Seeded vacuum decay with Gauss Bonnet

Shi-Qian Hu

Theoretical Particle Physics and Cosmology

King's College London

Collaborated with: Ruth Gregory

Gravity and Cosmology 2024 @ YITP, Kyoto University, Kyoto, Japan

28/02/2024

Based on: Seeded vacuum decay with Gauss-Bonnet, JHEP 11 (2023) 072 Testing Higher Derivative Gravity Through Tunnelling, Particles 7 (2024) 144-160

Higgs Instability

The Higgs field defines our vacuum – but the picture from the Standard Model is that our universe may not be entirely stable.

First order phase transition in quantum field theory

First-order phase transition: bubble nucleation, expansion, and collision

Instanton

In the 1970s, Coleman and collaborators describe vacuum decay via a mathematical tool of analytically continuing to imaginary (Euclidean) time, wick rotation, $\tau = it$.

They describe this in field theory by the Euclidean solution of a bubble of true vacuum bubble inside the false vacuum.

Goldilocks bubble

Gain energy from moving to true vacuum but cost energy to form bubble wall

Too small \longrightarrow Bubble has too much surface area \longrightarrow Re-collapse

Too large \longrightarrow Bubble wall is expensive to form \longrightarrow Can't afford

"Just Right" means the bubble will not re-collapse, but is still "cheap enough" to form.

$$\delta E = 2\pi^2 R^3 \sigma - \frac{\pi^2}{2} \epsilon R^4$$

Cost of wall Gain from vacuum

The critical bubble radius $R = 3\sigma/\epsilon$, and the amplitude for decay

$$\delta E = \frac{\pi^2 R^3}{2} (4\sigma + \epsilon R) \sim \frac{27\pi^2 \sigma^4}{2\epsilon^3}$$

The impact of gravity was first worked out in [Coleman and de Luccia, 1980] by extending the partition function to include the Einstein-Hilbert action under thin wall approximation.

The decay rate is found to be

$$\Gamma \sim e^{-B} = \mathrm{e}^{-(I-I_0)}$$

The Coleman universe is empty and featureless - too idealized - throw in a little **impurity**.

Higher Curvature Gravity

The action for the EGB gravity with a cosmological constant is

$$S = -\frac{1}{16\pi G} \int_{M} d^{D}x \sqrt{g} \left(R - 2\Lambda + \alpha L_{GB}\right),$$

$$L_{GB} = R^2 - 4R_{ab}^2 + R_{abcd}^2$$

The metrics for the exterior and interior regions of the wall are given by

$$ds_{\pm}^{2} = f_{\pm} d\tau_{\pm}^{2} + f_{\pm}^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$

The solutions on each side of the wall are

$$f_{\pm} = 1 + \frac{r^2}{2\alpha} \left(1 - \sqrt{1 + \frac{8\alpha \Lambda_{\pm}}{(D-1)(D-2)} + \frac{4\alpha \mu_{\pm}}{r^{D-1}}} \right), \qquad \mu_{\pm} = \frac{16\pi G M_{\pm}}{(D-2)A_{D-2}}$$

Equations of motion

Israel junction conditions determine the equation of motion of bubble wall [Davis, 2003]

$$\Delta K_{ab} - \Delta K h_{ab} + 2\alpha \left[3\Delta \mathcal{J}_{ab} - \Delta \mathcal{J} h_{ab} - 2\mathcal{P}_{acbd} \Delta K^{cd} \right] = 8\pi G \sigma h_{ab}$$

$$\mathcal{P}_{abcd} = \mathcal{R}_{abcd} + 2\mathcal{R}_{b[c}h_{d]a} - 2\mathcal{R}_{a[c}h_{d]b} + \mathcal{R}h_{a[c}h_{d]b}$$

The wall trajectory $R(\tau)$ satisfies :

$$(f_{+}\dot{\tau}_{+} - f_{-}\dot{\tau}_{-})\left[1 + \frac{2\tilde{\alpha}}{R^{2}} - \frac{4\tilde{\alpha}}{3}\frac{\dot{R}^{2}}{R^{2}}\right] - \frac{2\tilde{\alpha}}{3R^{2}}\left(f_{+}^{2}\dot{\tau}_{+} - f_{-}^{2}\dot{\tau}_{-}\right) = -\frac{8\pi G\sigma R}{(D-2)},$$

Equations of motion for $R(\lambda)$:

$$\frac{\dot{R}^2}{R^2} = \frac{\bar{f}_E}{R^2} - \frac{(\Delta f_E)^2}{16R^4\bar{\sigma}^2} - \bar{\sigma}^2 + \frac{\tilde{\alpha}}{3R^4} \left\{ 3(\bar{f}_E - 1)^2 + \frac{(\Delta f_E)^2}{4} + 12R^2\bar{\sigma}^2(1 - \bar{f}_E) + 8R^4\bar{\sigma}^4 \right\}$$

$$f_E = 1 - \frac{\mu}{r^{D-3}} - \frac{2\Lambda r^2}{(D-1)(D-2)} \quad \bar{\sigma} = \frac{2\pi G\sigma}{D-2} \quad \bar{f}_E = (f_{E_+} + f_{E_-})/2, \quad \Delta f = f_{E_+} - f_{E_-}$$

Background action

The full action of the composite system is $I = I_{bulk} + I_{brane}$

$$I_{bulk} = \frac{1}{16\pi G} \int_{M_{-}} d^{D}x \sqrt{g_{-}} \left(R_{-} - 2\Lambda_{-} + \alpha L_{GB}^{-}\right) + \int_{M_{+}} d^{D}x \sqrt{g_{+}} \left(R_{+} - 2\Lambda_{+} + \alpha L_{GB}^{+}\right)$$
$$I_{brane} = \frac{1}{16\pi G} \int_{W} d^{D-1}x \sqrt{h} \left(\sigma + \frac{1}{8\pi G} \left(\Delta K - 2\alpha [2 G_{ab} \Delta K^{ab} - \Delta J]\right)\right)$$
$$J_{ab} = \frac{1}{3} \left(2KK_{ac}K_{b}^{c} + K_{cd}K^{cd}K_{ab} - 2K_{ac}K^{cd}K_{db} - K^{2}K_{ab}\right)$$

Integrating the bulk and wall contribution, together with the conical contribution, giving action of seed black hole as:

$$I_{seed} = I_{C} - S_{BH}(M_{+}, \Lambda_{+})$$

Contribution either from a cutoff boundary ($\Lambda \leq 0$), or a cosmological horizon ($\Lambda > 0$).

Bubble action and decay rate

The bubble action:

$$I_{bubble} = I_{wall} + I_{C} - S_{BH}(M_{-}, \Lambda_{-})$$

The integral over the wall:

$$I_{wall} = \frac{\mathcal{A}_{D-2}}{8\pi G} \int d\lambda R^{D-2} \Delta \left[-\frac{4(D-2)\tilde{\alpha}}{(D-4)} \frac{\ddot{R}}{R} K_1 + \left(\frac{\dot{R}^2}{f} K_0 - \dot{\tau} \ddot{R} \right) \left(1 + \frac{2(D-2)\tilde{\alpha}(1-f)}{(D-4)R^2} \right) \right]$$

Giving the tunnelling exponent:

$$I_{B} = I_{bubble} - I_{seed} = S_{BH}(M_{+}, \Lambda_{+}) - S_{BH}(M_{-}, \Lambda_{-}) + I_{wall}$$

$$\uparrow Static$$

$$I_{wall} = 0$$

In 4D, the action of the instanton is:

$$I_B = I_{bubble} - I_{seed} = S_{BH}(M_+, \Lambda_+) - S_{BH}(M_-, \Lambda_-) + I_{wall}$$

$$S_{BH} = \frac{\pi r_+^2}{G} (1 + 4\alpha/r_+^2)$$

Hence if we tunnel with a black hole seed and have a remnant, there is no alteration to the action, **however**, tunnelling from a seed to no remnant increases the action,

$$I_{B,NR} = I_{bubble} - I_{seed} = \frac{\pi r_{+}^{2}}{G} + \frac{4\pi\alpha}{G} + I_{wall}$$

There is no α dependent contribution from the wall

For positive α , **Suppressing** the topology-changing transitions.

Entropy shift

Tunnelling from a positive vacuum energy with a seed black hole to the Minkowski vacuum.

$$\Delta \mu = \mu_+ = 2 \bar{\mu}$$
, and $\Delta \Lambda = \Lambda_+ = 2 \Lambda$

The critical instanton seed mass

$$u_{crit} = \frac{4\bar{\sigma}_e \gamma_e^{D-2}}{(1-4\tilde{\alpha}\bar{\sigma}^2)} \frac{(D-2)^{D-2}}{(D-1)^{D-1}}$$

 μ_0 is the critical mass at $\tilde{\alpha}$ =0

$$\frac{\delta\mu_{crit}}{\mu_0} = \frac{8}{3}\tilde{\alpha}\bar{\sigma}^2[1+(D-2)(1-2\bar{\sigma}\gamma_0)]$$

The entropy shift

$$\frac{\delta S}{S_0} = \frac{(D-2)\tilde{\alpha}}{r_0^3 f'_E(r_0)} \left(\frac{2r_0 f'_E(r_0)}{(D-4)} + \frac{8\mu_0 \bar{\sigma}^2}{3r_0^{D-5}} [1 + (D-2)(1 - 2\bar{\sigma}\gamma_0)] - 1 \right)$$

The impact of GB correction

The critical static bubble is the instanton with the lowest action for a given wall tension σ .

The variation in entropy of the seed black hole for both 5 and 6 dimensions.

The Hawking Moss instanton is a transition from a false vacuum to a higher vacuum energy (from which we can roll to a lower energy).

The change in action is the difference in the entropies: $\Gamma_{Fv \rightarrow Top} \sim e^{-B}$

$$B_{FV \to Top} = I_T - I_F = [S_{CH} + S_{BH}]_F - [S_{CH} + S_{BH}]_T$$

Cosmological Area Principle: $S_c|_T \leq S_c|_F$

Hawking Moss instanton

The ratios of tunnelling components B/B_{HM} change with the seed black hole mass in 5D and 6D spacetime.

- Vacuum decay is an example of quantum effects in action with gravity we have good tools, but they are idealised.
- Tunnelling amplitudes are significantly enhanced in the presence of a black hole a bubble forms around the black hole and can remove it altogether. Important if Higgs vacuum metastable.
- Gauss-Bonnet gravity suppresses topology changing transitions in 4D, and generally suppresses tunnelling – though only mildly.
- Gauss-Bonnet term lowered the black hole temperature and enhanced the variation of the entropy (for positive α).

Thanks for your attention & any questions?