Is Cosmic Birefringence model-dependent?

Lu Yin

asia pacific center for theoretical physics

Lu Yin, Joby Kochappan, Tuhin Ghosh, Bum-Hoon Lee. JCAP 10 (2023) 007. YITP long-term workshop Gravity and Cosmology 2024 01/29-03/01, 2024

What is Cosmic Birefringence?

The rotation of the plane of linear polarization of photons

J.R.Eskilt, E.Komatsu, PRD 106 (2022) 6

- **Cosmic birefringence** is a parity-violating phenomenon, which might indicate the new physics beyond the standard cosmology (ΛCDM).
- Traditional explanation involves an axion coupled to the EM tensor via a Chern-Simons coupling.
 Ni (1977); Turner & Widrow (1988)

the effective Lagrangian for axion electrodynamics is $\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \underbrace{g_{a}\theta F_{\mu\nu}\widetilde{F}^{\mu\nu}}_{F^{\mu\nu}}, \qquad (3.7)$ where g_{a} is a coupling constant of the order α , and the vacuum angle $\theta = \phi_{a}/f_{a}$ ($\phi_{a} = axion$ field). The equations

• The axion can be dark matter or dark energy, which act as a "birefringence material" filling in our Universe

- E-mode : Polarisation directions are parallel or perpendicular to the wavenumber direction
- B-mode : Polarisation directions are 45 degrees tilted w.r.t the wavenumber direction

- E-mode : Polarisation directions are parallel or perpendicular to the wavenumber direction
- B-mode : Polarisation directions are 45 degrees tilted w.r.t the wavenumber direction

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}$$

$$\sum_{\mu\nu} F_{\mu\nu} \tilde{F}^{\mu\nu} = -4\mathbf{B} \cdot \mathbf{E}$$
Parity Odd

The Equation of Motion modified to

$$\left(-\omega_{\pm}^{2}+k^{2}\right)A_{\pm}(\eta)=0 \implies \left(-\omega_{\pm}^{2}+k^{2}\pm 4g_{a}k\theta'\right)A_{\pm}(\eta)=0$$

Different phase velocities for RH(+) and LH(-) photon polarizations

E-modes

$$\frac{\omega_{\pm}}{k} \simeq 1 \pm \frac{2g_a \theta'}{k}$$
B-modes

Carroll, Field & Jackiw (1990); Carroll & Field (1991); Harari & Sikivie (1992)

• CB rotation angle
$$\beta = -2g_a \int_{t_{emitted}}^{t_{obs}} dt \dot{\theta} = 2g_a \left[\theta(t_e) - \theta(t_o)\right]$$

E-B mixing by rotation of the linear polarization plane in CMB

$$E_{\ell}^{o} = E_{\ell} \cos(2\beta) - B_{\ell} \sin(2\beta)$$
$$B_{\ell}^{o} = E_{\ell} \sin(2\beta) + B_{\ell} \cos(2\beta)$$

$$E_{\ell}^{\rm o} \pm iB_{\ell}^{\rm o} = (E_{\ell} \pm iB_{\ell})e^{\pm 2i\beta}$$

Cosmic Birefringence in the CMB

<E*B> correlation measures

$$C_{\ell}^{EB} = \frac{1}{2}\sin(4\beta)\left(\tilde{C}_{\ell}^{EE} - \tilde{C}_{\ell}^{BB}\right)$$

EB is generated by the difference between EE and BB spectra

If β = 0, the $C_l^{EB} = 0$, EB power spectra is 0.

Observed EB Power Spectrum of Planck

The past measurements

Measured of $\alpha + \beta$

- $\alpha + \beta = -6.0 \pm 4.0 \text{ deg}$ (Feng et al. 2006) first measurement
- $\alpha+\beta = -1.1 \pm 1.4 \text{ deg}$ (WMAP Collaboration, Komatsu et al. 2009; 2011)
- $\alpha + \beta = 0.55 \pm 0.82$ deg (QUaD Collaboration, Wu et al. 2009)

• ...

- $\alpha + \beta = 0.31 \pm 0.05 \text{ deg}$ (Planck Collaboration 2016)
- $\alpha + \beta = -0.61 \pm 0.22 \text{ deg}$ (POLARBEAR Collaboration 2020)
- Cosmic birefringence
- $\alpha+\beta = 0.63 \pm 0.04 \text{ deg}$ (SPT Collaboration, Bianchini et al. 2020)
- $\alpha+\beta = 0.12 \pm 0.06 \text{ deg}$ (ACT Collaboration, Namikawa et al. 2020)
- $\alpha+\beta = 0.07 \pm 0.09$ deg (ACT Collaboration, Choi et al. 2020)

The past measurements

Now including the estimated systematic errors on $\boldsymbol{\alpha}$

- $\beta = -6.0 \pm 4.0 \pm ??$ deg (Feng et al. 2006)
- $\beta = -1.1 \pm 1.4 \pm 1.5$ deg (WMAP Collaboration, Komatsu et al. 2009; 2011)
- $\beta = 0.55 \pm 0.82 \pm 0.5$ deg (QUaD Collaboration, Wu et al. 2009)
- ...
- $\beta = 0.31 \pm 0.05 \pm 0.28$ deg (Planck Collaboration 2016)
- $\beta = -0.61 \pm 0.22 \pm ??$ deg (POLARBEAR Collaboration 2020)
- $\beta = 0.63 \pm 0.04 \pm$?? deg (SPT Collaboration, Bianchini et al. 2020)
- $\beta = 0.12 \pm 0.06 \pm ??$ deg (ACT Collaboration, Namikawa et al. 2020)
- $\beta = 0.07 \pm 0.09 \pm$?? deg (ACT Collaboration, Choi et al. 2020)

Important question: Is Cosmic Birefringence model-dependent ?

The pseudoscalar fields of early dark energy

$$\mathcal{L} = -\frac{1}{2} \left(\partial_{\mu}\phi\right)^2 - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} g\phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$V_{\rm EDE}(\phi) = m^2 f^2 [1 - \cos(\phi/f)]^n \qquad V_{\rm R\&R}(\phi) = V_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^{2n} \qquad V_{\alpha}(\phi) = V_0 \frac{(1 + \alpha_2)^{2n} \tanh\left(\phi/\sqrt{6\alpha_1}M_{\rm Pl}\right)^{2p}}{\left[1 + \alpha_2 \tanh\left(\phi/\sqrt{6\alpha_1}M_{\rm Pl}\right)\right]^{2n}}$$

UL Early Dark Energy model

Rocl 'n' Roll model

V. Poulin et al. (2018)

P. Agrawal et al.(2019)

lpha -attractor model

M. Braglia et al. (2020)

The pseudoscalar fields of early dark energy

$$\mathcal{L} = -\frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} g \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\uparrow$$

$$V_{\text{EDE}}(\phi) = m^{2} f^{2} [1 - \cos(\phi/f)]^{n} \qquad V_{\text{R\&R}}(\phi) = V_{0} \left(\frac{\phi}{M_{\text{Pl}}} \right)^{2n} \qquad V_{\alpha}(\phi) = V_{0} \frac{(1 + \alpha_{2})^{2n} \tanh\left(\phi/\sqrt{6\alpha_{1}}M_{\text{Pl}}\right)^{2n}}{\left[1 + \alpha_{2} \tanh\left(\phi/\sqrt{6\alpha_{1}}M_{\text{Pl}}\right)\right]^{2n}}$$

The pseudoscalar fields of early dark energy

Difference in EE and EB power spectra

Difference in EE and EB power spectra

EB power spectra is an important smoking gun for different early dark energy models, beyond the EE spectra

$$\pm 2\Delta_{P,l}(\eta_0,q) = -\frac{3}{4}\sqrt{\frac{(l+2)!}{(l-2)!}} \int_0^{\eta_0} \mathrm{d}\eta \tau' e^{-\tau(\eta)} \Pi(\eta,q) \times \frac{j_\ell(x)}{x^2} e^{\pm 2i\beta(\eta)},$$

new term
$$C_\ell^{XY} = 4\pi \int \mathrm{d}(\ln q) \mathcal{P}_s(q) \Delta_{X,l}(q) \Delta_{Y,l}(q),$$

Best fit results form Planck observation

Parameter	ΛCDM	α -attractor	Rock 'n' Roll
gM_{Pl}	0	0.16	0.12
β at CMB	0	0.02°	0.15°

- 1. value of Chern-Simons constant term is model-dependent
- 2. current data can not distinguish the two models

The rotation of the plane results from best fit of g

Parameter	$\Lambda \mathrm{CDM}$	α -attractor	Rock 'n' Roll
gM_{Pl}	0	0.16	0.12
β at CMB	0	0.02°	0.15°

The value of g is model dependent.

Moreover, the rotation angle β is also highly model dependent.

Conclutions

- **Cosmic Birefringence** is a remarkable parity-violating effect, which is beyond the standard cosmology prediction;
- Recently, new breakthrough in CMB data analysis leads to a hint towards a nonzero CB rotation angle, $\beta = 0.34 \pm 0.09 \text{ deg}$ (68%CL; nearly full sky)
- We studied EB mode of Rock `n' Roll, and α -attractor scalar models for the first time. The value of g is model dependent. Moreover, the rotation angle β is also highly model dependent.
- The EB spectra alone can <u>not</u> distinguish the two models based on current data. It is an important smoking gun for different early dark energy models, beyond the EE spectra.