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Overview

• Introduction to MOND

• Appearances of the MOND constant, a0, in the data

• The “coincidence”

• Some “practical” implications

• Possible origins
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MOND – basic tenets

• A theory of dynamics (gravity/inertia) involving a new constant a0

(beside G, ...)

• Standard limit (a0 → 0): The Newtonian limit

• Scale invariance: (t, r)→ λ(t, r)

in the deep-MOND limit : a0 → ∞, A0 ≡ Ga0 f ixed (G → 0):

• Small print: no other new constants, dimensionful or dimensionless

• a0 is analog to c in relativity or ~ in QM

The effective definition of MOND at present

Not modified gravity at large distances
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Scale invariance

X ma = F, F = mMG/r2

V ma2/a0 = F, F = mMG/r2,
or ma = F, F ∝ m(MGa0)1/2/r
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Nonrelativistic theories
Poisson: ∇⃗ · [∇⃗ϕN] = 4πGρ

AQUAL: ∇⃗ · [µ( |∇⃗ϕ|a0
)∇⃗ϕ] = 4πGρ = ∇⃗ · [∇⃗ϕN]

QUMOND: ∇⃗ · [∇⃗ϕ] = ∇⃗ · [ν( |∇⃗ϕN |
a0

)∇⃗ϕN]

Derivable from actions

Limits of relativistic theories

Schematic : gµ(g/a0) = gN, or g = gNν(gN/a0)

g = gN ⇒ g2 = gNa0

“Modified inertia”?
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Relativistic MOND theories

• Tensor-Vector-Scalar Gravity (TeVeS–Bekenstein 2004, ideas
from Sanders 1997) Gravity is described by gαβ, Uα, ϕ: g̃αβ =
e−2ϕ(gαβ +UαUβ) − e2ϕUαUβ

• MOND adaptations of Aether theories (Zlosnik, Ferreira, & Stark-
man 2007, Hossenfelder 2017)

L(A, g) =
a2

0

16πG
F (K) + λ(AµAµ + 1);

K = a−2
0 Aγ;αAσ;β(c1gαβgγσ + c2δ

α
γδ
β
σ + c3δ

α
σδ
β
γ + c4AαAβgγσ).

• Galileon k-mouflage MOND adaptation (Babichev, Deffayet, &
Esposito-Farese 2011)

Also a tensor-vector-scalar theory. Said to improve on TeVeS in
various regards (e.g., small enough departures from GR in high-
acceleration environments)
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• Nonlocal metric MOND theories (Soussa & Woodard 2003; Def-
fayet, Esposito-Farese, & Woodard 2011, 2014) Pure metric, but
highly nonlocal in that they involve F(�).

• BIMOND (Bimetric MOND) (Milgrom 2009-2013)

I = − 1
16πG

∫
[R + R̂ + ℓ−2

M M(ℓ2MC2)]dv + IM + ˆ̂IM

• MOND from a specialized formulation of f (R) theories (Bernal,
Capozziello, Hidalgo, & Mendoza 2011, Barrientos & Mendoza
2016)

• Massive bi-gravity plus a polarizable medium (Blanchet & Heisen-
berg 2015)

• f (Q) versions of MOND (Milgrom 2019, D’Ambrosio et al. 2020)
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Some of the MOND laws

• Asymptotic circular speed (and bending angle): V(r)→ V∞ (H)

• The velocity mass relation (BTFR): V4
∞ = MA0 (H-B)

• DML virial relation: σ4 ∼ MA0 (H-B)

• Discrepancy appears always at V2/R = a0 (H-B)

• Isothermal spheres have surface densities Σ̄ . ΣM ≡ a0/2πG; (B)

• Universal dyn.-bar. central surface densities relation (H-B).

Σ0
Dyn = Σ

0
BQ(Σ0

B/ΣM)

Q(y ≪ 1) ≈ 2y−1/2, Q(y ≫ 1) ≈ 1; Σ0
P(y ≫ 1) ≈ ΣM

• Full rotation curves from baryon distribution alone (H-B)
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Rotation curves
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Rotation curves

Figure 1: From Sanders 2019
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Mass-asymptotic-speed relation
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Mass-discrepancy-acceleration relation

Figure 2: McGaugh

11



Rotation curves:
observed-vs-Newtonian-acceleration

relation
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Lensing: acceleration relation

Figure 3: From Mistele et al. 2023. Lensing data from Brouwer et al.
2021
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Central-surface-densities relation

Figure 4: From Lelli et al. 2016
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Phantom halo central surface density

Figure 5: From Donato et al. 2008
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Galaxy groups
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Covergence
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MOND and cosmology
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a0-cosmology connection

ā0 ≡ 2πa0 ≈ 7.5 × 10−8 cm s−2

ā0 ≈ cH0 ≡ c2/ℓH ā0 ≈ c(Λ/3)1/2 ≡ c2/ℓΛ

ℓM ≡ c2/a0 ≈ ℓU = ℓΛ, ℓH, ...
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Shall we take it seriously?

Weber & Kohlrausch: ve = (ϵ0µ0)−1/2 ≈ c

⇒ MOND as an effective theory

a⇒ ℓa ≡ c2/a

(Rindler horizon, typical wavelength of Unruh
radiation)

a ≶ a0 ⇔ ℓa ≷ ℓU

Does a0 vary on cosmological time scale?
High-z rotation curves
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‘Practical’ implications

• No deep-MOND (g ≪ a0), strong gravity
(ϕ ∼ c2) systems (e.g., no deep-MOND black
holes)

(g/a0) · (c2/ϕ) ≈ ℓM/r

• No ‘cosmological’ deep-MOND, strong lens-
ing

rE/rM = (4DlsDl/DsℓM)1/2 ≈ (4Dl/ℓM)1/2 [rM ≡
(MG/a0)1/2]
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a0 as a Universal constant

Effective (Lagrangian) theories in which ℓM or
a0 is the only dimensioned new constant.

It then enters both as CC and in local
dynamics.

Einstein-Hilbert Lagrangian density:

R → R + ℓ−2F (ℓ2Q)

Nonrelativistic limit: Q→ (∇⃗ϕ)2/c4

c4×Lagrangian→ (∇⃗ϕ)2 + a2
0F [(∇⃗ϕ)2/a2

0]
(up to derivatives)
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Happens in BIMOND, MOND adaptations of
Einstein-Aether, f (Q) versions of MOND,

dipolar medium ...
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MOND may emerges on a de Sitter
background

Does not attempt to explain Λ. Takes the
background geometry as given.

‘Boxed’ systems sometimes know about the
size of the box even if they seem ‘local’:

g = V2
e /2R⊕

Quantum particle in a box of size L: ‘critical
momentum’ Pc = ~/L.

Accelerated charge in a conducting cavity:
radiation zone R > c2/a.
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Gravity waves

ω2 = gk · tanh(kh) (k ≡ 2π/λ, δh ≪ h)

Constants: g, h⇒ MḠ ≡ c2
ℓh = gh2

(c2
ℓ ≡ gh ≪ c2

bulk)

Degrees of freedom:
ω, k ⇒ rω ≡ cℓ/ω, a ≡ c2

ℓk

MḠ
r2
ω

= a · tanh(a/g), µ(x) = tanh(x)
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g↔ a0, cℓ ↔ c, h↔ ℓM, MḠ ↔ MG,
MḠg↔ MA0

For a ≪ g (λ ≫ h): MA0
r2
ω
= a2, Scale invariant

‘Newtonian limit’: MḠ/r2
ω = a, Not SI
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MOND as a vacuum effect

Gibbons-Hawking:
aΛ ≡ (Λ/3)1/2 = κTΛ, κ ≡ 2πckB/~

Unruh: a = κTU ⇒ F = mκT?? (a ∥ ∇⃗T )

Combined: T (a,Λ) = κ(a2 + a2
Λ)

1/2

a5 = (a2 + a2
Λ)

1/2

F = mκ(T − TΛ) = maµ̂(a/aΛ)

µ̂(x) = [1 + (2x)−2]1/2 − (2x)−1,
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MOND from Membrane

Effective gravity depends on the ‘energy
function’ of the brane

E.g., brane area

A =
∫

d2x[1+(∇⃗ζ)2]1/2 =

∫
d2x[1+(∇⃗ϕ/a0)2]1/2

For ‘masses’ E = mζa0 = mϕ
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MOND from Membrane

NR version: 3-D almost spherical membrane in
a 4-D Euclidean space subject to a radial

potential field ε(r) that couples to ‘masses’,
both that of the membrane and to those of
bodies on it. Bodies could be made of the

same ‘stuff’ as the membrane only
concentrated by other forces (EM, strong, etc.)
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Membrane equilibrium
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MOND from Membrane
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