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Motivations
® Primordial black holes could play an important role in cosmological history
® Few analytic models of black holes in cosmological environments
® Exploring how scalar fields respond to black hole environments

® Extended thermodynamics allows for variations in A - scalar evolving in a
potential can provide this dynamically



Scalar fields in cosmology

® FLRW metric and scalar field (assuming homogeneity and isotropy)

ds® = —dt* + a(t)?(dr* + r2dQ?), ¢ = ¢(t)

® Scalar field equation of motion
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Slow-roll in cosmology

® Hubble friction can keep the scalar at constant velocity
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@ Testfield approximation — fix the background cosmology, treat H as constant
and solve for scalar evolution
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Validity of cosmological slow-roll

® Can only treat H as constant if scalar velocity small, so evolution is slow
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® IW'(¢) shouldn’t change too much, otherwise can’t neglect scalar acceleration

® Leads to slow-roll parameters
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Adding a black hole

® FLRW coordinates less convenient for describing black holes
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® Schwarzschild-de Sitter (SdS) metric, in static patch coordinates

ds* = —f(r)dt* + f(r)tdr* +r%dQ?, f(r)=1- ¥ — %rz




Horizons in Schwarzschild-de Sitter

® Horizons located where r — r metric component diverges

@ For certain region of parameter space, gives two physical horizons
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® Have black hole horizon located at r = 1, and cosmological horizon atr =1,



Horizons for GM = 0.1 and A =1




Slow-roll in Schwarzschild-de Sitter

® Black hole breaks homogeneity, so scalar likely to be radially dependent

® Look for “time” that scalar follows

¢o=o¢(T), T =t+ h(r)

® Assuming test field approximation, scalar equation of motion is
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Boundary conditions

® WantT to be regular at both horizons, so that ¢ makes sense there

® Acceleration term could diverge at horizons, avoiding this gives regularity
boundary conditions

n(rs) =1, n(re) = —1

® This choice ensures the metric is also regular at the horizons

Asr —ry, dT — dt + f(r)"tdr = dv
Asr — 1., dT — dt — f(r) tdr = du

[Gregory, Kastor, Traschen, 1804.03462] 1




Separating variables

® As before, ignore scalar acceleration for slow-roll

® Note the radial dependence only appears on the left, so must be constant
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[Gregory, Kastor, Traschen, 1804.03462]




The scalartime T

® Radial equation can be integrated
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® We could solve for h(r) and integrate to get T

T=t+/%(—w+g>

[Gregory, Kastor, Traschen, 1804.03462]
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Validity of test field approximation

® Provided slow-roll conditions satisfied, metric will only have small corrections

® As scalar slowly evolves, sources metric corrections via energy-momentum

M = 4%5&2, A= —3V—=

® Backreaction is a next-to-leading order effect

[Gregory, Kastor, Traschen, 1804.03462]




Rotating black holes

® Kerr-de Sitter (KdS) metric, Boyer-Lindquist type coordinates
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Slow-roll in Kerr-de Sitter

® Scalartime T could now be 6-dependent

T =t+ h(r,0)

® Equation of motion splits as before
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(r, 0) separation of variables

® Equation permits an additive separation of variables

h(?“, 6’) — hl(’r) + hg(e)

® Gives another separation constant
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Scalartime T in KdS

® Get a similar form for n(r)
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® We can get T by integrating to get h,(r) and h,(6)
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Conclusions
® We can analytically treat black holes in some cosmological environments
® Scalars in slow-roll can be extended to include the impact of black holes

® Identified contours of slowly-rolling scalar fields around rotating black holes

® Next steps:
o Backreaction for rotating black holes
o Coasting scalars in a cosmological-black hole system
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Thanks for listening!



