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| . Introduction



Dark Energy

Unknown source of late-time cosmic acceleration
Dark energy (70%)

Sca|ar—tensor theorieg Fig 1. Component of our universe

- The theories that include scalar field ¢ coupled to gravity

- They contains many candidate theories of dark energy

@ We will focus on...

‘Theories in which scalar field and Ricci scalar R
are directly coupled (= nonminimal coupled)




Example of nonminimal coupling theory

- Dilaton : Low-energy effective action of superstring theory (P.G. Bergmann, 1968)

- f(R) gravity : Theory rewritten as R - f(R) in the action of GR
(M. gasperini and G.Veneziano, 1993)

Brans-Dicke theory (c.Bransand R H. Dicke, 1961)

Theory of gravity that contains the above theories
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s = [ atxy=g [FLF@R+ (1 - 60OF($X ~ V(@) + 5

¢ : Scalar field o _ TypiCa”y, QNO(l)

X = —[g"(V,9)(V,¢)]/2 : Kinetic energy of scalar field

V() : Potential of scalar field
F(¢) = e 29¢/Mpi : Fynctions which represent nonminimal coupling
Q : Constants that characterise the strength of the coupling

Dilaton  :Q?=1/2
f(R) gravity : Q = —=1/6

S, - Action of matter field
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Brans-Dicke theory -

S—

Cosmology : Dark energy can be explained 2

¢

Solar system : |Q] < 2.5 x 1073 whenV =0
Difficult to distinguish (C.D. Hoyle et al, 2004)

Vainshtein mechanism observably from Q = 0 case

Screening nonminimal coupling at solar system scale

(R. Kimura et al, 2012)

Although the Vainshtein mechanism can relaxes constraints on Q...

Effective gravitational

constant has time variation by the presence of F

—|nconsistent with LLR experiment (s. Tsujikawa, 2019)

Our aim

[ Investigate the

validity of this analysis }

by numerical calculation
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Setup !

Spherically symmetric metric

ﬁ We consider spherically symmetric star (ex. sun) as a matter

ds? = —e2¥YEN g2 4 q(£)2e2WN[dr? + r2(d6? + sin? 6 dp?)]
Action

Brans-Dicke action+ self interaction term of scalar field
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S = f d*x\/[—g [% F(PR+ (1 —60Q%)F(P)X + c3XO¢ — V(cp)] + S,

Y(t,r), ®(t,r) : function of ¢, r ﬁ
a(t) : scale factor

o¢ = g*'v,V,¢ : : .
¢, : coefficient of self-interacting term Necessary for Vainshtein mechanism




Assumptions in analysis of previous work (R Kimura et al, 2012)

d d o
—~H,—~1/r (H = a/a: Hubble parameter)

—Assuming that scale of time variation is cosmological scale

- We consider perturbation on solar-system scale (ar « 1/H)
—\We ignore time-derivative terms

- In principle, only linear terms are considered

but some non-linear terms proportional to ¢3 are taken into account

[We derive analytical solution under these assumptions}

and compare with numerical solution




Perturbation equations

R8¢+ 2MEF D’ =

Yo = 2L s
B} =515
5"

azr

2C3

Order of the ratio of the first and second terms :

M

Amtar?

'=0d/dr

Mo — 1

P BnG

d¢ : scalar field perturbation

M = 4ma3 [ pridr : Mass of the star

B1, B2, A, B : functions of background variables

+ 260" — V' +4QM, FO' =0

o
My (arH)?

> If r is small, we can’t ignore first term (ar « 1/H)

Correspond to acquire heavier effective mass on small scales

What is the order of criteria of 7
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Vainshtein radius ry,

- Typical order : r,~10%%cm (Solar-system scale < 10'*cm)  (A. De Felice et al, 2012)

r"-1/2 r -2]

- The behaviour of the solution depends on the g tkew
relationship between r and 1y, |

1074

In solar-system scale (r < ry)
= 2 '4_4FZQZM2
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Fig.2 r dependence of ¢’

> Constraints on Q are drastically relaxed

A : function of background variable 0~0(1) is allowed if we consider typical parameter
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Effective gravitational constant G

GertM
ar?

Defined by —@' = (Gogr = G in GR)

Gois = G/F = Ge*?%/Mp1 in our model inr < ry

Constraint on time variation of gravitational constant

If we apply constraint on time variation of G.¢ by LLR experiment to our model...

0.7 Goff Q¢ 0.7
—35x1075|— | < ——— = < 1.03x 1073 H, = 100h km s~ ! Mpc™1
( h ) = 2HoGetr | MpyH,d ( h ) (Ho ms " Mpc)

~0(107%) if scalar field is dark energy

:|> Inconsistent with LLR experiment (s. Tsujikawa, 2019)
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Spatial derivative are screened

{f

Time derivative are not screened—LLR experiment X

/s this analysis, obtained by ignoring time derivative, correct
(especially for deep inside the Vainshtein radius) ?

:'> Validation by nhumerical calculation

In particular, it is important to confirm time scale of each variable

ir

Why?




By using Hamiltonian constraint, G.¢ can be written as

G Amtar?,;6¢’
Geffz_(]-_l_ IBl ¢>+

F M
screened
@ Time derivative
G F  4mar?B,6¢’ 1 (a B, 6¢d' M
eff ~ _ n 181¢X_ _+&+¢__ + ...
HoGege HoF M Ho\a p; o6¢" M

Analytical solution / Hubble scale or not ?

:|> If time scale of these terms are not Hubble scale,
second term could change the constraint on G,
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Method : ADM formalism

- |t means the canonical formalism of gravity
- Slicing of 4D spacetime with time-constant 3D hypersurface 2(t) (Fig.3)

- Appropriate for tracking the dynamics of 4D spacetime

We give hypersurface Z(t)
Time @t some time as initial condition

t 4
xm
By solving gravitational equations,

Y(t + dt) at the next time
can also be determined sequentially

Fig.3 Slicing of 4D spacetime with 3D hypersurface X(t)
(A Bk, kA =8, W EAN EFENEEER/ — 1), 1995)
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Preliminary results : Violation of Hamiltonian constraint
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Fig.4 Violation of Hamiltonian constraint (In principle, it must be 0)
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Preliminary results : M/H,M

Fig.6 Plot of M/HyM(~0(1))
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Constraint
from
experiment

Analytical
solution

{Numerical

solution
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We choose larger H, than observed value for numerical stability

:>There are small discrepancy from analytical solution,
but it is expected to be very small if we use observed H, value

G o F  4mar?B6¢’ 1 (a+ﬁ'1 5¢’ M)+

IR

a5 Tep M

< Hyinr LKr, H,independent
(confirmed by numerical calculation)

:|> Consistent with analytical solution (preliminary results)

HoGegs HoF M Hy

::> Dark energy theories which have nonminimal coupling
(with @~0(1)) are inconsistent with LLR experiment

*This result may be different in case of interior of star or different time scale event
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V. Conclusions and tuture work
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- Qur numerical results are consistent with analytical solution

derived in previous works

| preliminary

+ We confirmed that result
dark energy theories which have nonminimal coupling*
are inconsistent with solar-system experiments

- We will consider smaller Hy value (but there are technical problem)

- We can also consider
matter or scalar field varying on different time scale
—\We will also try it

*We only consider cases that are observably distinguishable from the case
without nonminimal coupling in the late universe
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