Vainshtein Screening, Galileons and Massive Gravity

Andrew J. Tolley Imperial College London

GC2024, Yukarwa Institute, Feb 292024

The Renormalization of Meson Theories*

THE recent developments in quantum electro-electron-positron field) associated with the names of Tomonaga, Schwinger, and Feynman culminated, as far as the theory of the renormalization of mass and charge is concerned, in the work of Dyson ${ }^{1}$ published in 1949. Combining Feynman's technique ${ }^{2}$ of depicting field events graphically and Schwinger's invariant procedure of subtracting divergences, ${ }^{3}$ Dyson proved two very important results. He showed first that if calculations are made to any arbitrarily high order in the charge in a perturbation expansion, three and only three types of integrals can diverge; and, secondly, that a renormalization of mass and charge would suffice completely to absorb these divergences. This theory has proved to be in very close agreement with experiment. ${ }^{4}$
$S_{F}(p)$ and $D_{F}(p)$ for the electron and the photon lines ${ }^{5}$ and the factor $e \gamma_{\mu}$ (charge times a Dirac matrix) for the vertices of the graph. By considering the integrals thus obtained, Dyson showed that the over-all ${ }^{6}$ degree of divergence of a particular graph could be estimated simply by counting its external lines. Let E_{f} denote the number of external fermion (we use the term fermion for any spin half particle) and E_{p} the number of external photon lines. The integral corresponding to a graph can diverge only if

$$
\begin{equation*}
\frac{3}{2} E_{f}+E_{p}<5 . \tag{1}
\end{equation*}
$$

This basic inequality shows that there are only a finite number of types of graph that can introduce divergences in the theory. These are the electron and photon selfenergy graphs and vertex parts, simple examples of which are given in Fig. 1 (a, b, and c). Another possible

A unifying force (2024): an Abdus Salam documentary

(I) Imperial College London e 2248 zubacriters

Subseriba E. 2.5 K \& \& \Rightarrow Shara

I+ Sava

Abdus Salam's 1977 notebook

Renormatization 1 Graity:

(3) $\frac{1}{\frac{k^{4}}{M^{2}}+k^{2}} \frac{1}{\frac{v^{4}}{M^{2}}+k^{2}}$
(4) lere want $M \rightarrow \infty$ in the end:
or as Sulle put it $\frac{1}{\alpha k^{4}+t^{2}} \quad \alpha \rightarrow 0$.
(5) shatility 2 a Theony, secumed by thes k^{4}.

I sageser

$$
C R_{\mu V}^{2}+a \bar{R}^{2}+b \phi^{2} \bar{R}=R \frac{1}{G_{N}}
$$

\& then $\langle R\rangle \&\langle\phi\rangle$ fixier then the Comolefial sust: $4 \frac{1}{a_{N}}$ (input) $\&$ mans? $A_{N}{ }^{2}$ ingint:
so

$$
\begin{aligned}
R^{2} \Rightarrow & (\langle R\rangle+R)^{2} \\
& \Rightarrow\langle R\rangle^{2}+2(R) R+R^{2} \\
& \psi \\
& \text { this has }-\frac{1}{G_{N}}
\end{aligned}
$$

Euglat ete une same idea.

more than one grasiton

Cannical Decomprituon if $-g$ Theny

$$
\mathcal{L}_{f}=\pi^{i j} \dot{f}_{i j}-F_{\mu} c^{\mu}(\pi, f)
$$

$\left\{\begin{array}{l}F_{r} \text { no derivatus tesm: } \\ \text { lopanpe multipie: }\end{array}\right.$

$$
\begin{aligned}
& \mathcal{L}_{f g}=\frac{M^{2}}{4 M_{q}}\left(\operatorname{dect}^{2} f\right)^{\frac{1}{2}}\left[\frac{2}{f} N_{i j}\left(F^{i}-\sigma^{i}\right)\left(F^{j}-\sigma^{j}\right)\right. \\
& \stackrel{F}{i} F_{\text {o }} \text { if } F_{r} \quad-\frac{26^{2}}{F}(f \cdot g-3) \\
& -F(2+N-3 f \cdot g)\}
\end{aligned}
$$

F is algetraix:
egn for F

$$
\hat{F}^{2} \approx \operatorname{Fr}+f(g+\pi \phi)
$$

$$
\begin{array}{r}
N_{i j}=\left[g_{i n} f^{k \ell} g_{l j}+g_{i j}(3-f \cdot g)\right] \\
L=p \dot{q}-H \quad H=p \dot{p}-L
\end{array}
$$

$$
\begin{aligned}
& \frac{q_{\mu v}^{c}}{\lambda}-\frac{\lambda^{2} x^{c} c^{c}}{\lambda^{\prime}(x+1)^{2}}=\left(\begin{array}{ll}
1 & \left.-\frac{x}{\lambda^{\prime}(x+1)}\right) d t^{2}- \\
\left.\left(\frac{1}{\lambda}-\frac{x}{\lambda^{\prime}(x+1)}\right) d r^{2}-\left(+\frac{1}{\lambda}-\frac{x}{\lambda^{\prime}(x)}\right)\right) r^{2} d \Omega^{2} \\
=\left(\frac{1}{\lambda}-\frac{x}{\lambda^{\prime}(x+1)}\right) \eta_{\mu v} .
\end{array}\right.
\end{aligned}
$$

ortogronel of this
sumpter

$$
\begin{aligned}
& \text { bet } \\
& \text { Let } \begin{array}{l}
g_{r \nu}=g_{\mu \nu}^{c}+k_{g} q_{\nu \nu}^{q} \\
f_{r \nu}=f_{h \nu}^{c}+k_{f} q_{n \nu}^{q}
\end{array} \quad \Rightarrow\left(\frac{k_{g} \phi_{\mu \nu}^{g}}{a k}-\frac{k_{f}}{x^{a} a(x-1)^{2}}\right) \\
& \text { then } f_{r u}=f_{n}^{c}+k_{f} f_{n v}^{q} \Rightarrow
\end{aligned}
$$

Bigravity

$$
\begin{aligned}
& g_{n v} d x^{r} d x^{1}=\left(1+\frac{\lambda_{3}^{2}}{6}\right) d t^{2}-\left(1+\frac{1 r^{2}}{8}\right)^{-1} d-r^{2}-r^{2} d Q^{2} \\
& t \rightarrow t+a(r) \\
& d t \rightarrow d t+\alpha^{\prime} d r \\
& g_{\mu v} d x^{2} d x^{v}=\left(1+\frac{\lambda r^{2}}{6}\right) d t^{2}+2 d^{\prime}\left(1+\frac{\lambda_{6}^{2}}{6}\right) d t d r \\
& +\left[\left(1+\frac{\lambda y^{2}}{6}\right) d^{2}-\left(1+\frac{1 y^{2}}{6}\right)^{-1}\right] d x^{2} \\
& =r^{2} d \Omega^{2} \\
& \left.\alpha^{\prime}+\left(1+\frac{1}{6} r^{2}\right)^{-2}-\left(1-\frac{1 r^{2}}{6}\right)\left(1+\frac{d}{6}\right)^{2}\right)^{-1} \\
& x^{\prime}= \pm \frac{\lambda y^{2}}{6}\left(1+\frac{\lambda y^{2}}{6}\right)^{-1}
\end{aligned}
$$

有 $g_{n v} d_{x}{ }^{2} d x^{2}=\left(1+\frac{d y^{2}}{6}\right) d t^{2} \pm \frac{t y^{2}}{3} d t d t-\left(1-\frac{d}{6} v^{2}\right) d y^{2}$
$f_{R L} d \vec{x}^{-h} d r^{-\nu}=\left(1+\frac{1}{6} \vec{r}^{2}\right) d t^{-2} \pm$
Chase $\bar{Y}=\sqrt{\frac{x^{-1}}{x}} r \quad \bar{E}=\sqrt{\frac{t-1}{x}} t$

$$
\begin{aligned}
f_{x-v} d x^{2} d x^{2}= & \left(1+\frac{d^{\prime}(x-1)}{6 x}\right) \frac{x}{x} d t^{2} \pm \frac{\lambda^{\prime}(x-1)^{2}}{3 x^{2}} d t d x \\
& -\left(1-\frac{\lambda^{\prime}(x-1)}{6 x}\right)\left(\frac{x-1}{x}\right) d x^{2}-\frac{x-1}{x} x^{2} d \Omega^{2}
\end{aligned}
$$

to sum fraits
1:10" sume acc: of alumi: \& gold
$1: 18^{2} \quad " \quad$ " Platinem L aleminium:
Ekivio $5: 10^{9}$ Earth un pacts same acc t (utvent) wor platinum, cortres, a, bois, wates,

Dicke Shequis:
for Sun acc: \nrightarrow bo enatt $\}$ same:

Dicke (It is well knem thes contom is reguoriado maka penpient)

$$
\frac{1}{\alpha_{c}} \frac{d e_{e}}{d t}<1\left(5 / 10^{15}\right) \text { yars }
$$

Dyson:
Long Rainge Fielh
Brasodicke metric

$$
\begin{gathered}
d s^{2}=q_{\alpha \beta \beta} d x^{\alpha} d x^{\beta} \\
=e^{-2 \phi} d t^{2}+e^{-2 \phi}\left(d x^{2}+d y^{2}+d z^{2}\right) \\
\delta \int\left(-2 \phi^{\prime \alpha} \phi, \alpha+16 \pi L\right)(-g)^{-2} d^{4} x \\
\frac{\nu}{1 / 4 /} \text { Lapramian: } \\
\int\left[\phi R-\omega\left(\phi_{, \alpha} \phi^{\prime \alpha} / \phi\right)+16 \pi L\right] \sqrt{-g} d^{4} x=0
\end{gathered}
$$

Baron Lorand vox Eütvös (ut vâsh)

$$
5: 10^{9}
$$

\rightarrow minister of purtic insturction \& releious affacio
\rightarrow Fromed a sckel which teamid high ochid teachuss thes siftrence one may guiciecht for Von Karman Vm Newmann Tiller wignes.
7 Sconce phall newe find that formula by which is necenary chanotes cols be frosind Actually sonence itself might cense if we were of fini the clue to the react.

In any I evely Lorouts frame evegutios axytrani, all (nor gav) becos of phapics tate on thai fumilier stead velativiske frem

Eotion \rightarrow Equiabiente Pranciple \rightarrow Nuc:, EsM., weak
It Emstem, Gratsit all theme
Equivalence Principle + bigravity

Cosmological Bigravity Bigravity

$$
\begin{aligned}
& \text { Cimnial } n=2 G M \\
& \text { Parin }=10^{86} 600 \\
& G=10^{-49} \operatorname{Gec}^{-2} \\
& K m_{N} \sim 10^{-19} \\
& 6=k^{2} \sim 5^{3 P} \mathrm{man}^{-2}=10^{-14} \mathrm{Kex}^{-2}
\end{aligned}
$$

So Clanical $R=10^{-40} \mathrm{Cas}^{-2} \times 10^{68} \mathrm{Gow}$

$$
\begin{aligned}
& R=10^{6_{0}} \mathrm{Cem}^{-1} \\
& \text { so }^{\frac{1}{R} \sim 10^{-4} \operatorname{Gor}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Near } g=1-m^{2} r^{2} \quad \left\lvert\, \begin{array}{l}
\text { b. } \\
f=1-m_{4}^{2} r^{2}
\end{array}\right. \\
& =1-10^{-80} C_{\omega}^{-2} r^{2}=1+G_{w}^{-2} r^{2} \\
& L_{g}=1-10^{-4 a} \mathrm{Gew}^{-1} r^{n} / L_{f=1}+\mathrm{Gew}^{-1} r \\
& 10^{40} L_{q}+1 \cdot L_{f}=\text { flat }=1
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \operatorname{det}(\eta+k L) \\
+\lambda^{\prime} & \operatorname{dut}\left(\eta+k^{\prime} L^{\prime}\right) \\
+ & \operatorname{det}\left(\eta+k L+\frac{k^{2}}{2} L^{2}+k^{\prime} L^{\prime}+\frac{k^{\prime \prime}}{2} L^{\prime 2}\right)^{\alpha+\beta+1 / 2} \\
& \operatorname{det}(\eta+k L)^{-2^{2}} \operatorname{det}\left(\eta+k^{\prime} L^{\prime}\right)^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& g^{\mu \nu} \rightarrow F L^{\mu a} L^{\nu a} \\
& \rightarrow\left(\eta^{\mu^{a}}+k^{L^{m a}}\right)\left(\eta^{\nu a}+k L^{\nu a}\right) \\
& \rightarrow\left(\eta^{n \nu}+2 L^{\mu \nu}+K^{2} L^{\mu \epsilon} L^{\mu a}\right) \\
& \operatorname{dev}\left(\frac{g+f}{2}\right) \\
& =\operatorname{det}[(\underbrace{\eta^{n v}+L_{k} L^{\mu \nu}+\frac{k}{2}^{2} L^{\alpha \alpha} L^{\prime r a}})+\eta k^{\prime} L^{\prime \mu v}+\frac{k^{\prime 2}}{2} L^{\wedge \mu \alpha} L^{\prime} a]^{2} \\
& \text { z } \\
& \begin{aligned}
\operatorname{det}(\eta+\alpha \phi) & =\pi \exp \log (\eta+\alpha \phi) \\
& =\pi \exp \alpha\left(\alpha \pi \phi-\frac{\alpha_{2}}{2}\left[r \phi^{2}+\cdots\right)\right.
\end{aligned} \\
& \log (t+t) \\
& =\int \frac{1}{1+2}=x-x^{2} \\
& =1+\alpha T_{1} \phi-\alpha / 2 T_{r} \phi^{2}+\frac{\alpha^{2}}{2}\left(\pi_{1} \phi\right)^{2}-\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} k^{2} L L+\frac{1}{2} k^{\prime} k^{\prime}+k k^{\prime} L L^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle h_{\nu}^{a \mu} h_{k}^{2 p}\right\rangle \\
& =\delta^{a b}(\delta \delta-\delta \delta) \frac{1}{n^{2}}
\end{aligned}
$$

So we-thain what?
a mettant of repianiation :
mathematical rymbeniztionn
cant reverse tho:

$$
\begin{aligned}
\mathcal{L}= & \left\langle\partial_{a} h_{v}^{\mu b} \partial_{h^{\mu}} h_{\mu}^{v a}\right. \\
& \left.-\partial_{\mu} h_{\nu}^{\mu v} d_{h} h_{\mu}^{\nu \alpha}\right\rangle+e^{2} h_{v}^{a \mu} h_{\mu}^{a v}
\end{aligned}
$$

$$
\begin{aligned}
& \partial \frac{\partial L}{a} \frac{\partial L}{\partial h_{2} h_{b}^{\prime b}}=\frac{\partial L}{\partial h_{r}^{r b}} \\
& =\partial_{0} \partial_{b} h_{r}^{v a}-\delta_{L 6} \partial^{2} h_{r}^{v a}=m^{2} h_{m}^{v a}
\end{aligned}
$$

$$
R_{\mu}(g)=k T_{\mu \nu}
$$

Equinalenu Prinaple $T_{\mu v}=T_{\text {cou }}^{\text {carmial: }}$
殔 If $\tilde{g}=g+O\left(\sigma_{N}\right)$

$$
f-g=\tilde{f} \quad \leftrightarrow f=g+\hat{f} \approx \tilde{g}+\tilde{f}
$$

nud

$$
R_{p^{\prime}}(g)=K_{g}\left(T_{L^{\prime}} \text { canmial }\right)
$$

But we have

$$
\begin{aligned}
& R_{\mu+}^{v}(g)=k_{g}\left(T_{r}^{v}(\Delta p+, j)+T_{r}^{v}(\text { hai,f })+\delta_{r}^{\nu} f_{f g}+T_{r}^{v}(g)\right. \\
& \text { ie } R_{\mu v}(g)=k_{g} g_{\mu s}\left(T_{\mu}^{\nabla^{\prime}}\right.
\end{aligned}
$$

 Thes is authe dififerent from conventional

$$
\begin{aligned}
& R / k^{2}=\quad \frac{\partial^{2} \phi}{\kappa}+\partial \varphi \partial \varphi+(k \varphi)^{n} \partial \varphi \partial \varphi \quad M_{k}^{4} \quad{ }_{k}=\frac{1}{M} \\
& \text { b } ? R / k_{k 2}=\left(\frac{\partial^{2} \phi}{k}+\partial \rho \partial \phi\right)\left(1+(k \varphi)^{n}\right)= \\
& =\frac{\partial^{2} \varphi}{k}+(k \phi)^{x} \frac{\partial^{2} \phi}{R}+\partial \varphi \partial \phi+(k \phi)^{x}(\partial \varphi \partial \phi)
\end{aligned}
$$

$$
\begin{aligned}
& R^{2} / k^{4}=\left(\frac{\partial^{2} \phi}{k}+\partial \phi \partial \phi\right)^{2}\left(1+(k \phi)^{n}\right) \\
& =\left[\frac{\partial^{2} \phi \partial^{2} \phi}{K^{2}}+\frac{1}{\kappa} \partial^{2} \phi \partial \phi \partial \phi+\partial \phi \partial \varphi \partial \rho \partial \phi\right]\left[1+\left(k \phi \lambda^{n}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence } \alpha \text { is ranombined is } x^{\prime} \text {; } \\
& \text { Al so's are ahooled ion } \mathbb{R}^{2} \text { or wito } R \text {, wishat wrey? } \\
& \stackrel{R(g)}{(K)} \underset{\substack{g \rightarrow \frac{g}{\mu}}}{\substack{k \rightarrow M}} \quad \frac{R(g)}{k^{\prime 2}}+\alpha R(g)
\end{aligned}
$$

LUGLIO 3

Thuical

$$
\begin{aligned}
& +(k \phi)^{2}(\partial \phi)^{2}+ \\
& \dagger \\
& \text { ath. } \\
& \text { (h) }
\end{aligned}
$$

Jtivel
only viradent term $\frac{\kappa^{2}}{\beta^{2}} \partial \phi \partial q \partial^{2} \phi$

How

HEmin
only vincent term $\frac{k}{m^{2}} \partial \varphi \partial \varphi \delta^{2} \varphi$

R^{2} gravity de Rham, AJT et al 20 II

$$
\mathcal{L}_{3 \mathrm{~d}, \mathrm{NMG}}=\frac{M_{3}}{2} \int \mathrm{~d}^{3} x \sqrt{-g}\left(-R+\frac{1}{m^{2}}\left(R_{\mu \nu}^{2}-\frac{3}{8} R^{2}\right)\right)
$$

$$
\mathcal{L}_{3 \mathrm{~d}, \mathrm{NMG}}=\frac{M_{3}}{2} \int \mathrm{~d}^{3} x \sqrt{-g}\left[-R-f^{\mu \nu} G_{\mu \nu}-\frac{1}{4} m^{2}\left(f^{\mu \nu} f_{\mu \nu}-f^{2}\right)\right]
$$

* Restore the $2^{\text {nd }}$ copy of (linear) diff invariance with Stü. fields

$$
h_{\mu \nu}=\frac{\bar{h}_{\mu \nu}}{\sqrt{M_{3}}}, \quad f_{\mu \nu}=\frac{\bar{f}_{\mu \nu}}{\sqrt{M_{3}}}+\nabla_{\mu} V_{\nu}+\nabla_{\nu} V_{\mu}
$$

Decoupling limit

* Restore the $2^{\text {nd }}$ copy of (linear) diff invariance with Stü. fields

$$
\mathcal{L}_{3 \mathrm{~d}, \mathrm{NMG}}^{(\mathrm{dec})}=-\frac{1}{4} F_{\mu \nu}^{2}-2(\partial \pi)^{2}-\frac{1}{2}(\partial \pi)^{2} \square \pi
$$

Salam i977 was right!

* Splitting the Stü. field into scalar and vector parts,

$$
\begin{gathered}
h_{\mu \nu}=\frac{\bar{h}_{\mu \nu}}{\sqrt{M_{3}}}, \quad f_{\mu \nu}=\frac{\bar{f}_{\mu \nu}}{\sqrt{M_{3}}}+\nabla_{\mu} V_{\nu}+\nabla_{\nu} V_{\mu} \\
V_{\mu}=\frac{A_{\mu}}{\sqrt{M_{3} m}}+\frac{\nabla_{\mu} \pi}{\sqrt{M_{3}} m^{2}}
\end{gathered}
$$

Decoupling limit

$$
\mathcal{L}_{3 \mathrm{~d}, \mathrm{NMG}}^{(\mathrm{dec})}=-\frac{1}{4} F_{\mu \nu}^{2}-2(\partial \pi)^{2}-\frac{1}{2}(\partial \pi)^{2} \square \pi
$$

Salam i977 was right!

$$
\mathcal{L}_{D}^{(\mathrm{dec})}=-\frac{1}{4} F_{\mu \nu}^{2}-\frac{(D-1)}{(D-2)}(\partial \pi)^{2}-\frac{(D-4)}{(D-2)}(\partial \pi)^{2} \square \pi
$$

Except in $\mathrm{D}=4$

Hinterbichler, Saravani,2015

$$
\pi \rightarrow \pi+v_{\mu} x^{\mu}+c
$$

Galileons

de Rham, AJT, 1003.5917

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}+\partial_{\mu} \pi \partial_{\nu} \pi \\
\mathcal{L}_{2}=(\partial \pi)^{2} \text { From } \lambda \\
\mathcal{L}_{3}=(\partial \pi)^{2} \square \pi \text { From } R^{(5)} \\
\mathcal{L}_{4}=(\partial \pi)^{2}\left((\square \pi)^{2}+\cdots\right) \text { From } \boldsymbol{R}^{(4)} \\
\mathcal{L}_{5}=(\partial \pi)^{2}\left((\square \pi)^{3}+\cdots\right) \text { From } \mathcal{L}_{\mathrm{GB}}
\end{gathered}
$$

Geometric Unification AJT, de Rham (2010)

Gibbons-Hawking terms

AdS-DBI-Galileon

$$
\begin{aligned}
\mathcal{L} & =\sqrt{-g}\left(-\lambda+M_{4}^{2} R-M_{5}^{3} K-\beta \frac{M_{5}^{3}}{m^{2}} \mathcal{K}_{G B}\right) \\
g_{\mu \nu} & =e^{-2 \phi / l} \gamma_{\mu \nu}+\partial_{\mu} \phi \partial_{\nu} \phi \quad K_{\mu \nu}=-\frac{1}{\sqrt{1+e^{2 \phi / l}(\partial \phi)^{2}}}\left(\partial_{\mu} \partial_{\nu} \phi+\frac{1}{l} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{l} g_{\mu \nu}\right)
\end{aligned}
$$

$M_{5} \rightarrow 0$

$$
e^{2 \phi / l}(\partial \phi)^{2} \ll 1
$$

$$
e^{2 \phi / l}(\partial \phi)^{2} \ll 1
$$

Conformal
Galileon
Galileon
$l \rightarrow \infty$

$$
(\partial \phi)^{2} \ll 1
$$

Conformal Galileons

de Rham, AJT, 1003.5917

$$
\begin{aligned}
& \mathcal{L}_{2}=e^{-2 \hat{\pi}}(\partial \hat{\pi})^{2} \\
& \mathcal{L}_{3}=(\partial \hat{\pi})^{2} \square \hat{\pi}-\frac{1}{2}(\partial \hat{\pi})^{4} \\
& \mathcal{L}_{4}=\frac{1}{20} e^{2 \hat{\pi}}(\partial \hat{\pi})^{2}\left(10\left([\hat{\Pi}]^{2}-\left[\hat{\Pi}^{2}\right]\right)+4\left((\partial \hat{\pi})^{2} \square \hat{\pi}-[\partial \hat{\pi}\right.\right. \\
& \mathcal{L}_{5}=e^{4 \hat{\pi}}(\partial \hat{\pi})^{2}\left([\hat{\Pi}]^{3}+\cdots\right)
\end{aligned}
$$

Decoupling limits of Massive Gravity Theories

* Decoupling limit of DGP: Galileon (cubic)
* Decoupling limit of Massive Gravity: Galileon (quintic)
* Decoupling limit of BiGravity: Galileon (quintic)
* Decoupling limit of New Massive Gravity: Galileon (cubic)
* Decoupling limit of Zwei-Dreibein Gravity: Galileon (quartic)

Emergence of Galileon Symmetry

Spin-2 Helmholtz Or Helicity $\quad h_{\mu \nu}=\tilde{h}_{\mu \nu}+\partial_{\mu} \partial_{\nu} \phi+\ldots$
Decomposition

Galileon symmetry

$$
\delta \phi(x)=c+v_{\mu} x^{\mu}
$$

$$
\delta \partial_{\mu} \partial_{\nu} \phi=0
$$

Galileon Operators

$$
\begin{aligned}
& \mathcal{L}_{2}=\pi \epsilon^{a b c d} \epsilon^{A B C D} \eta_{a A} \eta_{b B} \eta_{c C} \partial_{d} \partial_{D} \pi \\
& \mathcal{L}_{3}=\pi \epsilon^{a b c d} \epsilon^{A B C D} \eta_{a A} \eta_{b B} \partial_{c} \partial_{C} \pi \partial_{d} \partial_{D} \pi \\
& \mathcal{L}_{4}=\pi \epsilon^{a b c d} \epsilon^{A B C D} \eta_{a A} \partial_{b} \partial_{B} \pi \partial_{c} \partial_{C} \pi \partial_{d} \partial_{D} \pi \\
& \mathcal{L}_{5}=\pi \epsilon^{a b c d} \epsilon^{A B C D} \partial_{a} \partial_{A} \pi \partial_{b} \partial_{B} \pi \partial_{c} \partial_{C} \pi \partial_{d} \partial_{D} \pi
\end{aligned}
$$

Characteristic polynomials

$$
\pi \operatorname{det}\left[\alpha \partial_{a} \partial_{b} \pi+\beta \eta_{a b}\right]
$$

Galileon Helicity-2 Interactions

de Rham, Gabadadze 2009

$$
\begin{aligned}
& \mathcal{L}_{2^{\prime}}=\epsilon^{a b c d} \epsilon^{A B C D} h_{a A} \eta_{b B} \eta_{c C} \partial_{d} \partial_{D} \pi \\
& \mathcal{L}_{3^{\prime}}=\epsilon^{a b c d} \epsilon^{A B C D} h_{a A} \eta_{b B} \partial_{c} \partial_{C} \pi \partial_{d} \partial_{D} \pi \\
& \mathcal{L}_{4^{\prime}}=\epsilon^{a b c d} \epsilon^{A B C D} h_{a A} \partial_{b} \partial_{B} \pi \partial_{c} \partial_{C} \pi \partial_{d} \partial_{D} \pi
\end{aligned}
$$

Characteristic polynomials

$$
\operatorname{det}\left[h_{a b}+\alpha \partial_{a} \partial_{b} \pi+\beta \eta_{a b}\right]
$$

Helicity zero mode enters reference metric squared

$$
\begin{gathered}
F_{\mu \nu}=f_{A B}(\phi) \partial_{\mu} \phi^{A} \partial_{\nu} \phi^{B} \quad \phi^{a}=x^{a}+\frac{1}{m M_{P}} A^{a}+\frac{1}{\Lambda^{3}} \partial^{a} \pi \\
F_{\mu \nu} \approx \eta_{\mu \nu}+\frac{2}{\Lambda^{3}} \partial_{\mu} \partial_{\nu} \pi+\frac{1}{\Lambda^{6}} \partial_{\mu} \partial_{\alpha} \pi \partial^{\alpha} \partial_{\nu} \pi
\end{gathered}
$$

To extract dominant helicity zero interactions we need to take a square root

$$
\left[\sqrt{g^{-1} F}\right]_{\mu \nu} \approx \eta_{\mu \nu}+\frac{1}{\Lambda^{3}} \partial_{\mu} \partial_{\nu} \pi
$$

Hard Λ_{3} Massive Gravity

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} \sqrt{-g}\left(M_{P}^{2} R[g]-m^{2} \sum_{n=0}^{4} \beta_{n} \mathcal{U}_{n}\right)+\mathcal{L}_{M} \\
K=1-\sqrt{g^{-1} f} \\
\operatorname{Det}[1+\lambda K]=\sum_{n=0}^{d} \lambda^{n} \mathcal{U}_{n}(K)
\end{gathered} \begin{gathered}
\text { Characteristic } \\
\text { Polynomials }
\end{gathered}
$$

Unique Lorentz invariant low energy EFT where the strong coupling scale is $\Lambda_{3}=\left(m^{2} M_{P}\right)^{1 / 3}$

Currently being translated into Japanese by Bungeishunju Ltd.

Decoupling Limit of Bigravity

Fasiello, AJT 2013
In Massive Gravity - Mass term breaks a single copy of local Diffeomorphism Group down to a global Lorentz group

$$
\operatorname{Diff}(M) \rightarrow \text { Global Lorentz }
$$

In Bigravity - Mass term breaks two copies of local Diffeomorphism Group down to a single copy of Diff group

$$
\operatorname{Diff}(M) \times \operatorname{Diff}(M) \rightarrow \operatorname{Diff}(M)_{\text {diagonal }}
$$

Fasiello, AJT 2013
There are two ways to introduce Stuckelberg fields!
Dynamical metric I
Dynamical metric II

$$
g_{\mu \nu}(x) \quad F_{\mu \nu}=f_{A B}(\phi) \partial_{\mu} \phi^{A} \partial_{\nu} \phi^{B}
$$

$$
\tilde{x}^{A}=\phi^{A}(x)=x^{A}+\partial^{A} \pi(x)
$$

OR

$$
\begin{array}{lc}
\text { Dynamical metric I } & \text { Dynamical metric II } \\
\tilde{G}_{A B}(\tilde{x})=g_{\mu \nu}(Z) \partial_{A} Z^{\mu} \partial_{B} Z^{\nu} & f_{A B}(\tilde{x})
\end{array}
$$

$$
x^{\mu}=Z^{\mu}(\tilde{x})=\tilde{x}^{\mu}+\partial^{\mu} \tilde{\pi}(\tilde{x})
$$

Explicitly Decoupling limit for Bigravity

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{P}} h_{\mu \nu} \quad f_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{P}} v_{\mu \nu} \quad \text { de Rham, Gabadadze } 2009 \\
\text { massless helicity } 2 \text { Fasiello, AJT } 2013 \\
\text { massless helicity o }
\end{gathered}
$$

Vainshtein effect

When curvature is large $\quad R \gg m^{2} \quad$ recover GR
When curvature is small $R \ll m^{2} \quad$ fifth force propagates
Determines characteristic Vainshtein radius $\frac{M}{M_{P}^{2} r_{V}^{3}} \sim m^{2}$
Screened region $\quad r \ll r_{V} \quad r_{V}=\left(r_{s} m^{-1}\right)^{1 / 3}$
Weak coupling region $\quad r \gg r_{V}$
For Sun

$$
\begin{aligned}
m^{-1} & \sim 4000 M p c \\
r_{s} & \sim 3 k m \\
r_{V} & \sim 250 p c
\end{aligned}
$$

Vainshtein in static and spherical symmetry case

$$
r_{\star}=\frac{1}{\Lambda}\left(\frac{M_{\odot}}{M_{\mathrm{Pl}}}\right)^{1 / 3} \quad \Lambda=\left(m^{2} M_{\mathrm{Pl}}\right)^{1 / 3}
$$

Vainshtein in static and spherical symmetric case

$$
\frac{F_{r \ll r_{\star}}}{F_{r \gg r_{\star}}}=\left(\frac{r}{r_{\star}}\right)^{3 / 2} \sim 10^{-12} \quad \text { For Sun-Earth System }
$$

$\sim 10^{-13}$ For Earth-Moon System
$\sim 10^{-15}$ For Hulse-Taylor Pulsar
expected

Vainshtein radius without spherical symmetry

An important question to address for theory and simulations is how well-do the screening mechanisms work away from the STATIC- SPHERICALLY symmetric situations in which they are usually described
e.g.:

- In time-dependent systems, screening may be different, computed exactly for binary pulsar systems
- When the spherical symmetry is broken

Binary Pulsars

 de Rham, AJT, Wesley 2012 de Rham, Matas, AJT 2013Dar, de Rham, Deskins, Giblin, AJT 2018 Gerhardinger, Giblin, AJT, Trodden 2022 Gerhardinger, Giblin, AJT, Trodden 2024 de Rham, Giblin, AJT 2024
Extra polarizations of graviton = extra modes of gravitational wave

Binary pulsars lose energy faster than in GR so the orbit slows down more rapidly

Well approximated by decoupling limit!! (Unlike BH mergers etc) Helicity 2 graviton is always weakly coupled.

One-body approximation

$$
S=\int \mathrm{d}^{4} x\left(-\frac{3}{4}(\partial \pi)^{2}-\frac{1}{4 \Lambda^{3}}(\partial \pi)^{2} \square \pi+\frac{1}{2 M_{\mathrm{Pl}}} \pi T\right)
$$

$$
\pi(t, \vec{x})=\pi_{0}(r)+\sqrt{2 / 3} \phi(t, \vec{x})
$$

Background due to centre of mass

$$
\frac{E(r)}{r}+\frac{2}{3 \Lambda^{3}}\left(\frac{E(r)}{r}\right)^{2}=\frac{1}{12 \pi r^{3}} \frac{M}{M_{\mathrm{Pl}}} \quad E(r)=\partial_{r} \pi_{0}(r)
$$

Action for fluctuations

$$
\mathcal{S}_{\phi}=\int \mathrm{d}^{4} x\left(-\frac{1}{2} Z^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{\phi \delta T}{\sqrt{6} M_{\mathrm{Pl}}}\right)
$$

Vainshtein effect

$$
\begin{aligned}
Z^{t t}(r) & =-\left[1+\frac{2}{3 \Lambda^{3}}\left(2 \frac{E(r)}{r}+E^{\prime}(r)\right)\right] \\
Z^{r r}(r) & =1+\frac{4}{3 \Lambda^{3}} \frac{E(r)}{r}, \quad \quad \phi_{l m \omega}(t, r, \theta, \phi)=u_{l \omega}(r) Y_{l m}(\theta, \phi) e^{-i \omega t} \\
Z^{\Omega \Omega}(r) & =1+\frac{2}{3 \Lambda^{3}}\left(\frac{E(r)}{r}+E^{\prime}(r)\right) .
\end{aligned}
$$

Vainshtein region $\quad Z \gg 1 \quad$ fifth force suppressed by $\quad \frac{1}{Z}$

Power emitted

Goldberger+ Rothstein hep-th/0409156

$$
\frac{2 \operatorname{Im}\left(S_{\mathrm{eff}}\right)}{T_{\mathrm{P}}}=\int_{0}^{\infty} \mathrm{d} \omega f(\omega) \quad P=\int_{0}^{\infty} \mathrm{d} \omega \omega f(\omega)
$$

Radiated power is $\quad P=\frac{\pi}{3 M_{\mathrm{Pl}}^{2}} \sum_{n=0}^{\infty} \sum_{l m} n \Omega_{\mathrm{p}}\left|M_{l m n}\right|^{2}$
where $\quad \mathcal{M}_{l m n}=\frac{1}{T_{P}} \int_{0}^{T_{p}} d t \int d^{3} x u_{l n}(r) Y_{l m}(\theta, \phi) e^{-i n t / T_{p}} \delta T(x, t)$
and modes satisfy

$$
\partial_{\mu}\left(Z^{\mu \nu}\left(\pi_{0}\right) \partial_{\nu}\left[u_{\ell}(r) Y_{\ell m}(\Omega) e^{-i \omega t}\right]\right)=0
$$

WKB Matching

$$
\partial_{\mu}\left(Z^{\mu \nu}\left(\pi_{0}\right) \partial_{\nu}\left[u_{\ell}(r) Y_{\ell m}(\Omega) e^{-i \omega t}\right]\right)=0
$$

Free Field
in Minkowski

$$
\nu=\left\{\begin{array}{ccc}
(2 \ell+1) / 4 & \text { for } & \ell>0 \\
-1 / 4 & \text { for } & \ell=0
\end{array}\right.
$$

$$
u_{\ell}=\frac{1}{\sqrt{\pi \omega} r} \cos (\omega r)
$$

Scalar Gravitational Waves:

Power Radiated

$$
P=\frac{\pi}{3 M_{\mathrm{Pl}}^{2}} \sum_{n=0}^{\infty} \sum_{l m} \frac{n}{T_{P}}\left|\mathcal{M}_{l} m n\right|^{2} \quad \mathcal{M}_{l m n}=\frac{1}{T_{P}} \int_{0}^{T_{p}} d t \int d^{3} x u_{l n}(r) Y_{l m}(\theta, \phi) e^{-i n t / T_{p}} \delta T(x, t)
$$

Dominated by Quadrupole Radiation:

$$
P_{\text {quadrupole }}=2^{7 / 2} \frac{5 \lambda_{1}^{2}}{32} \frac{\left(\Omega_{P} \bar{r}\right)^{3}}{\left(\Omega_{P} r_{*}\right)^{3 / 2}} \frac{M_{Q}^{2}}{M_{\mathrm{pl}}^{2}} \Omega_{P}^{2}
$$

relative to GR result:

$$
\frac{P_{\text {quadrupole }}^{\text {Galileon }}}{P_{\text {quadrupole }}^{\text {GR }}}=q\left(\Omega_{P} r_{*}\right)^{-3 / 2}\left(\Omega_{P} \bar{r}\right)^{-1}
$$

For realistic binary pulsars suppressed by $10^{-9-10-7}$
Static Suppression $\propto\left(\Omega_{P} r_{*}\right)^{-5 / 2}$

Vainshtein in static and spherical symmetry case

$$
\frac{F_{r \ll r_{\star}}}{F_{r \gg r_{\star}}}=\left(\frac{r}{r_{\star}}\right)^{3 / 2} \sim 10^{-12} \quad \text { For Sun-Earth System }
$$

$\sim 10^{-13}$ For Earth-Moon System

For Hulse-Taylor Pulsar
expected

Vainshtein Suppression in the Monopole $\sim \frac{1}{\left(\Omega_{p} r_{\star}\right)^{3 / 2}}$
Vainshtein Suppression in the Quadrupole $\sim \frac{1}{\left(\Omega_{p} r_{\star}\right)^{3 / 2}} \frac{1}{\Omega_{p} \bar{r}} \sim 10^{-8}$
5

Power per multipole (numerics)

Dar, de Rham, Deskins, Giblin, AJT 2018
Gerhardinger, Giblin, AJT, Trodden 2022

Consistent with analytic estimate:

Black: Total power Dotted Blue: Monopole Dotted Grey: Dipole Dashed Red: Quadrupole

$$
\begin{aligned}
& \left.\frac{P_{2}^{\mathrm{cub}}}{P_{2}^{\mathrm{KG}}}\right|_{\text {numeric }} \propto \Omega_{\mathrm{p}}^{-2.49} \\
& \left.\frac{P_{2}^{\mathrm{cub}}}{P_{2}^{\mathrm{KG}}}\right|_{\text {analytic }} \propto \Omega_{\mathrm{p}}^{-5 / 2}
\end{aligned}
$$

Numerical simulation of Galileons and Massive Gravity

- Simulations problematic due to lack of manifest wellposedness
- Truncated EFTs,
- Tricomi or keldysh problem (Enrico's talk)
- Two successful approaches - High pass filter - Fixing equations (numerical UV completion)

Gerhardinger, Giblin, AJT, Trodden 2022

Numerical UV Completion I

$$
\begin{aligned}
& \square \pi+\frac{1}{3 \Lambda^{3}}\left(H^{\mu \nu} H_{\mu \nu}-\left(H_{\nu}^{\nu}\right)^{2}\right)=-\frac{T}{3 M_{\mathrm{Pl}}} \\
& \square A_{\mu}-\frac{1}{\tau} \partial_{t} A_{\mu}-M^{2} A_{\mu}=-M^{2} \partial_{\mu} \pi \\
& \square H_{\mu \nu}-\frac{1}{\tau} \partial_{t} H_{\mu \nu}-M^{2} H_{\mu \nu}=-\frac{M^{2}}{2}\left(\partial_{\mu} A_{\mu}+\partial_{\nu} A_{\mu}\right)
\end{aligned}
$$

Numerical UV Completion II

$$
\begin{aligned}
& M \rightarrow \infty \\
& \hat{\tau}=\frac{1}{\tau M}
\end{aligned}
$$

$$
\begin{aligned}
& \square \pi+\frac{1}{3 \Lambda^{3}}\left(H^{\mu \nu} H_{\mu \nu}-\left(H_{\nu}^{\nu}\right)^{2}\right)=-\frac{T}{3 M_{\mathrm{Pl}}} \\
& \ddot{H}_{\mu \nu}=\frac{1}{\hat{\tau}^{2}}\left(\partial_{\mu} \partial_{\nu} \pi\right)-\frac{2}{\hat{\tau}} \dot{H}_{\mu \nu}-\frac{1}{\hat{\tau}^{2}} H_{\mu \nu}
\end{aligned}
$$

Similar `Fixing Equations' (Luis Lehner and co), Israel-Stewart method (Discussed in Enrico's talk yesterday)

Extension to Quartic Galileon?

de Rham, Matas, AJT 2013
Background $\quad\left(\frac{E}{r}\right)+\frac{2}{3 \Lambda_{3}^{3}}\left(\frac{E}{r}\right)^{2}+\frac{2}{\Lambda_{4}^{6}}\left(\frac{E}{r}\right)^{3}=\frac{1}{12 \pi} \frac{M_{\text {oto }}}{M_{\mathrm{PI}}} \frac{1}{r^{3}}$

Perturbations

$$
\begin{aligned}
\pi(\vec{x}, t) & =\pi(r)+\sqrt{2 / 3} \phi^{(1)}(\vec{x}, t)+\cdots \\
T & =T_{0}+\delta T,
\end{aligned}
$$

Deep in quartic Vainshtein region:

$$
\hat{\emptyset} \phi^{(1)}=\frac{128 \times 3^{1 / 3}}{\pi^{2 / 3}}\left(\frac{\Lambda_{4}}{\Lambda_{3}}\right)^{6}\left(\frac{r_{\star 4}}{r}\right)^{2}\left[-\frac{1}{c_{r}^{2}} \partial_{t}^{2} \phi+\partial_{r}^{2} \phi+\frac{k_{\Omega}}{r_{\star, 4}^{2}} \nabla_{\Omega}^{2} \phi\right]
$$

No-centrifugal repulsion - high momentum modes are not sufficiently suppressed analytic approximation fails disastrously!!!!

+ numerics is naively not well-posed

Numerical Quartic Galileon

Gerhardinger, Giblin, AJT, Trodden 2024 de Rham, Giblin, AJT 2024

$$
\square \pi+\frac{1}{3 \Lambda_{3}^{3}}\left((\square \pi)^{2}-\left(\partial_{\mu} \partial_{\nu} \pi\right)^{2}\right)+\frac{1}{9 \Lambda_{4}^{6}}\left((\square \pi)^{3}-3 \square \pi\left(\partial_{\mu} \partial_{\nu} \pi\right)^{2}+2\left(\partial_{\mu} \partial_{\nu} \pi\right)^{3}\right)=\frac{T}{3 M_{\mathrm{Pl}}}
$$

High Pass Filter + Smooth turn of sources

$$
\mathcal{O}_{2}+f_{3}\left(t_{\mathrm{pr}}\right) \kappa_{3} \mathcal{O}_{3}+f_{4}\left(t_{\mathrm{pr}}\right) \kappa_{4} \mathcal{O}_{4}=-f_{1}\left(t_{\mathrm{pr}}\right) J_{\mathrm{pr}}
$$

Numerical UV completion

$$
\begin{aligned}
& \ddot{\pi}=\nabla^{2} \pi+\frac{1}{3 \Lambda_{3}^{3}}\left(\left(H_{\nu}^{\nu}\right)^{2}-H_{\mu \nu} H^{\mu \nu}\right)+\frac{1}{9 \Lambda_{4}^{6}}\left(\left(H_{\nu}^{\nu}\right)^{3}-3 H_{\alpha}^{\alpha} H_{\mu \nu} H^{\mu \nu}+2\left(H_{\mu \nu}\right)^{3}\right)-\frac{T}{3 M_{\mathrm{Pl}}} \\
& \ddot{A}_{\mu}=\nabla^{2} A_{\mu}-\frac{1}{\tau} \partial_{0} A_{\mu}-M^{2}\left(A_{\mu}-\partial_{\mu} \pi\right) \\
& \ddot{H}_{\mu \nu}=\nabla^{2} H_{\mu \nu}-\frac{1}{\tau} \partial_{0} H_{\mu \nu}-M^{2}\left(H_{\mu \nu}-\frac{1}{2}\left(\partial_{\mu} A_{\nu}+\partial_{\nu} A_{\mu}\right)\right) .
\end{aligned}
$$

Figure 1. The relative contributions of the different terms on the left hand side of the spherically symmetric equation of motion (2.2). We show the relative contributions of the quartic (blue), cubic (red) and Klein-Gordon (black) contributions for our choice of $\xi=0.6$ (solid) and what would happen in the case of a larger, $\xi=0.95$ (dashed). In both cases we set the size of κ_{3} such that the Vainstein radius is approximately $r / \bar{r}=20$.

Figure 2. The turn-on functions, $f_{1}(t)$ (blue, dashed), $f_{3}(t)$ (black, dotted), and $f_{4}(t)$ (red solid). In the fiducial case, $\Omega_{p} \bar{r}=0.2$ so the system orbits about every $t / \bar{r}=30$.

Figure 4. Power as a function of time for the fiducial, $\Omega_{p} \bar{r}=0.2$ and $\xi=0.6$ model. The curves show the period-averaged power in the monopole (black), dipole (blue) and quadrupole (red) as a function of time.

Quartic Galileon Conclusions

- For a binary source (circular orbit) dominant radiation continues to be quadrupole
- Odd multipoles vanish (machine noise)
- Parameterically distinct scaling when source likes within quartic Vainshtein region

$$
\frac{\left\langle P_{2}\right\rangle}{\left\langle P_{2}^{\mathrm{KG}}\right\rangle} \propto\left(\Omega_{p} \bar{r}\right)^{-2.07} \quad \frac{\left\langle P_{2}^{\mathrm{Cubic}}\right\rangle}{\left\langle P_{2}^{\mathrm{KG}}\right\rangle} \propto\left(\Omega_{p} \bar{r}\right)^{-2.5}
$$

- Time averaged monopole matches perfectly analytic solution (outside of source)

Dynamical formulation of Massive Gravity

De Rham, Kozuszek, AJT, Wiseman 2023
Work with vierbein $g_{\mu \nu}=\left(f^{-1}\right)^{\alpha \beta} E_{\alpha \mu} E_{\beta \nu}$

$$
\begin{aligned}
& S=\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{4} x \sqrt{-g}\left(R[g]-m_{1}^{2}(2[E]-6)-\frac{m_{2}^{2}}{2}\left([E]^{2}-\left[E^{2}\right]-6\right)\right)+S^{(\text {matter })}\left[g, \psi_{i}\right] \\
& S=\int \mathrm{d}^{4} x|\operatorname{det} E|\left(-\frac{1}{2} A_{(1)}^{\alpha \beta \gamma \mu \nu \sigma} \partial_{[\alpha} E_{\beta] \gamma} \partial_{[\mu} E_{\nu] \sigma}-m^{2} \mathcal{L}_{\text {mass }}+\mathcal{L}_{\text {matter }}\right) \\
& \\
& A_{(1)}^{\alpha \beta \gamma \mu \nu \rho}=\eta^{\gamma \rho} g^{\alpha[\mu} g^{\nu] \beta}-2\left(E^{-1}\right)^{\rho[\alpha} g^{\beta][\mu}\left(E^{-1}\right)^{\nu] \gamma}+4\left(E^{-1}\right)^{\gamma[\alpha} g^{\beta][\mu}\left(E^{-1}\right)^{\nu] \rho}, \\
& A_{(2)}^{\alpha \beta \gamma \mu \nu \rho}= \\
& =[E]\left(\frac{1}{2} \eta^{\gamma \rho} g^{\alpha[\mu} g^{\nu] \beta}-\left(E^{-1}\right)^{\rho[\alpha} g^{\beta][\mu}\left(E^{-1}\right)^{\nu] \gamma}+2\left(E^{-1}\right)^{\gamma[\alpha} g^{\beta][\mu}\left(E^{-1}\right)^{\nu] \rho}\right) \\
& \\
& \quad-2 \eta^{\gamma \rho} g^{\alpha[\mu} E^{\nu] \beta}+\left(E^{-1}\right)^{\gamma \rho} g^{\nu[\alpha} g^{\beta] \mu}-4\left(E^{-1}\right)^{\rho[\mu} g^{\nu][\alpha} g^{\beta] \gamma} \\
& \\
& \quad+2\left(E^{-1}\right)^{\rho[\alpha} E^{\beta][\mu}\left(E^{-1}\right)^{\nu] \gamma}-4\left(E^{-1}\right)^{\gamma[\alpha} E^{\beta][\mu}\left(E^{-1}\right)^{\nu] \rho} .
\end{aligned}
$$

Dynamical formulation of Massive Gravity

De Rham, Kozuszek, AJT, Wiseman 2023
Work with vierbein

$$
g_{\mu \nu}=\left(f^{-1}\right)^{\alpha \beta} E_{\alpha \mu} E_{\beta \nu}
$$

$$
S=\int \mathrm{d}^{4} x|\operatorname{det} E|\left(-\frac{1}{2} A_{(1)}^{\alpha \beta \gamma \mu \nu \sigma} \partial_{[\alpha} E_{\beta] \gamma} \partial_{[\mu} E_{\nu] \sigma}-m^{2} \mathcal{L}_{\text {mass }}+\mathcal{L}_{\text {matter }}\right)
$$

Conjugate variables $\quad P_{i}=\partial_{[t} E_{i] t}, \quad P_{i j}=\partial_{[t} E_{i] j}$

BD Constraint!!!

$$
\frac{\partial \mathcal{L}}{\partial \partial_{t} E_{t t}}=0
$$

Is algebraic!!!

$$
\begin{aligned}
& |E|^{2} A_{(1)}^{\alpha \beta \gamma \mu \nu \sigma} \partial_{[\alpha} E_{\beta] \gamma} \partial_{[\mu} E_{\nu] \sigma}=C_{2}^{\prime} E_{t t}^{2}+C_{1}^{\prime} E_{t t}+C_{0}^{\prime} \\
& |E|^{3} A_{(2 \gamma \gamma \mu \nu \sigma} \partial_{[\alpha} E_{\beta] \gamma} \partial_{[\mu} E_{\nu] \sigma}=C_{3}^{\prime \prime} E_{t t}^{3}+C_{2}^{\prime \prime} E_{t t}^{2}+C_{1}^{\prime \prime} E_{t t}+C_{0}^{\prime \prime}
\end{aligned}
$$

Dynamical formulation of Massive Gravity

De Rham, Kozuszek, AJT, Wiseman 2023

Decomposing - trace + trace free

$$
E_{i j}=\tilde{E}_{i j}+\tilde{E} \delta_{i j}, \quad P_{i j}=\tilde{P}_{i j}+\tilde{P} \delta_{i j}, \quad \delta^{i j} \tilde{E}_{i j}=\delta^{i j} \tilde{P}_{i j}=0
$$

Equations reduce to

$$
\begin{aligned}
& \partial_{t} \tilde{P}_{i j}=\mathcal{S}_{i j}, \quad \partial_{t} \tilde{E}_{i j}=\mathcal{U}_{i j}, \quad \partial_{t} E_{i}=\mathcal{V}_{i}, \quad \partial_{t} \tilde{E}=\mathcal{W} \\
& \quad \mathcal{S}_{i j}=\mathcal{J}_{i j}{ }^{k l m n} \partial_{k} \partial_{l} \tilde{E}_{m n}+\mathcal{J}_{i j}{ }^{k l m} \partial_{k} \partial_{l} \tilde{E}_{m}+\mathcal{J}_{i j}{ }^{k l} \partial_{k} \partial_{l} \tilde{E}+\ldots
\end{aligned}
$$

$\mathcal{U}_{i j}, \mathcal{V}_{i}, \mathcal{W} \sim$ first order spatial derivatives

Dynamical formulation of Massive Gravity

De Rham, Kozuszek, AJT, Wiseman 2023

Well-posed Fixing approach

$$
\begin{aligned}
\partial_{t} \tilde{P}_{i j} \mathcal{S}_{i j}+\ell^{2} \delta^{m n} \partial_{m} \partial_{n} \tilde{P}_{i j}, & \partial_{t} \tilde{E}_{i j}=\mathcal{U}_{i j}+\ell^{2} \delta^{m n} \partial_{m} \partial_{n} \tilde{E}_{i j}, \\
\partial_{t} E_{i}=\mathcal{V}_{i}+\ell^{2} \delta^{m n} \partial_{m} \partial_{n} E_{i}, & \partial_{t} \tilde{E}=\mathcal{W}+\ell^{2} \delta^{m n} \partial_{m} \partial_{n} \tilde{E},
\end{aligned}
$$

Add diffusion terms in phase space

$$
\partial_{t}\left(\begin{array}{c}
\delta \tilde{P}_{i j} \\
\delta \tilde{E}_{i j} \\
\delta E_{i} \\
\delta \tilde{E}
\end{array}\right)=\left(\begin{array}{cccc}
\ell^{2} \delta_{i}^{m} \delta_{j}^{n} \delta^{k l} & \mathcal{J}_{i j}{ }^{k l m n} & \mathcal{J}_{i j}{ }^{k l m} & \mathcal{J}_{i j}{ }^{k l} \\
0 & \ell^{2} \delta_{i}^{m} \delta_{j}^{n} \delta^{k l} & 0 & 0 \\
0 & 0 & \ell^{2} \delta_{i}^{m} \delta^{k l} & 0 \\
0 & 0 & 0 & \ell^{2} \delta^{k l}
\end{array}\right) \partial_{k} \partial_{l}\left(\begin{array}{c}
\delta \tilde{P}_{m n} \\
\delta \tilde{E}_{m n} \\
\delta E_{m} \\
\delta \tilde{E}
\end{array}\right)+\ldots,
$$

$$
\omega=\ell^{2} k^{2}
$$

UV insensitivity

- Check we are insensitive to diffusion terms; $\quad \ell^{2}=2^{n} \times 10^{-3}$

S-Matrix Bootstrapology

Unitarity/Positivity

Bounds

Causality

Implies Infinite number of Nonlinear constraints on low energy scattering amplitudes

Example:

$$
\operatorname{det}_{p q}\left(\frac{1}{(M+p+q)!} \frac{d^{M+p+q}}{d s^{M+p+q}} \mathcal{A}_{s}^{\prime}\left(2 m^{2}-t / 2, t\right)\right)>0
$$

$$
0 \leq t<4 m^{2}
$$

Tremendous recent progress....

Positivity + Crossing Symmetry

$$
A(s, t)=F(\alpha) \frac{s^{1 / 2}}{\left(s-4 m^{2}\right)^{\alpha}} \sum_{\ell=0}^{\infty}(2 \ell+2 \alpha) C_{\ell}^{(\alpha)}(\cos \theta) a_{\ell}(s), \quad \alpha=\frac{D-3}{2}
$$

$$
\langle\langle X(\mu, l)\rangle\rangle=\frac{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu) X(\mu, l)}{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu)}
$$

$$
\left.\frac{1}{2(2 N+2)!} \partial_{t}^{M} \partial_{s}^{2 N+2} \mathcal{A}^{\prime}(s, t)\right|_{s=t=0}=\left\langle\left\langle\frac{1}{\mu^{2 N}}\right\rangle\right\rangle>0
$$

Caron-Huot+Van Duong Extremal Effective Field Theories 2011.02957
Arkani-Hamed, Huang, Huang, EFT-Hedron, 2012.15849
Bellazzini et al, Positive Moments for Scattering Amplitudes, 2011.0003

Crossing Symmetry

What is impact of FULL crossing symmetry?

$$
\begin{aligned}
& a(t)+\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} \mu}{\pi\left(\mu-\mu_{p}\right)^{2}}\left[\frac{\left(s-\mu_{p}\right)^{2}}{\mu-s}+\frac{\left(u-\mu_{p}\right)^{2}}{\mu-u}\right] \operatorname{Im} A(\mu, t) \\
& =a(s)+\int_{4 m^{2}}^{\infty} \frac{\mathrm{d} \mu}{\pi\left(\mu-\mu_{p}\right)^{2}}\left[\frac{\left(t-\mu_{p}\right)^{2}}{\mu-t}+\frac{\left(u-\mu_{p}\right)^{2}}{\mu-u}\right] \operatorname{Im} A(\mu, s)
\end{aligned}
$$

$$
0=\mathcal{A}(s, t)-\mathcal{A}(t, s)=\sum_{\ell} \int d \mu \rho_{\ell, \alpha}(\mu)\left[\frac{2 H_{D, \ell} s t\left(s^{2}-t^{2}\right)}{(D-2) D \mu^{2}}+\ldots\right]
$$

$$
\langle\langle X(\mu, l)\rangle\rangle=\frac{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu) X(\mu, l)}{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu)} \quad \text { NULL CONSTRAINTS }
$$

Upper and Lower Bounds on Wilson Coefficients 'Islands of Positivity'
 $$
\mathcal{A}^{\prime}(s, t)=\sum_{p . q=0}^{\infty} c_{p, q} w^{p} t^{q} \quad w=-\left(s-2 m^{2}\right)\left(u-2 m^{2}\right)
$$

AJT, Wang, Zhou 2020
"New positivity bounds from full crossing symmetry"

Caron-Huot+Van Duong 2020
"Extremal Effective Field Theories"

UV Constraints on IR Symmetries

e.g. scattering amplitude for weakly broken Galileon

$$
\frac{m^{2}}{\Lambda^{2}} \ll 1
$$

$$
\begin{gathered}
y=s t u \\
x=s^{2}+t^{2}+u^{2}
\end{gathered}
$$

$$
\mathcal{A}^{\prime}(s, t) \sim \frac{1}{\Lambda^{D-4}}\left(\frac{m^{2}}{\Lambda^{6}} x+\frac{1}{\Lambda^{6}} y+\frac{1}{\Lambda^{8}} x^{2}+\ldots\right) \sim-c_{11} y+c_{10}\left(\frac{1}{2} x-t^{2}\right)+c_{20}\left(\frac{1}{2} x-t^{2}\right)^{2}
$$

Contradiction!!!

i. No strict local Wilsonian UV completion for Galileons
2. Conformal Galileon allowed provided $\Lambda \sim l$
3. DBI, AdS-DBI are allowed

Compact positivity bounds and causality

Carrillo Gonzalez, de Rham, Pozsgay, AJT ‘Causal Effective Field Theories’ 2023
For Goldstone model:

$$
\mathcal{L}=-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}+\frac{g_{8}}{\Lambda^{4}}(\partial \phi)^{4}+\frac{g_{10}}{\Lambda^{6}}(\partial \phi)^{2}\left[\left(\phi_{, \mu \nu}\right)^{2}-(\square \phi)^{2}\right]+\frac{g_{12}}{\Lambda^{8}}\left(\left(\phi_{, \mu \nu}\right)^{2}\right)^{2}-g_{\mathrm{matter}} \phi J
$$

Causality =

 positivity of Eisenbud-Wigner scattering time delay$$
\Delta T_{\ell}=\left.2 \frac{\partial \delta_{\ell}}{\partial \omega}\right|_{\ell} \quad \gtrsim-\omega^{-1}
$$

Positivity of EFT of Gravity

$$
\begin{aligned}
& S=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left[R-\frac{1}{3!}\left(\alpha_{3} R^{(3)}+\tilde{\alpha}_{3} \tilde{R}^{(3)}\right) \quad \text { de Rham, Jailty, AJT } 2023\right. \\
& \left.+\frac{1}{4}\left(\alpha_{4}\left(R^{(2)}\right)^{2}+\alpha_{4}^{\prime}\left(\tilde{R}^{(2)}\right)^{2}+2 \tilde{\alpha}_{4} R^{(2)} \tilde{R}^{(2)}\right)+\ldots\right]+S_{\text {matter }} \\
& R^{(2)}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}, \quad \tilde{R}^{(2)}=R_{\mu \nu \rho \sigma} \tilde{R}^{\mu \nu \rho \sigma}, \quad \tilde{R}_{\mu \nu \rho \sigma} \equiv \frac{1}{2} \epsilon_{\mu \nu}{ }^{\alpha \beta} R_{\alpha \beta \rho \sigma}, \\
& R^{(3)}=R_{\mu \nu}{ }^{\rho \sigma} R_{\rho \sigma}{ }^{\alpha \beta} R_{\alpha \beta}{ }_{\breve{\prime}}, \quad \begin{array}{r}
\tilde{R}^{(3)}=R_{\mu \nu}{ }^{\rho \sigma} R_{\rho \sigma}{ }^{\alpha \beta} \tilde{R}_{\alpha \beta}{ }^{\mu \nu} .
\end{array} \\
& \widehat{g}_{3}=\alpha_{3}+i \tilde{\alpha}_{3}, \quad g_{4}=8 \pi G\left(\alpha_{4}+\alpha_{4}^{\prime}\right), \quad \widehat{g}_{4}=8 \pi G\left(\alpha_{4}-\alpha_{4}^{\prime}+i \tilde{\alpha}_{4}\right)
\end{aligned}
$$

'Causality constraints on corrections to Einstein gravity' Caron-Huot, Li, Parra-Martinez, Simmons-Duffin 2022 'Graviton partial waves and causality in higher dimensions' Caron-Huot, Li, Parra-Martinez, Simmons-Duffin 2022 'Crossing Symmetric Spinning S-matrix Bootstrap: EFT bounds' Chowdhury, Ghosh, Holder, Raman, Sinha 2022
'Constraints on Regge behaviour from IR physics'

Caron-Huot, Li, Parra-Martinez, Simmons-Duffin 2022

Locality in Quantum gravity?

Aharony and Banks '98
In field theory with UV fixed point at finite volume, density of states for most operators grows as

$$
\rho(E) \sim e^{c^{\prime} V^{1 / d} E^{(d-1) / d}}
$$

with preferential operators polynomial $\quad \rho(E) \sim E^{p}$

In Quantum Gravity we expect high energy properties to be dominated by production of black holes
$\rho(E) \sim e^{S_{\mathrm{BH} \text { entropy }}}=e^{c\left(E / M_{\mathrm{Pl}}\right)^{\frac{d-2}{d-3}}} \quad \rho(E) \sim e^{E r_{*}(E)}$
where $r_{*}(E)$ is Schwarzschild radius

This implies Giddings-Lippert 2ooi locality bound. e.g. local correlation functions only exist for

$$
b>r_{*}(E)
$$

$$
\mathcal{A}(s, t) \sim e^{r_{*}(\sqrt{s}) \sqrt{t}} \quad t>0
$$

An exactly solvable case: AJT, de Rham, Gabadadze 2010

 dRGT Massive Gravity in 2D Or why two zweibeins are better than one

$$
\begin{aligned}
& S_{\lambda}=\int d^{d} x\left[-\frac{1}{2 \lambda}\left(\operatorname{Tr}\left[K^{2}\right]-(\operatorname{Tr}[K])^{2}\right)\right]+S_{\text {matter }}(g, \varphi)+S_{E H} \\
& S_{\lambda}=\int d^{2} x \frac{1}{2 \lambda} \epsilon_{a b} \epsilon^{\mu \nu}(e-f)_{\mu}^{a}(e-f)_{\nu}^{b}+S_{\text {matter }}(e, \varphi)+\delta_{E H} \\
& \uparrow \quad \uparrow \sqrt{g^{\mu \alpha} \gamma_{\alpha \nu}} \\
& \text { Ghost-free nonlinear Fierz-Pauli mass }
\end{aligned}
$$

Unique structure for which Boulware-Deser ghost is removed

$$
\lambda=1 / m^{2}
$$

A tale of two T's

AJT 2019

$$
S_{\lambda}=\int d^{2} x \frac{1}{2 \lambda} \epsilon_{a b} \epsilon^{\mu \nu}(e-f)_{\mu}^{a}(e-f)_{\nu}^{b}+S_{\text {matter }}(e, \varphi)+S_{E H}
$$

Stress energy for \mathbf{f}

$$
\operatorname{det} f T_{a}^{\mu}=\frac{\delta S_{\lambda}}{\delta f_{\mu}^{a}(x)}=-\frac{1}{\lambda} \epsilon_{a b} \epsilon^{\mu \nu}\left(e_{\nu}^{b}-f_{\nu}^{b}\right)
$$

Equation of motion for $\mathbf{e} \quad \frac{1}{\lambda} \epsilon_{a b} \epsilon^{\mu \nu}\left(e_{\nu}^{b}-f_{\nu}^{b}\right)+\operatorname{det} e T_{M a}^{\mu}=0$

Equivalent to $T \bar{T}$ deformation!!

$$
\begin{array}{rl|l}
\frac{\partial S_{\lambda}}{\partial \lambda} & =-\int d^{2} x \frac{1}{2 \lambda^{2}} \epsilon_{a b} \epsilon^{\mu \nu}(e-f)_{\mu}^{a}(e-f)_{\nu}^{b} & \mathbf{f} \text { stress energy } \\
& =-\int d^{2} x \frac{1}{2} \epsilon_{a b} T_{\mu}^{a} T_{\nu}^{b} \\
& =-\int d^{2} x \operatorname{det} T
\end{array}
$$

Massive Gravity in Two

dimensions

How do we describe a massive gravity theory in two dimensions?
Massive Gravity = Diffeomorphisms Spontaneously Broken

$$
\operatorname{Diff}(M) \rightarrow \operatorname{Isom}(M)
$$

Three ingredients:
I. Dynamical metric describing spacetime $g_{\mu \nu}$
2. Fixed reference metric (acts as VEV of Higgs field) $\gamma_{\mu \nu}$
3. Stueckelberg Fields (Goldstone Modes) Φ^{A}

$$
\gamma_{\mu \nu}=\hat{\gamma}_{A B}(\Phi) \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}
$$

Field Dependent Diffeomorphisms

The undeformed theory is not diff invariant, hence the diffeomorphism symmetry in Stuckelberg form is a redundancy. We can gauge fix to define the theory - however different gauge fixings lead to different formulations which are related by field dependent diffeomorphisms

Unitary gauge - $\Phi^{a}=x^{a}$ Unitary gauge

Generic gauge - $\Phi^{a}(x)=x^{a}+\pi^{a}(x)$
$\begin{array}{cc}\text { Transformation of scalar - } \tilde{S}\left(\Phi^{a}\right)=S\left(x^{a}\right)=\tilde{S}\left(x^{a}+\pi^{a}(x)\right) \\ \text { Transformations: } & \text { Generic gauge }\end{array}$
Perturbatively local - non-perturbatively non-local

Quantum equivalence

Quantum deformation is defined by path integral flow

$$
i \frac{\partial Z_{\lambda}}{\partial \lambda}=-\frac{1}{2} \nabla_{e}^{2} Z_{\lambda}=-\frac{1}{2} \int d^{2} x \epsilon_{\mu \nu} \epsilon^{a b} \frac{\delta^{2} Z_{\lambda}}{\delta e_{\mu}^{a}(x) \delta e_{\nu}^{b}(x)}
$$

- Zweibein superspace measure equivalent to Polyakov measure

$$
\begin{aligned}
& \delta s^{2}=-\int d^{2} x e^{\mu \nu} \epsilon_{a b} \delta \delta_{\mu \mu}^{a}(x) \delta \delta_{\nu}^{b}(x)=-2 \int d^{2} x \operatorname{det}\left(\delta e_{\mu}^{a}(x)\right) \quad \delta s^{2}=\int d^{2} x \sqrt{-g}\left[2 \delta \omega^{2}+\frac{1}{4}\left(g^{\prime \mu \nu} g^{\alpha \beta} \delta g_{\mu_{\mu}} \delta g_{\nu \beta}\right)-\frac{1}{4}\left(g^{\mu \nu} \delta \delta_{\mu \nu}\right)^{2}\right] \\
& \delta \epsilon_{\mu}^{a}(x)=\eta^{a c} \epsilon_{c d} \delta \omega(x) e_{\mu}^{d}(x)+\delta h_{\mu}^{a}(x) \\
& \text { Solution: } \\
& \text { Polyakov measure used in } \\
& \text { quantizing string!! }
\end{aligned}
$$

$T \bar{T}$ deformation

$$
Z_{\lambda}(f)=\int D e(x) e^{i \int d^{2} x \frac{1}{2 \lambda} \epsilon^{\mu \nu} \epsilon_{a b}(e-f)_{\mu}^{a}(e-f)_{\nu}^{b}} Z_{0}(e)
$$

Topological property for flat metric

Fixing $f^{a}=d \Phi^{a}(x)$ then $\quad \Phi^{a}$ e.o.m.s impose $\quad e^{a}=d X^{a}(x)$
Hence

$$
\begin{aligned}
S_{\text {mass }}= & \int d^{2} x \frac{1}{2 \lambda} \epsilon_{a b} \epsilon^{\mu \nu}(d(\Phi-X))_{\mu}^{a}(d(\Phi-X))_{\nu}^{b} \\
& =\int d x_{\mu} \frac{1}{2 \lambda} \epsilon_{a b} \epsilon^{\mu \nu}\left(\Phi^{a}-X^{a}\right)(d(\Phi-X))_{\nu}^{b}
\end{aligned}
$$

Noted by Cardy via less transparent means 2OI8
At the S-matrix level, the deformation corresponds to a Castillejo-Dalitz-Dyson (CDD) factor

$$
S\left(\left\{p_{i}\right\}\right) \rightarrow\left[\Pi_{i<j} e^{i \frac{1}{2} \lambda \epsilon^{a b} p_{a}^{i} p_{b}^{j}}\right] S\left(\left\{p_{i}\right\}\right)
$$

e.g. integrable theory maps to an integrable theory!!

S-matrix growth

S-matrix satisfies:

- Lorentz Invariant
- Analyticity (Causality)
- Crossing symmetry
- Unitarity

$$
\begin{aligned}
& \hat{S}(\{p\})=S(\{p\}) e^{i \frac{\lambda}{2} \sum_{i<j} \epsilon_{a b} p_{i}^{a} p_{j}^{b}} \\
& \text { e.g. 2-2 scattering: } \\
& e^{2 i \delta(s)}=e^{i \frac{1}{2} \lambda s} \quad \operatorname{Im}(s)>0
\end{aligned}
$$

but violates:

- Polynomial/exponential boundedness (locality)
by comparison, a local 2D field theory looks like which is polynomiall bounded

$$
e^{2 i \delta(s)}=\Pi_{j}\left(\frac{\mu_{j}+s}{\mu_{j}-s}\right) \quad \operatorname{Im}(s)>0
$$

Deformation of a CFT = (Non-) Critical String Theory

Now assume seed theory is classically conformal

$$
S_{C F T}\left(\Omega^{2} g,\left\{\Omega^{-\Delta_{I}} \varphi_{I}\right\}\right)=S_{C F T}\left(g,\left\{\varphi_{I}\right\}\right)
$$

Mass term breaks Conformal symmetry - Introduce conformal Stueckelberg fields via

$$
g \rightarrow \hat{\Omega}^{2} g \quad \varphi_{I} \rightarrow \hat{\Omega}^{-\Delta_{I}} \varphi_{I}
$$

Integrating out the conformal Stueckelberg field gives

$$
S_{\lambda}=\int d^{2} x\left[\frac{1}{2 \lambda} \sqrt{-\operatorname{det} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B} \hat{\gamma}_{A B}(\Phi)}-\frac{1}{4 \lambda} \sqrt{-g} g^{\mu \nu} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B} \hat{\gamma}_{A B}(\Phi)\right]+S_{C F T}[g, \varphi]
$$

For example for $S_{C F T}[g, \varphi]=\int d^{2} x-\frac{1}{2} G_{I J}(\varphi) \partial_{\mu} \varphi^{I} \partial_{\nu} \varphi^{J}$
deformed theory is a worldsheet string with target space metric

$$
d s_{\text {target }}^{2}=\frac{1}{2 \lambda} \hat{\gamma}_{A B}(\Phi) d \Phi^{A} d \Phi^{B}+G_{I J}(\varphi) d \varphi^{I} d \varphi^{J} \quad \text { in a non-zero B-field } \quad B_{+-}(\Phi)=\hat{\gamma}_{+-}(\Phi)
$$

$$
S_{\lambda}=\int d^{2} x \sqrt{-g}\left[-\frac{1}{4 \lambda} \hat{\gamma}_{A B}(\Phi) g^{\mu \nu} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}-\frac{1}{2} G_{I J} g^{\mu \nu} \partial_{\mu} \varphi^{I} \partial_{\nu} \varphi^{B}-\frac{1}{4 \lambda} B_{A B}(\Phi) \epsilon^{\mu \nu} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}\right]
$$

Locality bound

Given a wavepacket of energy or momentum E, the minimum distance over which it may be localized is

$$
L \sim E \lambda \quad \Rightarrow \quad \Delta x_{R} \Delta x_{L}>\lambda
$$

If interpreted as a time delay/advance, associated phase shift is

$$
\delta(E) \sim L E \sim E^{2} \lambda \sim \lambda s \quad \text { CDD factors! }
$$

At any finite order in perturbation theory, correlation functions are local (tempered distrubutio polynomially bounded) - Non-perturbatively they resum to a Jaffe non-localizable behaviour (e.g Cardy 2019)

$$
G(k) \sim e^{\lambda k^{2}}
$$

If bootstrap/positivity bounds were applied to scattering on string world sheet - they would conclude that it has no UV completion!!

Be wary of assumptions! in

