Gamma_{\theta\theta}^r$ can be ex-		
independent	pressed as		
components	$\partial_r \Gamma^r_{ heta heta} = -1 - \Gamma^r_{rr} \Gamma^r_{ heta heta},$		
	while $\partial_r \Gamma_{rr}^r$ cannot be expressed in terms of other components.		

Adapted from Table 2 and Table 3 in F. D'Ambrosio, S. D. B. Fell, L. Heisenberg, and S. Kuhn, "Black holes in $f(\mathbb{Q})$ gravity".

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Counting degrees of freedom

From the metric: $\{g_{tt}, g_{rr}\}$. From the connection: $\Gamma_{rr}^r(r)$ or $\Gamma_{\theta\theta}^r(r)$.

Three d.o.f. instead of two.

Another possible reparametrization: to use the non-metricity scalar and solve for the connection

$$\mathbb{Q} = \frac{1}{r^2 g_{rr}^2 g_{tt} (\Gamma_{\theta\theta}^r)^2} \Big\{ \Gamma_{\theta\theta}^r g_{rr} \Big[(\Gamma_{\theta\theta}^r)^2 g_{rr} + 2r \Gamma_{\theta\theta}^r + r^2 \Big] (\partial_r g_{tt}) + g_{tt} \Big[\Gamma_{\theta\theta}^r \Big((\Gamma_{\theta\theta}^r)^2 g_{rr} - r^2 \Big) (\partial_r g_{rr}) \\ + 2g_{rr} \Big((\Gamma_{\theta\theta}^r)^2 - g_{rr} \Gamma_{rr}^r (\Gamma_{\theta\theta}^r)^3 + r^2 + r \Gamma_{\theta\theta}^r (r \Gamma_{rr}^r + 2) \Big) \Big] \Big\}.$$

 $\checkmark \quad \text{We need to solve the theory for 3 d.o.f.: } \{g_{tt}, g_{rr}, \Gamma^r_{\theta\theta}\} \leftrightarrow \{g_{tt}, g_{rr}, \Gamma^r_{rr}\} \leftrightarrow \{g_{tt}, g_{rr}, \mathbb{Q}\}.$

1. STG and $f(\mathbb{Q})$

- 1. The geometrical interpretations of gravity. Building a spacetime.
- 2. Framework in $f(\mathbb{Q})$ gravity.
- 3. Symmetry reduction of the EoMs.
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Further simplifications

New structure of the EoMs:

\mathcal{M}	tt 0	0	0		$\left< 0 \right>$	
0	\mathcal{M}_r	r = 0	0		\mathcal{C}_r	
0	0	$\mathcal{M}_{ heta heta}$	0	,	0	
0 /	0	0	$\mathcal{M}_{\theta\theta}\sin^2 heta$		(0)	

Simplifying a bit:

Consider an **ideal fluid** and introduce a reparametrization of the metric components:

$$\begin{aligned} \mathcal{T}_{\mu\nu} &= (\rho + p) u_{\mu} u_{\nu} + p g_{\mu\nu} \\ ds^2 &= -e^{\xi(r)} dt^2 + e^{\zeta(r)} dr^2 + r^2 (d\theta^2 + \sin^2\theta \, d\phi^2) \,, \quad \zeta(r) \coloneqq \log\left(1 - \frac{2m(r)}{r}\right)^{-1} \,. \end{aligned}$$

- 1. STG and $f(\mathbb{Q})$
- 2. NS solutions in the (STE)GR scenario
 - 1. GR from $f(\mathbb{Q})$.
 - 2. GR from the connection.
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Recovering GR from $f(\mathbb{Q}) = \mathbb{Q}$

Remember the STEGR limit of the action and covariant form of the EoMs in $f(\mathbb{Q})$:

$$S_{f(\mathbb{Q})}[g, \Gamma; \lambda, \rho] \coloneqq \int_{\mathcal{M}} d^4x \left(\frac{1}{2}\sqrt{-g}f(\mathbb{Q}) + \lambda_{\alpha}^{\beta\mu\nu}R^{\alpha}_{\beta\mu\nu} + \rho^{\alpha}_{\mu\nu}T^{\alpha}_{\mu\nu}\right) + S_{\text{matter}}$$

$$f'(\mathbb{Q})G_{\mu\nu} - \frac{1}{2}g_{\mu\nu}[f(\mathbb{Q}) - f'(\mathbb{Q})\mathbb{Q}] + 2f''(\mathbb{Q})P^{\alpha}_{\mu\nu}(\partial_{\alpha}\mathbb{Q}) = \kappa\mathcal{T}_{\mu\nu}$$
Einstein eqs.
In our metric EoMs:
$$\frac{dp}{dr} = -\frac{(\rho+p)[m+(\kappa/2)pr^3]}{r(r-2m)}$$
TOV and mass equations from GR with no extra assumptions.

✓ The GR limit is recovered in a general way for the choice $f(\mathbb{Q}) = \mathbb{Q}$.

 $\checkmark~$ Eqs. to be solved for $\{m,p,\rho,\xi\}$, together with the conservation equation and the EoS.

- 1. STG and $f(\mathbb{Q})$
- 2. NS solutions in the (STE)GR scenario
 - 1. GR from $f(\mathbb{Q})$.
 - 2. GR from the connection.
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Recovering GR from the connection

Ansatz for the connection:

Fix the free connection component to be $\Gamma^r_{\theta\theta}=-r$. This automatically leads to:

$$\mathbb{Q}(r) = -\frac{2\kappa m(p+\rho)}{f'(\mathbb{Q})(r-2m)}, \quad \{\Gamma^r_{\theta\theta}, \Gamma^r_{rr}\} = \{-r, 0\}.$$

Using the equation that allowed us to trade $\Gamma_{rr}^r \leftrightarrow \mathbb{Q}$, one obtains $\Gamma_{rr}^r = 0$.

1. STG and $f(\mathbb{Q})$

2. NS solutions in the (STE)GR scenario

1. GR from $f(\mathbb{Q})$.

- 2. GR from the connection.
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

Recovering GR from the connection

Exterior solution:

$$p = \rho = 0$$
 \square \square \square \square $\partial_r \Gamma_{\theta\theta}^r = -1$

Solving the remaining EoMs (metric):

$$\begin{array}{c} g_{tt} = c_2 + \frac{c_1 c_2}{r} + \frac{c_2}{6} \frac{f(0)}{f'(0)} r^2 \equiv c_2 + \frac{c_1 c_2}{r} + \frac{c_2 \Lambda_{\text{eff}}}{3} r^2 \\ g_{rr} = \frac{c_2}{g_{tt}}; \end{array}$$

Setting $c_2 \equiv 1$ (asymptotic flatness) and $c_1 \equiv -r_s$, being $r_s = 2G$ (with $f'(0) \neq 0$): (de Sitter-) Schwarzschild.

- ✓ For exterior solutions, the use of the spherical connection automatically implies Q = 0and therefore any attempt to use it to obtain beyond GR solutions is doomed to failure.
- $\checkmark~$ For interior solutions, this choice of connection is **incompatible** with the system of equations

- 1. STG and $f(\mathbb{Q})$
- 2. NS solutions in the (STE)GR scenario

3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$

- 1. Search for semi-analytical solutions, perturbing in α .
- 2. Search for semi-analytical solutions, perturbing in r.
- 3. Numerical work and current situation.

4. Conclusions

Let's go to beyond-GR cases

Beyond GR scenario $f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2$:

Now we do have a **dynamical connection**, and hence the EoM for the connection and the constraint equation.

System of equations to be solved

- 1. STG and $f(\mathbb{Q})$
- 2. NS solutions in the (STE)GR scenario

3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$

- 1. Search for semi-analytical solutions, perturbing in α .
- 2. Search for semi-analytical solutions, perturbing in r.
- 3. Numerical work and current situation.
- 4. Conclusions

Looking for analytical results

Two options for a perturbative analysis:

- 1. <u>Perturbation in α :</u>
 - ✓ Very transparent. Helps us to understand how the beyond GR effects appear and can provide us with the physical intuition we lack.
 - \checkmark How much we must deviate from GR to appreciate the modified gravity effects and even obtain a scale at which this occurs.
 - \checkmark Not very good for initial conditions unless we accept to **restrict** ourselves to a certain order in $\alpha.$

2. <u>Perturbation in r:</u>

- \checkmark How our equations behave in certain ranges of r.
- \checkmark Can be used as "fixed zones" in our numerical analysis and integrate only in the intermediate region where the expansion fails and obtain a semi-analytical solution.
- \checkmark Assumes a concrete dependency of the solutions on r.

1. STG and $f(\mathbb{Q})$

2. NS solutions in the (STE)GR scenario

3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$

- 1. Search for semi-analytical solutions, perturbing in α .
- 2. Search for semi-analytical solutions, perturbing in **r**.
- 3. Numerical work and current situation.
- 4. Conclusions

Perturbation in α (exterior)

The result:

 \checkmark

The deviations from GR appear to second order for the metric variables (first in the connection):

$$g_{tt}(r) = -\left(1 - \frac{2M_{\text{ren}}}{r}\right) + \alpha^2 \frac{\mu}{r} \log\left(\frac{r}{r^*}\right) + \mathcal{O}(\alpha^3)$$

$$g_{rr}(r) = r \left[(r - 2M_{\text{ren}}) - \alpha^2 \mu \log\left(\frac{r}{r^*}\right)\right]^{-1} + \mathcal{O}(\alpha^3)$$

$$\Gamma_{\theta\theta}^r(r) = -r + \alpha r \left(c_5 + c_6 r^3 + r^3 c_7 \log r\right) + \mathcal{O}(\alpha^2)$$

The associated non-metricity scalar reads:

$$\mathbb{Q}(r) = -\frac{4\alpha M^2(c_7 + 3c_6 + 3c_7\log r)}{\alpha \left[c_2 - r \left(c_6 r^3 + c_5\right)\right] + M \left[2\alpha \left(c_6 r^3 + c_5\right) - 1\right] + (2M - r)r^3\alpha c_7\log(r)}$$

- ✓ Physically well-behaved metric and \mathbb{Q} .
- \checkmark Coupling metric-connection as a logarithm.
- Connection diverges at infinity.
- * Mass divergent at infinity.

1. STG and $f(\mathbb{Q})$

2. NS solutions in the (STE)GR scenario

3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$

- 1. Search for semi-analytical solutions, perturbing in α .
- 2. Search for semi-analytical solutions, perturbing in **r**.
- 3. Numerical work and current situation.

4. Conclusions

Perturbation in α (interior)

The expansions:

$$\begin{split} p(r) &= p^{(0)}(r) + p^{(1)}(r) \,\alpha + p^{(2)}(r) \,\alpha^2 + \mathcal{O}(\alpha^3), \\ \rho(r) &= \rho^{(0)}(r) + \rho^{(1)}(r) \,\alpha + \rho^{(2)}(r) \,\alpha^2 + \mathcal{O}(\alpha^3), \\ m(r) &= m^{(0)}(r) + m^{(1)}(r) \,\alpha + m^{(2)}(r) \,\alpha^2 + \mathcal{O}(\alpha^3), \\ \xi(r) &= \xi^{(0)}(r) + \xi^{(1)}(r) \,\alpha + \xi^{(2)}(r) \,\alpha^2 + \mathcal{O}(\alpha^3), \\ \Gamma^r_{\theta\theta}(r) &= \Gamma^r_{\theta\theta}{}^{(0)}(r) + \Gamma^r_{\theta\theta}{}^{(1)}(r) \,\alpha + \Gamma^r_{\theta\theta}{}^{(2)}(r) \,\alpha^2 + \mathcal{O}(\alpha^3) \end{split}$$

One big difference and one issue:

The choice $\{\Gamma_{\theta\theta}^r, \Gamma_{rr}^r\} = \{-r, 0\}$ now does not trivialize the connection EoM and leads to:

$$\mathbb{Q}(r) = -\frac{1}{4\alpha} \left[1 \pm \sqrt{1 - \frac{16\kappa\alpha m \left(p + \rho\right)}{r - 2m}} \right]$$

We also need to opt for an Ansatz for $\Gamma_{\theta\theta}^{r}(0)(r)$ that, if it does not imply $\mathbb{Q} = 0$ or $\mathbb{X} = \text{const.}$ at $\mathcal{O}(\alpha^0)$, at least simplifies the expressions as much as possible.

1. STG and $f(\mathbb{Q})$

2. NS solutions in the (STE)GR scenario

3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$

- 1. Search for semi-analytical solutions, perturbing in α .
- 2. Search for semi-analytical solutions, perturbing in r.
- 3. Numerical work and current situation.

4. Conclusions

Perturbation in r (exterior)

The expansions:

$$\begin{array}{c} m(r) = m^{(0)} + m^{(1)}r^{-1} + m^{(2)}r^{-2} + \mathcal{O}(r^{-3}), \\ \xi(r) = \xi^{(0)} + \xi^{(1)}r^{-1} + \xi^{(2)}r^{-2} + \mathcal{O}(r^{-3}), \\ \Gamma^{r}_{\theta\theta}(r) = \Gamma^{r}_{\theta\theta}{}^{(0)} + \Gamma^{r}_{\theta\theta}{}^{(1)}r^{-1} + \Gamma^{r}_{\theta\theta}{}^{(2)}r^{-2} + \mathcal{O}(r^{-3}), \\ \mathbb{Q}(r) = \mathbb{Q}^{(0)} + \mathbb{Q}^{(1)}r^{-1} + \mathbb{Q}^{(2)}r^{-2} + \mathcal{O}(r^{-3}); \end{array} \right\} \quad \text{with } \xi^{(0)} = 0 \text{ and } \mathbb{Q}^{(0)} = 0$$

The result:

The only solution compatible with these asymptotic conditions and the functional dependency in r above is the one for which $\mathbb{Q}(r) = 0$.

✓ Among the different possibilities for an exterior solution, there is **none** that behaves as a power series in 1/r and we will **only obtain GR solutions** with such an expansion.

$$\frac{[r^{n}(A+B\log r)]^{-1}}{(C+D\log r)/r^{n}}$$

1. STG and $f(\mathbb{Q})$

- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
 - 1. Search for semi-analytical solutions, perturbing in α .
 - 2. Search for semi-analytical solutions, perturbing in r.
 - 3. Numerical work and current situation.
- 4. Conclusions

Perturbation in r (interior)

	Beyond GR $f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2$			
To determine	$m^{(0)}, p^{(0)}, \xi^{(0)}, \Gamma^{r(0)}_{ heta heta}, \mathbb{Q}^{(0)}, \mathbb{Q}^{(1)}, (ho^{(0)} ext{ using EoS})$			
Common initial conditions	$m^{(0)} = 0, p^{(0)} = \text{const.}, \xi^{(0)} = \text{const.}, \xi(r \to \infty) = 0$			
	$m \approx \frac{(\mathbb{Q}^{(0)})^2 \alpha + 2\rho^{(0)} \kappa}{6(4\alpha \mathbb{Q}^{(0)} + 2)} r^3$			
Common expansions at $r \approx 0$ (truncated)	$p \approx p^{(0)} + \frac{\left(\rho^{(0)} + p^{(0)}\right) \left[(\mathbb{Q}^{(0)})^2 \alpha - \kappa \left(\rho^{(0)} + 3p^{(0)}\right) \right]}{4(6\alpha \mathbb{Q}^{(0)} + 3)} r^2$			
	$\xi \approx \xi^{(0)} - \frac{(\mathbb{Q}^{(0)})^2 \alpha - \kappa \left(\rho^{(0)} + 3p^{(0)}\right)}{4(6\alpha \mathbb{Q}^{(0)} + 3)} r^2$			
	Set 1	Set 2	Set 3	
Initial conditions	$ \begin{array}{c} \Gamma_{\theta\theta}^{r\ (0)} = \mathrm{const.} \\ \mathbb{Q}^{(0)} = \mathrm{const.} \\ \mathbb{Q}^{(1)} = 0 \end{array} \end{array} $	$\Gamma^{r\ (0)}_{ heta heta}=0 \ \mathbb{Q}^{(0)}= ext{const.} \ \mathbb{Q}^{(1)}=0$	$egin{array}{c} \Gamma^{r(0)}_{ heta heta} = 0 \ \mathbb{Q}^{(0)} = 0 \ \mathbb{Q}^{(1)} = 0 \end{array}$	

 $\mathbb{Q} pprox \mathbb{Q}^{(0)}$

 $\Gamma_{\theta\theta}^{r} \approx \Gamma_{\theta\theta}^{r(2)} r^{2} + \Gamma_{\theta\theta}^{r(3)} r^{3}$

 $\mathbb{Q} \approx 0$

 $\Gamma^{r}_{\theta\theta} \approx -r + \Gamma^{r\ (2)}_{\theta\theta} r^{2}$

Carlos Pastor Marcos | ITP Heidelberg

Expansions at

 $r \approx 0$ (truncated)

 $\mathbb{Q} pprox \mathbb{Q}^{(0)}$

 $\Gamma_{\theta\theta}^r \approx \Gamma_{\theta\theta}^{r\ (0)} - 2r$

1. STG and $f(\mathbb{Q})$

- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
 - 1. Search for semi-analytical solutions, perturbing in α .
 - 2. Search for semi-analytical solutions, perturbing in r.
 - 3. Numerical work and current situation.

4. Conclusions

Perturbation in r (interior)

	Beyond GR $f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2$		
To determine	$m^{(0)}, p^{(0)}, \xi^{(0)}, \Gamma^{r (0)}_{ heta heta}, \mathbb{Q}^{(0)}, \mathbb{Q}^{(1)}, (ho^{(0)} ext{using EoS})$		
Common initial conditions	$m^{(0)} = 0, p^{(0)} = \text{const.}, \xi^{(0)} = \text{const.}, \xi(r \to \infty) = 0$		
	$m \approx \frac{(\mathbb{Q}^{(0)})^2 \alpha + 2\rho^{(0)} \kappa}{6(4\alpha \mathbb{Q}^{(0)} + 2)} r^3$		

✓ Any attempt to obtain a solution that deviates from GR using as Ansatz a solution that admits a Taylor expansion around r = 0, is doomed to failure and will inevitably lead to GR solutions.

$$\xi \approx \xi^{(0)} - \frac{(\mathbb{Q}^{(0)})^2 \alpha - \kappa \left(\rho^{(0)} + 3p^{(0)}\right)}{4(6\alpha \mathbb{Q}^{(0)} + 3)} r^2$$

	Set 1	Set 2	Set 3
Initial conditions	$\Gamma^{r\ (0)}_{ heta heta} = ext{const.} \ \mathbb{Q}^{(0)} = ext{const.} \ \mathbb{Q}^{(1)} = 0$	$\Gamma^{r\ (0)}_{ heta heta}=0 \ \mathbb{Q}^{(0)}= ext{const.} \ \mathbb{Q}^{(1)}=0$	$egin{array}{l} \Gamma^{r(0)}_{ heta heta} = 0 \ \mathbb{Q}^{(0)} = 0 \ \mathbb{Q}^{(1)} = 0 \end{array}$
Expansions at $r \approx 0$ (truncated)	$\mathbb{Q} \approx \mathbb{Q}^{(0)}$ $\Gamma^{r}_{\theta\theta} \approx \Gamma^{r\ (0)}_{\theta\theta} - 2r$	$\mathbb{Q} \approx \mathbb{Q}^{(0)}$ $\Gamma_{\theta\theta}^{r} \approx \Gamma_{\theta\theta}^{r\ (2)} r^{2} + \Gamma_{\theta\theta}^{r\ (3)} r^{3}$	$\mathbb{Q} \approx 0$ $\Gamma_{\theta\theta}^{r} \approx -r + \Gamma_{\theta\theta}^{r\ (2)} r^{2}$

- 1. STG and $f(\mathbb{Q})$
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
 - 1. Search for semi-analytical solutions, perturbing in α .
 - 2. Search for semi-analytical solutions, perturbing in **r**.
 - 3. Numerical work and current situation.
- 4. Conclusions

What follows?

Numerics! To be careful:

- 1. Zero/Constant non-metricity scalar is a solution of the connection EoM. Be careful with vanishing derivatives.
- 2. Outside we know that by taking $\Gamma_{\theta\theta}^r = -r$, we should automatically obtain $\mathbb{Q} = 0$ and vice-versa. For the inside we do not have such a reference.
- 3. No analogy/solid criterion to stablish our initial conditions. And numerical shooting is more complicated because some of them are fixed at the origin and some at infinity.
- 4. From 3 to 5 coupled differential equations, one of them of the second order.

Alternative approaches:

- ▷ Work on the more restricted case of a Weyl connection, i.e., $Q_{\alpha\mu\nu} := \nabla_{\alpha}g_{\mu\nu}$, with $\nabla_{\alpha}g_{\mu\nu} = \Sigma_{\alpha}g_{\mu\nu}$; instead of the most general one above, to better understand the behavior of the non-metricity scalar, the role of the non-metricity and to study how to impose spherical symmetry and stationarity conditions in a different and covariant way.
- \succ Study the presence or absence of hair.
- Study how to compute the ADM mass in these theories.

- 1. STG and $f(\mathbb{Q})$
- 2. NS solutions in the (STE)GR scenario
- 3. NS solutions in beyond GR $(f(\mathbb{Q}) = \mathbb{Q} + \alpha \mathbb{Q}^2)$
- 4. Conclusions

To sum up

- \checkmark $\,$ In STEGR the connection can be gauged away and plays no role in the physics.
- ✓ In $f(\mathbb{Q})$, however, it becomes dynamical and has its own (second order EoM), providing one extra d.o.f..
- ✓ The choice of the spherical connection outside a NS for a generic $f(\mathbb{Q})$, inevitably leads to GR results. Inside, this does not work and one has to set $f(\mathbb{Q}) = \mathbb{Q}$.
- ✓ In GR, a solution to the EoMs admits a Taylor expansion in a neighborhood of r = 0.
- ✓ The behavior of beyond GR solutions, if they happen to exist, at infinity and at the center of the NS, does not admit a series expansion in powers of 1/r or r, respectively.

THANK YOU FOR YOUR ATTENDANCE!

pastor_c@thphys.uni-heidelberg.de