Kinematic and thermodynamic properties

' of dynamical regular black holes

Sebastian Murk

Ol ST OKINAWA INSTITUTE OF SClj"" YITP, Kyoto, JP
AR B A 22 e 28" February 2024




gp%& References  PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Phys. Rev. D 108, 044002 (2023) arXiv:2304.05421 [gr-qc]

Regular black holes and the first law of black hole mechanics

Sebastian Murk®"" and Ioannis Soranidis®>" 2504;9'5421

'Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

2School of Mathematical and Physical Sciences, Macquarie University,
Sydney, New South Wales 2109, Australia

Phys. Rev. D 108, 124007 (2023) arXiv:2309.06002 [gr-qc]

Kinematic and energy properties of dynamical regular black holes

Sebastian Murk®"" and Ioannis Soranidis®>'

'Okinawa Institute of Science and Technology,
1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
*School of Mathematical and Physical Sciences, Macquarie University,
Sydney, New South Wales 2109, Australia

2309.06002



https://doi.org/10.1103/PhysRevD.108.124007
https://arxiv.org/abs/2309.06002
https://doi.org/10.1103/PhysRevD.108.044002
https://arxiv.org/abs/2304.05421

gf%? Spherically symmetric dynamical RBHs in semiclassical gravity

Spherical symmetry:

ds® = — f(v,r)dv* + 2dvdr 4 r*d?

Metric function and Misner—Sharp mass:

C'(v,r)

r

C(v,r)=ry(v sz r—r+(v))i

flv,r) :=0,r0!r =1 —

Dynamical RBHs: a,b € Nogga = {1,3,5,...

f(v,r) = glv,r)(r —r— () (r = 71 (v))"

> 0




?%% Dynamical solutions in spherical symmetry

Review article:

0=|| Mann, SM, Terno
apparent horizon formed in finite time of a distant observer: = |l Int. J. Mod. Phys. D 31, 2230015 (2022)

Only two metric families can describe the geometry near an

Table 2. Properties of the four types of Vaidya metrics. The Einstein equations
have real solutions at finite time ¢ > tg only if the NEC 1s violated.

Time-evolution of Black/ NEC

™
sgn(Ty, ) sen(T3") Vaidya mass function =~ White hole  violation

Evaporating OB = =
— — v) < .
black holes — - AR = > Accreting
+ — C'(u) <0 W X white holes
+ + C’'(v) >0 B X

y


https://doi.org/10.1142/S0218271822300154

gf%? Surface gravity and the first law of BH mechanics

5 . . D=|| Bardeen, Carter, Hawking
First law of BH mechanics: SM — K SA g‘ Commun. Math. Phys. 31, 161 (1973)
(for 8. = 6Q = 0) 8T
oM k 0A 1
=5 = —— => K= —

Horizon area: A = 47T’I°_2|_ ory  8mory 2r 4

Definition of K is unambigous only in stationary spacetimes: & = 271

o=l SM, Terno, Phys. Rev. D 103, 064082 (2021)

/\/\/g — |l Mann, SM, Terno, Phys. Rev. D 105, 124032 (2022)

] . o . . b _ . . '
Dynamical generlizations: [1] peeling surface gravity ill-defined for transient object!
[2] Kodama surface gravity: Kr I, = §K’u (VMK,/ — VVKM) KH* = (17 0,0, ())
2
_ =|| Kodama, Prog. Theor. Phys. 63, 1217 (1980)
O=|| Nielsen, Yoon, Class. Quant. Grav. 25, 085010 (2008) —|| Abreu, Visser, Phys. Rev. D 82, 044027 (2010)
=|| Cropp, Liberati, Visser, Class. Quant. Grav. 30, 125001 (2013) —  Kurpicz, Pinamonti, Verch, Lett. Math. Phys. 111, 110 (2021)

y
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gf%? Generalized dynamical first law

Generalized dynamical first law: § (r_+) = ﬂ@ 0 A|+ @%5‘/
2 16mry 8mri

ey —

- 2
87T 1

. Qe Note:
= Consistency condition: w1| =0 ote

Applies generically to dynamical black holes!

Now: Focus on dynamical RBH models f(v,r) = g(v, ) (r —r_ (fu))a (r —ry (v))b with b = 1.

A

iy, = Lot =t T 0 )

r=ry =T+ T—1r4 2

Nonzero Kodama surface gravity only possible for nondegenerate outer horizon. ‘



gf%? Generalized dynamical first law

Generalized dynamical first law: § (r_+) = ﬂ@ 0 A|+ @%5‘/
2 16mry 8mri

ey —

- 2
87T 1

. Note:
= Consistency condition: w1| =0 ote

Applies generically to dynamical black holes!

Now: Focus on dynamical RBH models f(v,r) = g(v, ) (r —r_ (fu))a (r —ry (v))b with b = 1.

a

=) wl\r:”: L —g(v,r)ry(ry —r-)

& | gry)ry (ry —ro)" =1 A




?%% Nondegenerate dynamical RBH models (a = 1,0

- [E Bardeen in Proceedings of the International
Popular examples: Bardeen, Dymnikova, Hayward. = || Conference GRS (Tbilisi University Press, Tbilisi, 1968)
ng Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992)
r (U)?"2 — |l Hayward, Phys. Rev. Lett. 96, 031103 (2006)
Dynamical Hayward RBH: f(v,7) =1 — £
y 3 + rg(v)l(v)?
_ 12 3 12 3 12 4
Usingtherootsof f =0: ro=—l4+-—+0(°) <0, r-=l+-—+0(’), ry =rg— —+0O(l")
2rg 2rg Tg
r—To
v,r)= —5——"=(r—r_)(r—r
=> f( ) r3 + ’l“gl2 ( )( +)
1 : r—To
Comparison with  f(v,r) = g(v,7)(r —r_(v))(r —r1(v)) = g(v,r) = RE >0
r 'I“g

Not covered in talk:

. . 312 .
Expansion of MS mass about the outher horizon r =7, : | wy| _ =t o@*) =0 Degenerate models (a > 3);
=T r

g Charged Hayward-Frolov BH

SM, Soranidis [

Analogous expressions are obtained for other nondegenerate models. 'g‘
= || Phys. Rev. D 108, 044002 (2023)



https://doi.org/10.1007/BF00760226
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevD.108.044002

48 Summary #1 [Phys. Rev. D 108, 044002 (2023)]

1.  First law receives corrections that can be interpreted (r 4 ) 1 @ 5 A

as an additional work term of an extended first law: 16717 n

+ &0 5y

2
8ﬂr+

2. Linear coefficient of Misner—Sharp suffices to determine the relevant thermodynamic properties.

3. Need for corrections is linked to introduction of minimal length scale

(consequence of spacetime regularization).

Phys. Rev. D 108, 044002 (2023) arXiv:2304.05421 [gr-qc]
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?%% Null energy condition for dynamical RBHs

‘ ¢#=(1,1/20,0) ds? = — f(v,r)dv? + 2dvdr + r2dQ?
T, M7 >0 !
M T, 000 = 221 0,1 = g0, 1) = )" (7 = o)
8mr

Evolution of the NEC violation for the model proposed in
At outer apparent horizon: 5= | Carballo-Rubio et al.
J. High Energy Phys. 09, 118 (2022)

o] = TOTCTO =T s T, e
+ 8T+ A Ty M0 }T_
+O(r—ry) Vr , ' ' L
<0 ( +) - 0 2 6 8 ( v
s hori —0.00005|
t inner apparent norizon. | T, 040"
: Yary —0.00010} o
W pv _ (_1\b+1 ag v, r—){—T_ . b [
Twtite], = (=1) 8mr_ (ry =r-) ~0.00015}
-1 [
>0 (r=r2)" +0(r =) ~0.00020}



https://doi.org/10.1007/JHEP09(2022)118

?% Null energy condition for dynamical RBHs

0<r<r- r— <r<mro ro <7r < Ty

T 0" >0 v v X

TABLE 1. Overview of NEC-non-violating (v') and NEC-violating |
(X) regions of an evaporating RBH with a nondegenarate outer hori- ‘
zon [b = 1]. If the outer horizon is degenerate [b > 1], the NEC-
violating region is given by 7o < r < r4, 1.e. it no longer includes
the outer horizon r = r itself.




?%% Trajectories of timelike observers/massive particles

Lagrangian for radially moving timelike observers: £ = % f 02 — Or Euler-Lagrange equations:
.. 1 .9
U= —5 (0 f)v
Ho  — _ _fn2 o — S| 21
Wy =1 = —fo7 4207 = —1 i = 3(0u1)8° = 3(0,f)

r + \/ 72 -+ f Real-valued solutions inside of trapped

f region if < — /_f

= 0 =

Untrapped region: Trapped region.

r-<<r<r
0<r<r_ & r>ry i

“+” (ingoing trajectories)

“+” (for both ingoing/outgoing trajectories)



?%% Trajectories of timelike observers/massive particles

r<r_
Alice begins her journey from the untrapped region on an outgoing geodesic. ) T+ /T 2+ f
R
Radial acceleration on approach to the inner horizon r_ : f
even < O
. (—1Yatbngy2 r’ (v 1 .
= ; -+ 0 =% r <0
g, r_J(ry —r-)° [r —r_fot (r—7r-)e
y > () % negative & divergent
A
—0.010}
; 0172 o0a7a o476 o1 oas o C
~0.015}
—0.0205-
—0.0255-
—0.030
—0.035
—0.040




?%% Trajectories of timelike observers/massive particles

Inside of the trapped region: 7 : : :
pp & <0 Radial acceleration on approach to the outer horizon r_ :

. 20712 —r!, (v) Lo 1
. L : : 7= —
At ¥ : Transition from ingoing to outgoing geodesic glo,r)(re —r_)e |r —ry o1 | — 7y |?

7’“—|—\/}'“2Tf:>@:f—\/m = 7> (

ro<r<rg r <0

V= 7
y i m) Transition from outgoing to ingoing
A A
5t Ingoing geodesic —0.010}
~~~~~ _ , . _ T o172 o174 o016 oi7s  oisn > '
\\\\\ Ingoing geodesic Outgoing geodesic —0.015}
kTS, r_ K_H A
\\\\\\\ A ~0.020}
al A Y :
r=0 > ~0.025}
N J T _
2 N GRS B 0.030
Outgoing geodesic . 1 TS
EOMEBEOAENE Dutgoing T ~0.035
1} T
---------------------------------- ~0.040
0.14 0.15 0.16 0.17 0.18 0.19 o0 > 7
(0]8




?%% Energy density at the horizon crossing

Horizon crossings always occur on an ingoing geodesic. Close to both horizons f ~ 0

and expansion of the ingoing trajectory leads to

1 . :
o =——=+ i +O(f?) =P Energy density 2, observed by Alice upon
T+ 27 83

1 r
'OA|7"i B [87’(‘7‘2 (1 —ronf = ﬁa”fﬂ

crossing the horizons is finite (i.e. no firewalls).

+0(f)

T+

Energy density p, measured by Alice throughout her
trajectory for the model proposed in

E Carballo-Rubio et al. 0.05 0.10 0.15 0.20
=|| J. High Energy Phys. 09, 118 (2022)
+

NEC violation close to r
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?%% Energy density at the horizon crossing

Horizon crossings always occur on an ingoing geodesic. Close to both horizons f ~ 0

and expansion of the ingoing trajectory leads to

1 : :
@‘ri =—o+ 8% +O(f?) =P Energy density 2, observed by Alice upon
crossing the horizons is finite (i.e. no firewalls).

1 r
- =10, f — 500f) O
’OAL& [87’(‘7’2( rorf 472 f]ri+ (f) 0,
A
100}
O0<r<r- r— <r<nm A)<’P<T+

T 00" >0 v v \ X

TABLE 1. Overview of NEC-non-violating (v') and NEC-violating
(X) regions of an evaporating RBH with a nondegenarate outer hori-
zon [b = 1]. If the outer horizon is degenerate [b > 1], the NEC-

violating region is given by ro < r < 74, i.e. it no longer includes 0.05 0.10 0.15 @ 0.20
+

50+

» 7
the outer horizon » = r itself.

NEC violation close to r




?%% Trajectories of timelike observers/massive particles

What do we learn from this?

There 1s a unique way for massive observers and particles to escape the trapped region on a

geodesic trajectory, whereby crossing the horizons 1s only possible on an ingoing geodesic.

This result has two important (one may argue pleasant) physical implications:

1. Absence of firewalls

Energy densities measured by geodesic observers do not diverge.

2. Natural resolution of the information loss problem
Particles and any information content associated with their existence

on the manifold can escape the supposedly trapped spacetime region.




48 Summary #2 [Phys. Rev. D 108, 124007 (2023)]

. : <r<r.  r.<r< <
1. NEC is violated near r, and satisfied near r_ . OSrsr- 7 <7TST To<TSTy

Trapped spacetime region is separated. Ty 04" > 0 v v X

2. Quantum effects are more pronounced near r, and towards the final stages of the evaporation process.

3. Timelike trajectories of massive observers/particles can exit the supposedly trapped region on
an ingoing geodesic. No firewalls & no information loss.

Phys. Rev. D 108, 124007 (2023) arXiv:2309.06002 [gr-qc]
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?%@ Semiclassical considerations

Semiclassical gravity: RMV — %ng = &7 <T/u/>zp

1. Metric is modified by quantum effects.
The resulting curvature satisfies semiclassical Einstein equations.

2. Renormalised EMT describes total matter content, i.e. both the original
collapsing matter and the produced quantum excitations. Dynamics
of collapsing matter is still described classically using metric.

r=0
3. Classwal qucetlme .structure 1S st.111 meampgful gnd described by Collapsing
metric; classical notions (e.g. horizons, trajectories) can be used. star —

No assumptions about:
global/asymptotic structure of spacetime; quantum state ; status of i

energy conditions; presence or absence of singularity; presence or
absence of Hawking radiation.

T SM, Terno
MGI16. pp. 1196-1211 (2023);

arXiv:2110.12761 [gr-qc]

Mann, SM, Terno
Int. J. Mod. Phys. D 31, 2230015 (2022)

I
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?%@ Review article with more details

International Journal of Modern Physics D | Vol. 31, No. 09, 2230015 (2022) | Review Paper
Black holes and their horizons in semiclassical and modified theories of gravity

Robert B. Mann, Sebastian Murk and Daniel R. Terno

International Journal of

https://doi.org/10.1142/S0218271822300154 M d Ph - D

arXiV:Z 1 12.065 1 5 [gr_qc'l GRAVITATION = ASTROPHYSICS = COSMOLOGY
Int. J. Mod. Phys. D 31, 2230015 (2022) & Tools < share & Recommend-ToLibrary

Abstract

For distant observers, black holes are trapped spacetime domains bounded by apparent horizons. We review properties of the near-horizon
geometry emphasizing the consequences of two common implicit assumptions of semiclassical physics. The first is a consequence of the cosmic
censorship conjecture, namely, that curvature scalars are finite at apparent horizons. The second is that horizons form in finite asymptotic time
(i.e. according to distant observers), a property implicitly assumed in conventional descriptions of black hole formation and evaporation. Taking
these as the only requirements within the semiclassical framework, we find that in spherical symmetry only two classes of dynamic solutions are
admissible, both describing evaporating black holes and expanding white holes. We review their properties and present the implications. The null
energy condition is violated in the vicinity of the outer horizon and satisfied in the vicinity of the inner apparent/anti-trapping horizon. Apparent
and anti-trapping horizons are timelike surfaces of intermediately singular behavior, which manifests itself in negative energy density firewalls.
These and other properties are also present in axially symmetric solutions. Different generalizations of surface gravity to dynamic spacetimes are
discordant and do not match the semiclassical results. We conclude by discussing signatures of these models and implications for the

identification of observed ultra-compact objects.
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?%% Dynamical solutions in spherical symmetry

Review article:

Only two metric families can describe the geometry near an

. . . . ) 0=|| Mann, SM, Terno
apparent horizon formed in finite time of a distant observer: —

= | Int. J. Mod. Phys. D 31, 2230015 (2022)

Table 2. Properties of the four types of Vaidya metrics. The Einstein equations
have real solutions at finite time ¢ > tg only if the NEC is violated.

Time-evolution of Black/ NEC
Sgn(Ttt ) sgn(Tt ")

. Vaidya mass function =~ White hole  violation
Evaporating
black holes _ — C’'(v) <0 B v
— + C'(u) >0 W v
+ — C"(u) <0 W X
+ + C’'(v) >0 B X

Accreting
white holes

Each of the two metric families has two classes of solutions: lim Tﬁ,f/f ~ :I:T(t)2 f(t, T)k,
7“—>7°g

ke {0,1}

k = 1 at formation/disappearance v = Vf|d> k=0Vuve (Ufa Ud) A



https://doi.org/10.1142/S0218271822300154

?%@ Semiclassical considerations

Semiclassical gravity: [

Spherical symmetry:  ds* = 72?(”"'“)]”(1}, r)dv? + 2e™MV) dudr + r2d0?

Integrating factor in

coordinate transformations, e.g.

dt =e " (eh+dv — f_ldr)

C(v,r)

f(v,r) :==0,rofr =1 77

r
. 0D=|| Misner, Sh
Misner-Sharp mass ’g‘ e Swp

Phys. Rev. 136. B571 (1964)

Only assumption: Regular apparent horizon forms in finite time of a distant observer.

(Scenario III of gravitational collapse) Unique!

SM, Terno
Phys. Rev. D 103, 064082 (2021)

Mann, SM, Terno
Int. J. Mod. Phys. D 31, 2230015 (2022)

y
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?%% Semiclassical gravity: spherically symmetric setup

057 =~ f(0.r)dE + () 4 170

2
Clv,r) 0,C = 8nrory/ f
where  f(v,r) := 9urd'r =1 /T 0;C = 87r7“2eh’7'tr
5 Misner, Sharp 8r,~h = 47r (Tt + TT) /f27

. 0
Misner-Sharp mass j Phys. Rev. 136. B571 (1964)

Curvature scalars:

T:=("—7)/f Effective EMT components:
— o 2h r._ ,—hpr T .__ orr
T = ((7”)2 + (7-,5)2 —92 (Ttr)2) /f2 =€ Ty, 1, =e Ty, 7 =T

Solutions are characterised by scaling behaviour of EMT close to horizon: lim 7 ~ £ (t)2 f(t, 7‘) &

O=]| Terno, Phys. Rev. D 101, 124053 (2020) Only two values of k are consistent: k € {0, 1}
— |l SM, Terno, Phys. Rev. D 103, 064082 (2021) .
Both classes violate the NEC.
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?%f Dynamical solutions in spherical symmetry

SEBASTIAN MURK

PHYS. REV. D 105, 044051 (2022)

k = 0 solutions

k = 1 solution

Metric functions

C—I" —012\/_‘|—ZC xJ (kOl)
j=>1
€T =T — ’]"g —_— x 00
\}~>
=~ In; t Z hox! (k0.2)
Leadi fficient
eading coefficien cp = 42T (k0.3)
Hori d '
orizon dynamics r = tcp \/E /7, (k0.4)

Describes black holes immediately after their
formation (and for the rest of their lifetime).

C=r,+x—cpx’/?+ chxj (k1.1)

3. 0x = .
h = —EIHE—FZI’IJ'XJ

C3yp = 47’2/2\/ —71'62/3

ry = j:c32§3/2/rg

=2

(k1.2)

(k1.3)

(k1.4)

Describes the formation of black holes.

Both violate the NEC near the horizon!

The formation of black holes follows a unique scenario that involves both classes of solutions!

The transition between them is continuous. .
Details.

SM, Terno,
Phys. Rev. D 103, 064082 (2021)

y
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?%% Nonsingular trapped spacetime regions

. . 0=|| Hayward
Radial null geodesic congruences: g‘ Phys. Rev. D 49, 6467 (1994)
?
0 2 0 f(’U, T) => Existence of trapped region: 9_(9_|_ § 0
R ” , _|_ p— .,
f < 0 inside

Presence of trapped region is signified by 6 _ 6, > 0, which implies
f > 0 outside

f(o,r) =g, r)(r—r_()*(r —r.(v))" = ¢>0 and b odd.

2

“Disappearance point”:  _0 ‘vd — ——2g(vd, fr) (fr — Ty (vd)>a+b <0 Vr
r

r— (va) =y (va)

=L Sum a + b must be even.

SM, Soranidis
= || Phys. Rev. D 108, 044002 (2023) = ¢ odd.

[l
i

of the trapped region.

y
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https://doi.org/10.1103/PhysRevD.108.044002

gf%? Generalized dynamical first law

Using f(v,7) := 0,ro!r =1 — C(v,r) C(v,r) =ry(v) +Zwi(v) (r—ry(v))

1
= RK‘T:T — §arf(va"“) ~ 9 Cv,7) =r0.C(v,7)] ‘7"— v 2r 4
I’ law: wziﬁ = 0 ‘_ :1_w15A
r. T (57“+ r=r4 167‘(‘7"_|_ 5 Ty 1 — wy 54 w1 5
MS mass: SM oC L4 S i (7) 167y 20
mass. {T:mr— 7 r:mr— 5( - wl) [A=E

Generalized dynamical first law: é&,p - 8mr2

Using A= 47rri , V= %m“i

=L 1 —
(: SA = 8, §ry = %51/) ) (%) = 16”? §A|+ 8:;2 5V
+ T




_ 1 —wy (U) Evolution of the linear coefficient in the MS mass

Recall: Ky ‘

T+ 2ry (U) for the model proposed in == Carballo-Rubio ef al.
=|l J. High Energy Phys. 09, 118 (2022)

a

Wi, —p, = 1 —g(v,ry)ry(ry —r-)
flo,r) =glv,r)(r—r_)*(r —ry)

. . —_ 1
At formation/disappearance: k =1 iy g(v,r) = Py — (3r2ry + 137 + cor® — 3r_13 4 14
1

r—(vea) = r4(vea) = w1(vf|d) =1 A
1.ooof

Value of w1 (V) indicates transition from 0.905

k=1— k=0 atformation 0_9905_

(w1 (ve) =1 = wy(v > vg) < 1] 0.085
k=0 — k=1 atdisappearance 0.9802—

w1 (v <vg) <1 — wi(vq) = 1] 0.975|
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?%% For evaporating RBHs r_ and r_are timelike

Inner and outer horizon correspond to the constraint P (ZT N ) —r—ry =
which leads to a normal vector defined by 1, =: naucb(zri) =N (—Tit, 1,0, 0)

normalisation factor

=$ Inner productatr_/r, : n’un,u — _2772T£|:

T+
For evaporating RBHs [/, < 0], this inner product is spacelike: 7 M?”L’u > ()

= (ausal character of the horizons 1s timelike.




gf%? Generalized dynamical charged Hayward—Frolov RBH

(7“9 (U)r . q(v)2) r2 SM, Soranidis

[l
i

Generalized dynamical metric function: f(v,r) =1

Phys. Rev. D 108, 044002 (2023)

o (rg(0)r 4 q(0)2) 1(v)?

Kodama surface gravity: KK = 1 2_ w(1 (Ula)l )
r4 (v,
| L r(v) = m(v) = /m() = g(v)?
Horizons: r—(v,l) =r_(v) + - (v)I*+ O (l ) ry(v) = m) +v/m(v)? + q(v)?

+(0) + B4 (V)7 4+ O (I*)

<
_I_
VS
<
S~
N—"
I
<

q(v)?

Consider MS expansion:  wy(v,1) = ()2
T+ v

+ B8P +0 (1Y) = Kikge = re(v) —r-()

|
_I_
&

Differences: 1. Inner horizon r_ # 0 even if [ = 0 due to the presence of a charged term that is independent of /.

2. Compatibility with the first law is no longer encoded by w; = 0. For [ — (), the new compatibility

condition can be stated as q(v)?
w1y (Ua O) - 2
r4(v)
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?%% Kodama surface gravity

ds® = —f(v,r)dv? + 2dvdr + r*d§)? K" =(1,0,0,0)

1 _
Kodama surface gravity: kK, = 5[(“ (VMKV — VVKM) VMK“ =0
V,Jh=0, J':=G"K,

1
Kodama surface gravity evaluated at outer horizon: rg = —0,f(v,r)|

T=74 2 T=r4 /
/
+

Note: Nonzero Kodama surface gravity requires
that outer horizon is nondegenerate, i.e. b = 1.




?%% Surface gravity in stationary spacetimes

K

Hawking temperature: Ty = % (for observer at infinity)

Killing vector field

Several equivalent definitions, related to either .
withnorm /&HE,, = 0

Inaffinity of null geodesics on the horizon: f ’u’yf Vo= lif H

dr

Peeling off properties of null geodesics near the horizon: p = :|:2/$peel(t)x + O (5132)

2 Te




?%% Surface gravity in dynamical spacetimes

In general dynamical spacetimes: no asymptotically timelike Killing vector.

Kodama, Prog. Theor. Phys. 63. 1217 (1980)
— ||| Abreu, Visser, Phys. Rev. D 82. 044027 (2010)
—|I' Kurpicz, Pinamonti, Verch, Lett. Math. Phys. 111, 110 (2021)

Role of Hawking temperate captured either by peeling or Kodama surface gravity.

O=|| Barceld, Liberati, Sonego, Visser,
—|| Phys. Rev. D 83, 041501(R) (2011)

Indistinguishable for sufficiently slowly evolving horizons with properties close to their classical counterparts

However: the similarity fails for dynamical spherically symmetric solutions!

O0=|| Mann, SM, Terno,
—|(| Phys. Rev. D 105, 124032 (2022)

y


https://doi.org/10.1103/PhysRevD.83.041501
https://doi.org/10.1143/PTP.63.1217
https://doi.org/10.1103/PhysRevD.82.044027
https://doi.org/10.1007/s11005-021-01445-7
https://doi.org/10.1103/PhysRevD.105.124032

?%% Surface gravity in dynamical spacetimes: peeling surface gravity

— || Cropp, Liberati, Visser, Class. Quantum Gravity 30, 125001 (2013)

e"ra) (1 - C' (t,1y))

Consider peeling surface gravity: Kpeel =

i

O=|| Nielsen, Yoon, Class. Quantum Gravity 25. 085010 (2008) For example: k=0

00
C = g — 612\/54— Zijj

j>1

1 - .
h=—=In—+ E h;x?
jZ5

With the metric functions C and h of the k=0 and k=1 solutions: Kpee] — OO dr

Cf. stationary expression: ——

O=|| Nielsen, Visser,
— || Class. Quantum Gravity 23. 4637 (2006)

_ 1 _
Using Painlevé—Gullstrand coordinates (t,7): kpg, = — (1 - 0,.C )

— > RPG,

27“9 r=rg
O=|| Mann, SM, Terno, 1 _ _
= || Phys. Rev. D 105. 124032 (2022) KPGy = 5 — (1-0,C+ 8;C)
g

= 1, + a1a(t)vVz + O(x)

= +2kpeel(t)r + O (:cz)

=0

—* 3 possibilities (0,00, finite)

e depending on behaviour of ¢ I



https://doi.org/10.1088/0264-9381/25/8/085010
https://doi.org/10.1088/0264-9381/30/12/125001
https://doi.org/10.1088/0264-9381/23/14/006
https://doi.org/10.1103/PhysRevD.105.124032

?%% Surface gravity in dynamical spacetimes: Kodama surface gravity

1
Defined via 5 K* (V MK vy — V, K ,u) = KISy evaluated at horizon.

\ / (v,r) coordinates
Kodama vector field: K* = (€_h+ , 0,0, O)

covariantly conserved: VK" = 0,

V,Jh =0, J':=G"K,

1 C.|.(U,7“) 6TC+(?)7T) (1 _ wl)
Result: KK = 5 5 — — 5
T ,r T:T+ T"‘
. O=|| Mann, SM, Terno,
— 0 at formation of black hole. — || Phys. Rev. D 105, 124032 (2022)
—  Approaches static value £ = 1/(4]M) —> Contradicts semiclassical results.

only if metric is close to pure Vaidya metric.



https://doi.org/10.1103/PhysRevD.105.124032

?%% Page evaporation law

m .
Mass loss due to emission of Hawking radiation: d_M = — Z i / Wl jeotmp dw
di o Jo  eEmeln—1
J:£,m,p
E‘ SM, Soranidis
=|| Phys. Rev. D 108, 044002 (2023)
Simplifying assumptions: m=4/¢=20
Note:
2.2
I' ~wry Effects of Hawking radiation are described by ingoing
Vaidya metric with decreasing mass (C ! (v) < 0).
Mo Lo & o g
Explicit form of the coefficients and their expansion dv M dv rL
about w; = 0:
4 1
a=8a=———F1 ,
L1 el—wr —1 => Standard Page evaporation law is modified if
Q= T AT _ ] + O(w1), w1 = 0 1s not satisfied.



https://doi.org/10.1103/PhysRevD.108.044002

?%% Information loss

“an isolated black hole will evaporate completely via the Hawking process
within a finite time. If the correlations between the inside and outside of
the black hole are not restored during the evaporation process, then by the
time that the black hole has evaporated completely, an initial pure state
will have evolved to a mixed state, i.e., information will have been lost. In
a semiclassical analysis of the evaporation process, such information loss
does occur and is ascribable to the propagation of the quantum correlations
into the singularity within the black hole.”

0= Wald,
— |l Living Rev. Relativ. 4, 6 (2001)

y


https://doi.org/10.12942/lrr-2001-6

% Review article

Stay in touch!

International Journal of Modern Physics D | Vol. 31, No. 09, 2230015 (2022) | Review Paper

Black holes and their horizons in semiclassical and modified theories of gravity

Robert B. Mann, Sebastian Murk and Daniel R. Terno

arXiv:2112.06515 [gr-qc]

https://doi.org/10.1142/50218271822300154 |

Int. J. Mod. Phys. D 31, 2230015 (2022)
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Abstract

# Tools Recommend To Library

For distant observers, black holes are trapped spacetime domains bounded by apparent horizons. We review properties of the near-horizon
geometry emphasizing the consequences of two common implicit assumptions of semiclassical physics. The first is a consequence of the cosmic
censorship conjecture, namely, that curvature scalars are finite at apparent horizons. The second is that horizons form in finite asymptotic time
(i.e. according to distant observers), a property implicitly assumed in conventional descriptions of black hole formation and evaporation. Taking
these as the only requirements within the semiclassical framework, we find that in spherical symmetry only two classes of dynamic solutions are
admissible, both describing evaporating black holes and expanding white holes. We review their properties and present the implications. The null
energy condition is violated in the vicinity of the outer horizon and satisfied in the vicinity of the inner apparent/anti-trapping horizon. Apparent
and anti-trapping horizons are timelike surfaces of intermediately singular behavior, which manifests itself in negative energy density firewalls.
These and other properties are also present in axially symmetric solutions. Different generalizations of surface gravity to dynamic spacetimes are
discordant and do not match the semiclassical results. We conclude by discussing signatures of these models and implications for the

identification of observed ultra-compact objects.

Keywords: Semiclassical gravity = modified gravity = black holes = apparent horizon = evaporation = white holes

energy conditions = thin shell collapse = surface gravity = information loss
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