Binary neutron star mergers in massive scalartensor theory

Hao-Jui Kuan

Partially based on arXiv:2309.01709 Collaborated with Karim Van Aelst, Alan Tsz-Lok Lam, Masaru Shibata, Kenta Kiuchi

MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS (Albert Einstein Institute)

Gravity and Cosmology 2024, YITP, Kyoto, Japan (February 28)

- Scalar activities in compact binary systems
- Current valid parameter space for scalar-tensor theory
- Status on numerical simulations
- Adiabatic approximation to evolution quasi-equilibrium states
- Parameters after GW170817 and how to proceed

DEF type of scalar-tensor theory throughout!!

$$\varphi \sim \alpha e^{-m_{\phi}r}/r$$

Outline

Interplays of scalar in compact binaries

effective gravitational constant

$$G_{\rm eff} = G(1 + \alpha_1 \alpha_2)$$

are grav. Const. Charge of body 1

• Difference in the scalar charges can emit scalar waves

$$\dot{E}_{\text{dipole}} = \frac{G}{3c^3} \left(\frac{G_{\text{eff}} m_1 m_2}{r^2} \right)^2 (\alpha_1 + \alpha_2)^2 (\alpha_2 + \alpha_2)^2 (\alpha_1 + \alpha_2)^2 (\alpha_2 + \alpha_2)^2 (\alpha_2$$

Two bodies with scalar charges can interact to feel an

Damour & Esposito-Farese, CQG (1992)

$$F = \frac{G_{\rm eff}m_1m_2}{r^2}$$

$$\dot{E}_{\text{quadrupole}} = \frac{32G}{5c^3} \left(\frac{G_{\text{eff}}m_1m_2}{r^2}\right)^2$$

$$(- \alpha_2)^2$$

How pulsar binaries limit the theory?

Pulsar timing observation

By sizing the excess orbital decay when assuming GR

Negligible for pulsar-WD binaries

Sources for the excess:

- 1. Mass loss from binary
- 2. Tidal effects
- 3. Dipolar GW
- 4. Varying G

Damour & Taylor, ApJ (1991)

Pulsar timing observation (contd.)

... then inject to a specific theory — DEF ST here but massless scalar

The scheme: Damour & Esposito-Farèse, PRD (1996, 1998); Alsing +, PRD (2012); Anderson +, CQG (2019); Zhao +, CQG (2022) ...

A scalar mass is necessary

7

As of 2022, seven pulsars almost exclude the scalarization for all NS

masses if the scalar is massless —> need mass, which gives Compton L

How can BNS improve the current knowledge?

Existing binary simulations in DEF ST

- Simulations from a GR binary data:
 - BNS: studies on dynamical scalarization [Barausse +, PRD (2013); Palenzuela +, PRD (2014)]
- BHNS: comparison of waveforms from NR to AR [Ma +, PRD (2023)] • BBH GR data with ad hoc scalar cloud: presence of dipolar emission [Healy +, CQG (2011); Berti +, PRD (2013)]
- Consistent initial data for DEF: for waveform modelling over larger parameter space [Shibata +, PRD (2014); Taniguchi +, PRD (2015)]
- Above efforts are in massless theory; nice way to gain intuition but need to go to massive case!

Initial data for massive ST

- Adding a module to the public Ç

code FUKA [Jens Papenfort, PRD (2021)],
which adopts spectral method
solving PDEs
A redefinition of scalar field to
numerically solve is necessary

$$\varphi \propto e^{-m_{\phi}r}/r$$
 $\xi = \varphi \cosh(m_{\phi}r)$
Simulation of BNS in massive ST
 $\Delta \varphi = 2\pi B \psi^4 \varphi \phi^{-1}T - \varphi f^{ij}(\partial_i \varphi) \partial_j \varphi$
 $-f^{ij}(\chi^{-1}\partial_i \chi + \psi^{-1}\partial_i \psi)(\partial_j \varphi) + m_{\phi}^2 \psi^4 \varphi \phi$,
 $\Delta \xi = m_{\phi}^2 [2 \cosh^{-2}(m_{\phi}r) + \psi^4 \phi - 1]\xi$
 $+ \frac{2m_{\phi} \tanh(m_{\phi}r)}{r}\xi + 2m_{\phi} \tanh(m_{\phi}r)\hat{r}^i\partial_i\xi$
 $- 2m_{\phi}\xi \tanh(m_{\phi}r)\hat{r}^i\partial_i\xi + m_{\phi}^2\xi^2 \tanh(m_{\phi}r)$
 $- (\chi^{-1}\partial_i \chi + \psi^{-1}\partial_i \psi)[f^{ij}\partial_j\xi - m_{\phi}\xi \tanh(m_{\phi}r)]$

is now ready to be performed! 10

Scalar mass introduces:

- **1. a Yukawa-suppression to scalar** interaction
- 2. Cutoff frequency on the scalar emission

Scalar cloud enhances for less separation

Quasi-equilibrium states of BNS

$$F = \frac{G_{\rm eff}m_1m_2}{r^2}$$

Damour & Esposito-Farese, CQG (1992)

- The scalar-type interaction offers additional ``attracting force" => larger orb. frequency for a given binding energy (gravitational state)
- Tidal interaction can play the same role as well, however.

12

GW170817

- No clue of non-GR effects [Abbott +, PRL (2017,2018,2019)]
- Possible solutions to accommodate DEF with the observation:
 - 1. NS members are not spontaneously scalarized while dynamical scalarization after $f_{\rm gw} = 500$ Hz reveals
 - 2. NS members are spontaneously scalarized but scalar effects are smeared out until $f_{\rm gw} = 500$ Hz
 - 3. Scalar effects can only kink in for higher energy physics in the post-merger phase

New bound on the scalar mass by BNS

<i>T</i>	
Binary components	(m_{ϕ}, B)
$1.35M_{\odot} + 1.35M_{\odot}$	(0.03, 10.5) (0.03, 11)
Assumina the 3.5 PN	(0.03, 11) (0.03, 12) (0.03, 15)
energy flux in GR [Shibata	(0.03, 19) $(0.03, 19)$
+, PRD (2014)], We can	(0.1, 15.2) (0.1, 16)
estimate # of cycles	(0.1, 17) (0.1, 20)
$\mathcal{N} = \frac{1}{2\pi} \int \frac{\Omega_{\rm orb}}{d\Omega_{\rm orb}/dt} d\Omega_{\rm orb}$	(0.1, 30)
$= -\frac{1}{2\pi M_{\text{inf}}} \int \frac{x^{3/2}}{\mathcal{F}(x)} \frac{dE_{\text{b}}}{dx} dx$	$x = (M_{\inf}\Omega_{\inf})$ Total mass of

Bound can be updated by considering **adiabatic approximated coalescing BNS**

 $(rb)^{2/3}$

f binary 14

Within the accuracy of the detected waveform for GW170817, an uncertainty from APR4 to H4 remains.

The number of cycles obtained in GR are:

- 27.45 for APR4
- 26.24 for H4

=> Either small scalar mass or large coupling is disfavoured if spontaneous scalarization exists

New bound on the scalar mass by BNS (contd.)

Issue for future study: how to distinguish scalar and tidal effects?

Known where we stand! How to proceed with waveforms?

Waveforms as fingerprints of scalar field Degeneracy to EOS, or tidal effects, need to be analysed [Bernard,

- PRD (R) (2020)]
- Synergy between analytic and numerical relativity is crucial

last 0.07sec

Prospects of post-merger waveforms

- Complicated by the plethora outcomes of merger, while a pivotal channel to reveal the nature of remnants (Alan's talk)
- New features due to radial scalar mode
- Is pre- or post-merger waveform more promising channel? Universal relations connecting them?
- Superradiance in BH + torus remnant may fuel continuous waves — maybe year(s) long [Brito +, PRD (2017)]

Additional non-linear peaks

Thank you!

Spontaneous Scalarization

- The coupling between scalar field and matters becomes non-trivial over certain range of stellar equilibria.
- ullet2016)
- The extent to which a NS is ``scalarized'' can be quantified by scalar charge

This range coincides with the range where the dynamics of the scalar field is unstable at the perturbative level; in particular, the tachyon instability operates where $m_{\varphi}^2 + 4\pi\beta_0 |T| < 0$ (Ramazanoğlu & Pretorius, PRD

$$m_{\rm eff} = \sqrt{m_{\varphi}^2 + 4\pi\beta_0 |T|}$$

Lower bound on the scalar mass (contd.)

To which extent can EMRI probe the scalar mass?

Energy flux from binary

 Dipolar radiation is supported by the leading-order scalar flux

• Dipolar radiation is supported by the difference in scalar charges, which is

Esposito-Farèse, Fundam. Theor. Phys. (2011)

$$\left. \frac{\text{Quadrupole}}{c^5} + \mathscr{O}\left(\frac{1}{c^7}\right) \right\}, \\ \sup_{\text{spin } 0} \left\{ \frac{1}{c^7} \right\} = 0$$

Alsing +, PRD (2012)

Dipolar scalar radiation in inspiral waveform — stationary phase approximation —

For massive Brans-Dicke theory [Berti +, PRD (2012)]

p mass)
+
$$\zeta + \frac{20}{9}A\eta^{-2/5}(\pi \mathcal{M}f)^{2/3} - 16\pi\eta^{-3/5}(\pi \mathcal{M}f) + \dots$$

 $^{12/5}(\pi \mathcal{M}f)^{-4}]\Theta(2\pi f - m_s)$
/ $^{5}(\pi \mathcal{M}f)^{-2/3}]\Theta(\pi f - m_s)$
-1 PN
Heaviside

Dipolar scalar radiation in inspiral waveform (contd.) stationary phase approximation —

For massless DEF theory [Sennett +, PRD (2016); Bernard +, JCAP (2022)]

- into quadrupolar and dipolar emission dominant regions.

• In the presence of dynamical scalarization, the waveform can be divided

- In GW170817, it should be in the quad-dominant regime up to $f_{
m gw}\gtrsim 500~{
m Hz}$ --> spontaneous scalarization is excluded unless roughly equal mass

Mass effects (contd.)

Scalar mass introduces:

1. a Yukawa-suppression to scalar interaction

2. Cutoff frequency on scalar emission

$$\tilde{\sigma}(\omega; r) = \tilde{\sigma}(\omega; r_{\text{ex}}) \begin{cases} e^{-i\sqrt{\omega^2 - \omega_*^2}(r - r_{\text{ex}})} & \text{for } \omega < -e^{-i\sqrt{\omega^2 - \omega_*^2}(r - r_{\text{ex}})} \\ e^{+i\sqrt{\omega^2 - \omega_*^2}(r - r_{\text{ex}})} & \text{for } \omega > -e^{-i\sqrt{\omega^2 - \omega_*^2}(r - r_{\text{ex}})} & \text{for } \omega > -e^{-i\sqrt{\omega^2 - \omega_*^2}(r - r_{\text{ex}})} \end{cases}$$

