A conserved charge in general relativity
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I. Introduction



Motivation

Questions Is there a covariantly conserved quantity in general relativity ?

If exists, what 1s 1ts physical meaning ?

Energy ?

Some conclusions from our previous studies

1. There exists no covariant definition of conserved energy in general relativity,
due to Noether’s 2nd theorem.

Einstein’s pseudo-tensor (non-covariant), quasi-local energy (absence of local energy density)

2. A (matter) energy covaraintly defined in general relativity 1s not conserved 1n general.

I will not discuss this anymore 1n this talk, due to the limitation of time.
For more details, please take a look at

SA and T. Onogi, “Conserved non-Noether charge in general relativity: Physical definition vs. Noether’s
2nd theorem™, Int. J. Mod. Phys. A36 (2022) 2250129,



Results in this talk

1. There exists a covariant and geometric conservation for a general class of
energy momentum tensor in curved spacetime.

2. The geometric conserved charge becomes “entropy” for a perfect fluids.
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I1. Set up

(which may not be found in textbooks)



1. Decomposition of energy momentum tensor

Energy Momentum Tensor (EMT)

In this talk, we consider the EMT of the Hawking-Ellis type I, which is given by
T, =¢euyuy, + P, Ppu =u'P,, =0
e: energy density ut: a time-like unit vector P, : pressure tensor

This EMT covers standard classical matters in 3+1 dimensions.

Hawking&Ellis 1973, Martin-Moruno& Visser 2018

Conservation law V,LLT'M Y = 0

Other conserved currents such as electric charge or baryon number may exist:

V,N!'=0 i=1,2---.f



2. Initial hyper-surface

First we pick up an initial space-like hyper-surface #,_; .

u () ut () EMT is non-zero on # ;_; :

ub(x) #0 at Vo € Haq

Z ,_; may not be connected.

Ha—1

Coordinate y* (a = 1,2,---,d—=1)on # ,_; .

a1 ={2p(y) | y € Ha1}

H, ,isad — 1 dimensional subspace of R4,
which may not be necessarily connected.




3. Time-like curves and a foliation of hyper-surfaces

We define a time-like curve x*(z,y) starting from an arbitrary point xp(y) on Z ;_; :

dzt (T, y)
dr

= uf(z"(1,y)),

o ' (1,y) = 2'p(y) + /T dn u(z(n,y))
(0,y) = 24(y) 0

T can be negative.

We can construct a foliation of hyper-surfaces # ,_;(r) using time-like curves.

Ha1(7) := {a*(7,y) | Ty € Hy 4}

Ha-1(0) = Hg—1

Assumption: V, T"" = 0 implies u*(z, x)

never end or cmerge.

Hereafter, we use simplified notations such as
ut(z,y) .= ur(x(z,y)) .



4. “3+1” decomposition
We consider a new coordinate (3+1 decomposition) as y* = (" = 7,y%) :

Gapdy?dy? = —X2d1? + hap(dy® + N%d7)(dy® + Nbdr)

(- N ap _ L (-1, NP
JAB Na, Aot g \2 ]\]'a7 A2 Bab
A2 i= hpy NN + 1 No = guu'e, o o
b + 5,u pab .:gwc?y 8yb :hab_NNb
o v e’ 1= v . OxH OxV A2
hap == g€ ey a = fya
Oxt

unit normal to Hg_1(7):  Nia = A = ~A6% (A >0)
Y

A
On the other hand @4 — %uu _ 54 w7, )
£z

Theretfore




5. Evaluation of K .=V ﬂu”

For a latter use, we calculate K=V ﬂu” as

5 I L, 1
K = g¢g""V, u, = 59“’ (Vyuy, +Vouy,) = 59“’ Lo(guw) = \/—_—gﬁu(v —q)
L. Lie derivative along with u# g :=detg,,

~

Since i = 56‘ is a constant vector in y* coordinate, we have

K:\/l—iga(‘\?/f:(u.;)\/ﬁ(‘i {(u-n)\/ﬁ}zglog{—(u-n)\/ﬁ}

Here we use —g := —det 8,5 = A°h = (u - n)*h with h :=deth,, .

(-1, N,
JAB = Naa hab



II1. Conserved current and conserved charge
(Our proposal)



1. Construction of conserved current

refinement of the proposal in Aoki, Onogi & Yokoyama 2021

We construct the conserved current from the EMT using u*(x) as
JH (@) :==T", (2)C(z)u”(z) = —e(z)C(x)u" (x)
This definition 1s coordinate independent.

We determine {(x) in order to satisfy the conservation law V MJ” =0 as

Vo T#(x) = —uD,(C) — K = - (C2) — (2K = 0

(n - w)Vh(0,y)

C(1,y)e(T,y) = ¢(0,)e(0,y) exp [— /OT dnK(n,y)] = ((0,y)(0,y)

n- U) h(Ta y)
9,
where we use K = Elog{—(u : n)\/ﬁ}
The conserved current 1s determined as
ut (T,
JH(T,y) = —¢(0,9)e(0,y)n(0,y) - u(0,y)/h(0, y) (7.9)

n(T,y) - u(T,y)\/h(1,y)



2. Conservation law and conserved charge

We consider a foliation of #;,_,(z) as Ma(11,72) := {Ha-1(7) | 1 <7 <72}

Integral of conservation law on % 7, 7,)

0= / dda? \/TQVMJ“ = Q(Hd_l(Tg)) — Q(Hd_l(Tl)) —|-/ dEIuJ’u
Mg(11,72) 5,

st

where we define  Q(3,_, (7)) := / dy, J*

Os Mg

Hag—1(71)

By construction, the current is zero on 0.4 ; as

dx, J* oc dX, u" o< nyut =0

QHa-1("m)) = QHa-1("11)) == Q

conserved charge



3. Explicit form of the conserved charge

ut (7, y)
n(Tv y) ' U(T, y) h(Tv y)

QMa1(7)) = / a5, J* 05, = —d 'y,
Hd 1(7’)

J'“(7-7 y) — _C(an>€(ovy)n(07y) ' U(O,y) h(oay)

O(Ha1(r /H VRO 9) () T4 (7, ) = /H 491y ¢(0,1)(0, ) , (0, 1)u(0, ) /{0, )

The charge 1s indeed 7 independent, and thus conserved.

Ha—1(72)
The charge Q takes the same value even 1f we
replace Z ;_,(7) with an arbitrary hyper-surface X
:‘-___37“(7’ y) as in the left figure.
DM, K 0sMq QHa-1(7)) = Q(%) = Q
LG
. M/




IV. Geometric conservation and entropy

(trivial conservation but non-trivial interpretation)



1. (Special) initial condition for (

ut (7, y)
72(7', y) ) U(Tv y) h(7_7 y)

JH (7, y) = —€(0,1)e(0,y)n(0,y) - u(0,4)v/h(0,y)
The conserved current depends on an initial value £(0,y) .

We take the following (special) choice :  ((0,)e(0,y)n(0,y) - u(0,y)y/h(0,y) =1

( We take the y-coordinate Cartesian or similar.)

ut (7, y)

geometric conserved current  J¥(r,y) = —
n(Ta y) | U(T, y) h(7_7 y)

geometric conserved charge Q= 41y
(“gravitational charge”) Ha- 1

These are coordinate independent, but depend on a choice of an initial hyper-surface #Z ,_, .

O is invariant under the volume preserving diffeo. of y“ .

The conserved current looks “trivial”. As we will show, however,

J# = entropy current” in the case of perfect fluids.



2. Geometric conserved current

An essence of the geometric conservation law is an existence of time-like curves u”(z, y)
which never end or emerge as

uh(1,y) #0 at V7 for y € Hy_4 uh(1,y) =0 at V7 for y & Hy_q

ut , — b a b
(1,v) GAB — 1 1, 2N , Bab — g Oy® Oy
2\ N, A2Be Dt D
A cof: det B+ —g--. = —1 1mplies
cofactor det gAB 9rr = P
1 1
b:=Vdet Bab = — = —
V=3 (u - n)Vh
Geometric current J" = bu”
Hg 4
Other representation p 1 L jeaaa; a1 aq—1
p J :_(d—l)!\/—ige €0a;-ag_100, Y Oay_ 1Y

(without derivation)

1
Therefore V ,J* =0 and J#9,y* = 0. Furthermore we see J" o« ——

V=9



3. Effective field theory for pertect fluids

We extend an argument in Dubovsky, Hui, Nicolis & Son 2012 to a curved spacetime.

Dynamical variable u* : fluid 4-velocity

y4(x) + co-moving coordinate of fluids, w(x) : phase of a conserved quantity.
Symmetry
Poincare symmetry, volume preserving diffeo: y“ — f“(y) with det(d, f“) = 1

phase transformation: yw(x) — w(x) + ¢

low energy effective theory

derivative expansion

I JH b 0y Oy’
S = /d T/ —gF(b,z)  b=+VdetB®, z:=uld,p = T@,ﬂp B* = g" i
JH = bu
| 5S
Conserved Noether current for y(x) - w(x) +¢: N(z) := 50,0 = nq(z)u"(x)
7

charge density n1=F, :=0.F



4. Entropy of perfect fluids

2 9§ 2F, A(JH 9, b
EMT 1" (z):= = = g"'F + Bl _2(F,z — Fyb
( ) /—_g ag’uy(x) g b agl“/ ( b )baguy
o(JH ) bz, o b 0 s y b
— v — « UV Ba o a — uv W, vV
O 59 D9 599 »0aY " 03Y 2(9 + utu”)
= JapB T UaUpB
P=F—Fb
= (F — Iyb)ob + (F.z — Fyb)ul'u, ce=F2—F
P e+ P + charge density
n, — Fz

de = zdny — Fpdb

compared with thermodynamic relation de = Tds + p,dn,

s=0,T=—-Fy, pu ==z M : chemical potential for n;

b 1s an entropy density !

Other thermodynamics equation € + P — yn; = — F,b = Ts automatically
follows.




V. Conclusion



Conclusion

1. Geometric conservation always holds in a curved spacetime.

—ut T, Y
conserved current JH(T,y) = (7, 9)
n(Ta y) . U(T, y) h(T, y)
gravitational charge Q = di1y

Hg 1

2. The geometric conserved charge 1s entropy for perfect fluids.

Interpretation

1. A source of gravity 1s “entropy”, as the electric charge is the source of EM interaction.

c.f. “Gravity 1s entropic force”. T. Jacobson 1995, E.P. Verlinde 2011.

2. Through Einstein’s equation G, + Ag,, = 2xT,, the geometric conservation holds in

spacetime . What 1s 1ts meaning ?



Future studies

1. What is a physical interpretation of the geometric conservation for dissipative fluids ?

In gravitational systems, instead of energy, is entropy conserved ?

2. Applications of the geometric conservation.

A magic (universal) formula for “entropy” density

—1
s(z(r,y)) = n(r.y) - u(r. )/ h(r D) Please calculate entropy density

in your favorite spacetime.
n(7,y) \ EMT

Hd—l (7‘)

Thank you for your attention.



Backup



B1. More general “3+1” decomposition
ADM decomposition  y* = (", y9), 7 = fOV), ) > 0

ds® = —(f'N)*(dy")” + hap(dy” + f'Ndy")(dy’ + f'N°dy")

~ A f! 27 IPJ ~AB 1 ——1, .f/qu
gap = ( f(’{\fi fhabb ) Ve ( f'Ne, (f'A)* B )
5A n*(7,y)
—g=('"N’h fa=—fA04  da=—

U-Nn=u-n=—>\ /
(1Y)

1
Calculationof K =V u*# K=—"Ly\/—g
A V=9

= 7{d_1<T)
L - d Ay 1 " = V=3
Lo/ —§ = 0204/ —§ + — det = —Jy/—9g — /—G=20
S ey ) LA M L S VU R S R L
"=y —tu idet( 9" )—1— -
s dt - \ay)? (f')?
1 o(u - h
K = (w-n)Vh = 0. log[—(u-n)\/ﬁ] Same result as before

(u-n)Vhf Oy



