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A brief account is given of Dyson's proof of the finiteness after renormalization of the matrix elements for
scattering processes (S-matrix elements) in electrodynamics (interaction of photons and electrons). It is
shown to which meson interactions this proof can be extended and some of the difficulties whi. ch arose in
this extension are discussed.

'HE recent developments in quantum electro-
dynamics (the interaction of photons and the

electron-positron Geld) associated with the names of
Tomonaga, Schwinger, and Feynman culminated, as
far as the theory of the renormalization of mass and
charge is concerned, in the work of Dyson' published in
j.949. Combining Ieynman's technique' of depicting
field events graphically and Schwinger's invariant pro-
cedure of subtracting divergences, ' Dyson proved two
very important results. He showed first that if calcula-
tions are made to any arbitrarily high order in the
charge in a perturbation expansion, three and only three
types of integrals can diverge; and, secondly, that a
re normalization of mass and charge would sufhce
completely to absorb these divergences. This theory
has proved to be in very close agreement with experi-
ment. 4
An obvious problem after Dyson's program was com-

pleted was to extend his considerations to the various
meson theories, and to see if analogous results could be
derived for any of them. This work has now been fin-
ished and it is the purpose of this note to demonstrate
some of the difhculties which arose and to summarize
the main results. It should be emphasized that we are
concerned here with the purely mathematical problem
of seeing which meson theories can ge made self-con-
sistent in this way. Very little will be said about the
relation of such a theory to experiment.
Before going on to consider meson theories in detail,

however, we briefly recall Dyson's procedure. It is now
well known'' that the matrix element for any given
scattering process (5-matrix element) in electro-
dynamics can be written down directly as an integral
in momentum space by drawing a graph, the integrand
being obtained by writing the propagation functions
*The following note was read as an invited paper at the

Schenectady Meeting of the American Physical Society, June 16,
1951.
f Now at Clare College, Cambridge, England.
$ Now at Government College, Lahore, Pakistan.' F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).
2 R. P. Feynman, Phys. Rev. 76, 749, 769 (1949).' J. Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949).
4 Notably it explains the Lamb shift (see W. E. Lamb and

R. C. Retherford, Phys. Rev. 79, 549 (1950) for references to
published papers; more accurate calculations are in progress)
and the anomalous magnetic moment of the electron. P. Kush
and H. A. Foley, Phys. Rev. 74, 750 (1948). J. Schwinger, Phys.
Rev. 73, 415 (1948). R. Karplus and N. M. Kroll, Phys. Rev.
7?, 536 (1950).Koenig, Prodell, and Knsch, Phys. Rev. 687 (1951).'

31

Sr(p) and Dr(p) for the electron and the photon lines'
and the factor ey„(charge times a Dirac matrix) for
the vertices of the graph. By considering the integrals
thus obtained, Dyson showed that the over-all' degree
of divergence of a particular graph could be estimated
simply by counting its external lines. I.et E~ denote the
number of external fermion (we use the term fermion
for any spin half particle) and E„ the number of ex-
ternal photon lines. The integral corresponding to a
graph can diverge only if

ssEg+E~&5. —

This basic inequality shows that there are only a finite
number of types of graph that can introduce divergences
in the theory. These are the electron and photon self-
energy graphs and vertex parts, simple examples of
which are given in Fig. 1 (a, b, and c). Another possible
type of divergent graph is the scattering of light by
light (Fig. 1d), but this proves to be convergent owing
to the gauge invariance of the theory. ' There are also
potentially divergent graphs with one or three external
photon lines but these can be excluded by an argument
based on charge symmetry. The graphs a, b, and c are
thus typical of the only types of divergence in the theory
and it is clear that if these divergences can be removed

~ ~ ~ g ~ ~ ~
~ ~ + o

Fn. 1.Dotted lines are photons and full lines are electrons.

' These are the Green's functions which express the (casually
correct) influence of the fields at different points upon each other.
M. Fierz, Helv. Phys. Acta 23, 731 (1950). (DJ =D, in Fierz's
paper. Dz= 8+, Sz=X+ in Feynman's notation. )
By "over-all" degree of divergence is meant the degree of

divergence of the integral over all variables, for a graph for which
the integration over any lesser number of variables is finite (or
has been made finite by suitable subtractions). The integrals are
complex but the degree of divergence can be determined by count-
ing powers in the integrand. For electrodynamics this can be
expressed in terms of the number of external lines only.' J. C. Ward, Phys. Rev. 77, 293 (1950).
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Cosmological 
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Spin-2 Mass terms



Spin-2 Mass terms



Spin-2 propagator



Spin-2 mixing
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R2 gravity



Cubic Galileon!!!



Restore the 2nd copy of (linear) diff invariance with Stü. fields

de Rham, AJT et al 2011
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R2 gravity



Restore the 2nd copy of (linear) diff invariance with Stü. 
fields

Splitting the Stü. field into scalar and vector parts,

Decoupling limit

Salam 1977 was right!



Decoupling limit

Except in D=4

Hinterbichler, Saravani,2015

de Rham, AJT et al 2011

Salam 1977 was right!
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Galileons
Induced Metric

From 

From 
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From 

(disformal coupling)

de Rham, AJT, 1003.5917

Nicolis, Rattazzi, Trincherini 2008



gµ⌫ = e�2�/l�µ⌫ + @µ�@⌫�

Geometric Unification AJT, de Rham (2010)
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Gibbons-Hawking terms
for bulk Ricci+Gauss-Bonnet

l ! 1



Conformal Galileons
de Rham, AJT, 1003.5917

Starting from 5d AdS, we get the conformal Galileon 

AJT, de Rham (2010)



Decoupling limits of  Massive Gravity 
Theories

Decoupling limit of DGP: Galileon (cubic) 

Decoupling limit of Massive Gravity: Galileon (quintic) 

Decoupling limit of BiGravity: Galileon (quintic)  

Decoupling limit of New Massive Gravity: Galileon (cubic) 

Decoupling limit of Zwei-Dreibein Gravity: Galileon (quartic) 



Emergence of Galileon Symmetry

Galileon symmetry ��(x) = c+ vµx
µ

hµ⌫ = h̃µ⌫ + @µ@⌫�
Spin-2 Helmholtz

Or Helicity 
Decomposition

�@µ@⌫� = 0
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Galileon Operators
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Characteristic polynomials



Galileon Helicity-2 Interactions
de Rham, Gabadadze 2009
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Helicity zero mode enters reference metric squared
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To extract dominant helicity zero interactions we need 
to take a square root
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Hard       Massive Gravity
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Unique Lorentz invariant low energy EFT where the strong 
coupling scale is 
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5 propagating degrees of freedom!!!!

de Rham, Gabadadze, AJT 2010

Double epsilon structure!!!!!
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Fasiello, AJT 2013

In Massive Gravity - Mass term breaks a single copy of local 
Diffeomorphism Group down to a global Lorentz group

Diff(M) ! Global Lorentz

In Bigravity - Mass term breaks two copies of local 
Diffeomorphism Group down to a single copy of Diff group 

Diff(M)⇥Diff(M) ! Diff(M)diagonal

Decoupling Limit of Bigravity



There are two ways to introduce Stuckelberg fields!

OR
Dynamical metric I Dynamical metric II

Fµ⌫ = fAB(�)@µ�
A@⌫�

B
Dynamical metric I Dynamical metric II

gµ⌫(x)

x̃A = �A(x) = xA + @A⇡(x)

fAB(x̃)G̃AB(x̃) = gµ⌫(Z)@AZ
µ@BZ

⌫

Fasiello, AJT 2013

xµ = Zµ(x̃) = x̃µ + @µ⇡̃(x̃)
Galileon 
Duality!!!!!
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and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)

while keeping

Λ3 = (m2Mp)
1
3 → constant and Mp/Mf constant . (4.7)

In addition, the scaling is done such that the β̂n are kept constant where βn = M2
p β̂n.

The resulting action in the Λ3 decoupling limit can be split into two contributions

lim
Mp→∞ ,Λ3 constant

Sbigravity = Shelicity−2/0 + Shelicity−1/0 (4.8)

where Shelicity−1/0 contains only interactions between the helicity-1 and helicity-0 de-
grees of freedom [76]5:
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Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by
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5As in [76] we take the standard definitions of the Kronecker deltas: δµνρσabcd = εµνρσεabcd. More
generally we have δµνρabc = 1

1!
εµνρdεabcd and δµνab = 1

2!
εµνcdεabcd.
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where Êαβ
µν is the Lichnerowicz operator defined on a background Minkowski space-time

with the convention (Êh)µν = −1
2

(

!hµν − ∂α∂µhα
ν − ∂α∂νhα

µ + ∂µ∂νh− ηµν(!h− ∂a∂bhab)
)

.
The tensors Xµν and Y µν are defined by

Xµν = −
1

2

4
∑

n=0

β̂n

(3− n)!n!
εµ...εν...(η + Π)nη3−n , (4.13)

and

Y µν = −
1

2

4
∑

n=0

β̂n

(4− n)!(n− 1)!
εµ...εν...(η + Π)(n−1)η4−n , (4.14)

where we have used a short hand notation in which the indices of (η + Π) and η are
contracted between the pairs of Levi-Civita symbols ε in order.

In this representation the dependence of the action on vµν is nontrivial due to π
dependence in vµA[xa + Λ−3

3 ∂aπ](ηAν + ΠA
ν ) term. We can however undo this with a

coordinate transformation in the last term to write an equivalent representation:

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµν(x

a)Ỹ µν

]

, (4.15)

where

Ỹ µν = −
1

2

4
∑

n=0

β̂n

(4− n)!(n− 1)!
εµ...εν...η(n−1)(∂Z)4−n , (4.16)

and where (∂Z)aν = ∂µZa(x) and the function Za(x) is defined via the implicit relation

Za(xb + Λ−3
3 ∂bπ(x)) = xa . (4.17)

The fact that we have performed the coordinate transformation in only the last term
might seem strange, however it is allowed because the integration variable is a dummy
variable. Essentially we are using the four dimensional version of the identities
∫

∞

−∞

dx (f(x) + h(x)) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dxh(x) =

∫

∞

−∞

dxf(x) +

∫

∞

−∞

dZ h(Z)

=

∫

∞

−∞

dx

(

f(x) +
dZ(x)

dx
h(Z(x))

)

. (4.18)

where Z(x) is a monotonic function satisfying Z(±∞) = ±∞.
To elucidate the meaning of this remember that the diff Stückelberg fields are

defined in the decoupling limit as Φa(x) = xa + Λ−3
3 ∂bπ(x), thus the relation (4.17) is

Za(Φb(x)) = xa , (4.19)

in other words the function Za is the inverse function, i.e. inverse coordinate transfor-
mation to Φa. The function Φa provides a map from the coordinates of the metric g
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and perform the scaling or decoupling limit,

Mp → ∞ , Mf → ∞ , m → 0 (4.6)

while keeping

Λ3 = (m2Mp)
1
3 → constant and Mp/Mf constant . (4.7)

In addition, the scaling is done such that the β̂n are kept constant where βn = M2
p β̂n.

The resulting action in the Λ3 decoupling limit can be split into two contributions

lim
Mp→∞ ,Λ3 constant

Sbigravity = Shelicity−2/0 + Shelicity−1/0 (4.8)

where Shelicity−1/0 contains only interactions between the helicity-1 and helicity-0 de-
grees of freedom [76]5:

Shelicity−1/0 = −
β̂1

4
δµνρσabcd

(

1

2
Ga

µω
b
νδ

c
ρδ

d
σ + (δ + Π)aµ[δ

b
νω

c
ρω

d
σ +

1

2
δbνδ

c
ρω

d
αω

α
σ]

)

−
β̂2

8
δµνρσabcd

(

2Ga
µ(δ + Π)bνω

c
ρδ

d
σ + (δ + Π)aµ(δ + Π)bν [ω

c
ρω

d
σ + δdσω

c
αω

α
ρ]
)

−
β̂3

24
δµνρσabcd

(

(δ + Π)aµ(δ + Π)bν(δ + Π)cρω
d
αω

α
σ + 3ωa

µG
b
ν(δ + Π)cρ(δ + Π)dσ

)

,

where

ωab =

∫

∞

0

du e−2ue−uΠa
a′

Ga′b′e
−uΠb′

b (4.9)

=
∑

n,m

(n+m)!

21+n+mn!m!
(−1)n+m (ΠnGΠm )ab ,

is the solution of

Gab = ∂aBb − ∂bBa = ωac(δ + Π)cb + (δ + Π)a
cωcb , (4.10)

Πab is defined as

Πab =
∂a∂bπ

Λ3
3

. (4.11)

Similarly Shelicity−2/0 contains the interactions of the helicity-2 and helicity-0 modes
and is given by

Shelicity−2/0 =

∫

d4x

[

−
1

4
hµν Êαβ

µν hαβ −
1

4
vµν Êαβ

µν vαβ

+
Λ3

3

2
hµν(x)Xµν +

MpΛ3
3

2Mf
vµA[x

a + Λ−3
3 ∂aπ](ηAν + ΠA

ν )Y
µν

]

, (4.12)
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Fasiello, AJT 2013

Explicitly Decoupling limit for Bigravity
de Rham, Gabadadze 2009

gµ⌫ = ⌘µ⌫ +
1

MP
hµ⌫ fµ⌫ = ⌘µ⌫ +

1

MP
vµ⌫

massless helicity 2 massless helicity 0



r � rV

r � rV

Screened region
Weak coupling region

For Sun

rV � 250pc

rs � 3km

m�1 � 4000Mpc

Vainshtein effect
When curvature is large R � m2 recover GR
When curvature is small R ⌧ m2 fifth force propagates

Determines characteristic Vainshtein radius M

M2
P r

3
V

⇠ m2

rV = (rsm
�1)1/3



Vainshtein in static and spherical symmetry case

slides courtesy of C.de Rham
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Vainshtein in static and spherical symmetric case

slides courtesy of C.de Rham
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Vainshtein radius without spherical symmetry

An important question to address for theory and 
simulations is how well-do the screening mechanisms 
work away from the STATIC- SPHERICALLY symmetric 
situations in which they are usually described

e.g.:
- In time-dependent systems, screening may be different, 

computed exactly for binary pulsar systems
- When the spherical symmetry is broken



Extra polarizations of graviton = extra modes of gravitational wave 

Binary pulsars lose energy faster than in GR so the orbit slows down more 
rapidly

Well approximated by decoupling limit!! (Unlike BH mergers etc) Helicity 2 
graviton is always weakly coupled.

Binary Pulsars de Rham, AJT, Wesley 2012
de Rham, Matas, AJT 2013

Dar, de Rham, Deskins, Giblin, AJT 2018
Gerhardinger, Giblin, AJT, Trodden 2022
Gerhardinger, Giblin, AJT, Trodden 2024

de Rham, Giblin, AJT 2024
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A Cubic Galileon Radiation

For convenience, in this appendix we shall reproduce the analytic calculation of the power

emitted in scalar waves for a free theory and a cubic Galileon exhibiting the Vainshtein

mechanism as derived in [32, 33]. We therefore consider a cubic Galileon with conformal

coupling to matter

S “
ª
d4x

ˆ
´3

4
pB⇡q2 ´ 1

4⇤3
pB⇡q2l⇡ ` 1

2MPl
⇡T

˙
. (A.1)

In the limit ⇤ Ñ 8 we recover a free Klein-Gordon scalar field coupled to an external

source. In that limit (corresponding to the large masses in the context of massive gravity

⇤ “ pMPlm2q1{3), there is no Vainshtein screening and since the coupling to external source

arises at the same MPl scale as in GR, the power emitted by these scalar waves would be of

the same order of magnitude as the gravitational power emitted in GR. Actually even higher

as we would expect monopole and dipole radiation which are typically suppressed by fewer

powers of angular speed as compared with the quadrupole. In the non-relativistic limit the

monopole and dipole vanish by energy and momentum conservation, but not once relativistic

corrections are considered.

In the rest of this appendix we recall how to derive the analytic expressions for the period

averaged power radiated via the e↵ective action method, and specifically compute the leading

contribution given by the quadrupole power for two equal mass objects in circular orbits

(zero eccentricity). Computing this for non-zero eccentricity is slightly more complicated, as

suggested in [32]. Since the numerical simulations focus on non-eccentric orbits, this case will

be su�cient to compare between the perturbative analytic results and the numerical ones.

A.1 Center of Mass Split

Since we are interested in equal mass binary systems, the total stress-energy tensor Tµ
⌫ is well

approximated by the sum of two delta functions,

Tµ
⌫ “ ´M

ÿ

i“1,2

�p3qp~x ´ ~xiptqq�µ0 �0⌫ . (A.2)
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The key ingredient of the analytic approach is to split the source into the static and spherically

symmetric center of mass contribution and departures from it,

Tµ
⌫ “ T0

µ
⌫ ` �Tµ

⌫ , (A.3)

with

T0
µ
⌫ “ ´2M�p3qp~xq�µ0 �0⌫ . (A.4)

T0
µ
⌫ leads to a static and spherically symmetric field background ⇡0 and in all generality, the

full exact solution can always be split as

⇡pt, ~xq “ ⇡0prq `
a
2{3�pt, ~xq . (A.5)

At this level those splits are purely mathematical and rely on no assumption. The only

assumptions that will be performed in the analytic derivation is a large hierarchy between

the di↵erent scales involved, and as a consequence � can be treated linearly. Whether or not an

actual hierarchy between the orbit size r̄, the inverse frequency scale ⌦´1
p , and the Vainshtein

radius rv (eq. (2.3)), is present, depends on the specific scales chosen but this hierarchy is

realized for the binary systems we have in mind. Whether or not � can be treated linearly

is an assumption which can be checked after the fact as seen in appendix E(for the cubic)

and section 3.2 (for the quartic/quintic) of [33]. Once the appropriate hierarchy of scales has

been considered, fluctuations on top of the static and spherically symmetric background are

indeed small and can be treated linearly.

The center of mass source T0 leads to a field profile that satisfies

Eprq
r

` 2

3⇤3

ˆ
Eprq
r

˙2

“ 1

12⇡r3
M

MPl
, (A.6)

where Eprqr̂ “ ~r⇡0. There are two branches of solutions for E, and we focus on the ‘normal’

branch which behaves as a free field (leading to a well-known Newton square law E 9 1{r2)
for r " rv.

The quadratic action for the perturbation � is then

S� “
ª
d4x

ˆ
´1

2
Zµ⌫Bµ�B⌫� ` ��T?

6MPl

˙
, (A.7)

where Zµ⌫ is diagonal with non-vanishing components given by

Zttprq “ ´
„
1 ` 2

3⇤3

ˆ
2
Eprq
r

` E1prq
˙⇢

, (A.8)

Zrrprq “ 1 ` 4

3⇤3

Eprq
r

, (A.9)

Z⌦⌦prq “ 1 ` 2

3⇤3

ˆ
Eprq
r

` E1prq
˙

. (A.10)
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E(r) = @r⇡0(r)

Radiation emitted by that scalar
Background due to centre of mass



Action for fluctuations

The key ingredient of the analytic approach is to split the source into the static and spherically

symmetric center of mass contribution and departures from it,

Tµ
⌫ “ T0

µ
⌫ ` �Tµ

⌫ , (A.3)

with

T0
µ
⌫ “ ´2M�p3qp~xq�µ0 �0⌫ . (A.4)

T0
µ
⌫ leads to a static and spherically symmetric field background ⇡0 and in all generality, the

full exact solution can always be split as

⇡pt, ~xq “ ⇡0prq `
a
2{3�pt, ~xq . (A.5)

At this level those splits are purely mathematical and rely on no assumption. The only

assumptions that will be performed in the analytic derivation is a large hierarchy between

the di↵erent scales involved, and as a consequence � can be treated linearly. Whether or not an

actual hierarchy between the orbit size r̄, the inverse frequency scale ⌦´1
p , and the Vainshtein

radius rv (eq. (2.3)), is present, depends on the specific scales chosen but this hierarchy is

realized for the binary systems we have in mind. Whether or not � can be treated linearly

is an assumption which can be checked after the fact as seen in appendix E(for the cubic)

and section 3.2 (for the quartic/quintic) of [33]. Once the appropriate hierarchy of scales has

been considered, fluctuations on top of the static and spherically symmetric background are

indeed small and can be treated linearly.

The center of mass source T0 leads to a field profile that satisfies

Eprq
r

` 2

3⇤3

ˆ
Eprq
r

˙2

“ 1

12⇡r3
M

MPl
, (A.6)

where Eprqr̂ “ ~r⇡0. There are two branches of solutions for E, and we focus on the ‘normal’

branch which behaves as a free field (leading to a well-known Newton square law E 9 1{r2)
for r " rv.

The quadratic action for the perturbation � is then

S� “
ª
d4x

ˆ
´1

2
Zµ⌫Bµ�B⌫� ` ��T?

6MPl

˙
, (A.7)

where Zµ⌫ is diagonal with non-vanishing components given by

Zttprq “ ´
„
1 ` 2

3⇤3

ˆ
2
Eprq
r

` E1prq
˙⇢

, (A.8)

Zrrprq “ 1 ` 4

3⇤3

Eprq
r

, (A.9)

Z⌦⌦prq “ 1 ` 2

3⇤3

ˆ
Eprq
r

` E1prq
˙

. (A.10)

– 18 –

The key ingredient of the analytic approach is to split the source into the static and spherically

symmetric center of mass contribution and departures from it,

Tµ
⌫ “ T0

µ
⌫ ` �Tµ

⌫ , (A.3)

with

T0
µ
⌫ “ ´2M�p3qp~xq�µ0 �0⌫ . (A.4)

T0
µ
⌫ leads to a static and spherically symmetric field background ⇡0 and in all generality, the

full exact solution can always be split as

⇡pt, ~xq “ ⇡0prq `
a
2{3�pt, ~xq . (A.5)

At this level those splits are purely mathematical and rely on no assumption. The only

assumptions that will be performed in the analytic derivation is a large hierarchy between

the di↵erent scales involved, and as a consequence � can be treated linearly. Whether or not an

actual hierarchy between the orbit size r̄, the inverse frequency scale ⌦´1
p , and the Vainshtein

radius rv (eq. (2.3)), is present, depends on the specific scales chosen but this hierarchy is

realized for the binary systems we have in mind. Whether or not � can be treated linearly

is an assumption which can be checked after the fact as seen in appendix E(for the cubic)

and section 3.2 (for the quartic/quintic) of [33]. Once the appropriate hierarchy of scales has

been considered, fluctuations on top of the static and spherically symmetric background are

indeed small and can be treated linearly.

The center of mass source T0 leads to a field profile that satisfies

Eprq
r

` 2

3⇤3

ˆ
Eprq
r

˙2

“ 1

12⇡r3
M

MPl
, (A.6)

where Eprqr̂ “ ~r⇡0. There are two branches of solutions for E, and we focus on the ‘normal’

branch which behaves as a free field (leading to a well-known Newton square law E 9 1{r2)
for r " rv.

The quadratic action for the perturbation � is then

S� “
ª
d4x

ˆ
´1

2
Zµ⌫Bµ�B⌫� ` ��T?

6MPl

˙
, (A.7)

where Zµ⌫ is diagonal with non-vanishing components given by

Zttprq “ ´
„
1 ` 2

3⇤3

ˆ
2
Eprq
r

` E1prq
˙⇢

, (A.8)

Zrrprq “ 1 ` 4

3⇤3

Eprq
r

, (A.9)

Z⌦⌦prq “ 1 ` 2

3⇤3

ˆ
Eprq
r

` E1prq
˙

. (A.10)

– 18 –

We define the modified d’Alembertian operator l̃, as

l̃� “ Bµ pZµ⌫B⌫q� “ Zttprq :� ` 1

r2
B
Br

ˆ
r2Zrrprq B

Br�
˙

` Z⌦⌦prqr2
⌦� , (A.11)

and the mode functions for this operator have the form

�lm!pt, r, ✓,�q “ ul!prqYlmp✓,�qe´i!t. (A.12)

Imposing periodicity TP on the mode functions forces ! to be discretized, ! Ñ n⌦p for integer

n.

A.2 Radiation from the E↵ective Action

Following [32, 33, 36, 65] we compute the power radiated by a field using the e↵ective action

technique. The e↵ective action is defined by integrating out perturbatively the scalar field

from eq. (A.7). At leading order we can express � in terms of the Feynman propagator

�Fpxq “ i?
6MPl

ª
d4y GFpx, yq�T pyq, (A.13)

where the propagator is defined as

l̃GFpx, yq “ i�4px ´ yq, (A.14)

and the modified d’Alembertian operator is that given in eq. (A.11). Once we have the

solution for �Fpxq in eq. (A.13), we can compute the amplitude of the non-linear operators

that enter eq. (A.7) and confirm that they are indeed negligible within the regime we are

working in. We write down the propagator in terms of the Wightman functions

GFpx, yq “ ⇥pxt ´ ytqW`px, yq ` ⇥pyt ´ xtqW´px, yq , (A.15)

where the Wightman functions are defined as

W˘px, yq “
ÿ

lm

ª 8

0
d! �lm!p˘xt, ~xq�˚

lm!p˘yt, ~yq , (A.16)

and the �lm! are the complete set of mode functions defined in eq. (A.12). Thus integrating

out � from eq. (A.7) yields the e↵ective action

Se↵ “ i

12M2
Pl

ª
d4x d4y �T pxqGF�T pyq. (A.17)

As pointed out in [32, 65] the time averaged power in the system is

P “
ª 8

0
d! !fp!q, (A.18)
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Vainshtein effect

Vainshtein region Z � 1 fifth force suppressed by
1

Z



Power emitted

Mlmn =
1

TP

Z Tp

0
dt

Z
d3xuln(r)Ylm(✓,�)e�int/Tp�T (x, t)

Radiated power is

where

and modes satisfy

@µ(Z
µ⌫(⇡0)@⌫

⇥
u`(r)Y`m(⌦)e�i!t

⇤
) = 0

where fp!q is related to the e↵ective action (integrated over one period) by

2ImpSe↵q
TP

“
ª 8

0
d! fp!q. (A.19)

Defining the moments

Mlmn “ 1

TP

ª TP

0
dt

ª
d3x�lmnpx, tq�T (A.20)

and solving for fp!q yields

fp!q “ ⇡

3M2
Pl

8ÿ

n“0

ÿ

l,m

|Mlmn|2�p! ´ n⌦pq. (A.21)

Thus the period averaged power is

P “ ⇡

3M2
Pl

8ÿ

n“0

ÿ

lm

n⌦p|Mlmn|2. (A.22)

Consequently the power in a given mode l is

Pl “ ⇡

3M2
Pl

8ÿ

n“0

ÿ

m

n⌦p|Mlmn|2. (A.23)

We now restrict ourselves to circular orbits in the ✓ “ ⇡{2 plane with equal mass objects.

That is,

�T “ M

„
�3pxq ´ 1

2

`
�3p~r ´ ~r1q ` �3p~r ´ ~r2q

˘⇢
(A.24)

where r1,2 “ r̄{2, ✓1,2 “ ⇡{2, and �1,2 “ ⌦pt ` ⇡�i,2. Combining this and eq. (A.12) into

eq. (A.20) gives us

Mlmn “ M

„
ulnp0qYlmp0, 0q�n,0 ´ p1 ` p´1qmq

2
ulnpr̄{2qYlmp⇡{2, 0q�n,m

⇢
. (A.25)

We note that since there is a leading n in the expression for the power, the first term of

eq. (A.25) will never contribute to the power. Thus we rewrite the power in a given mode l

as

Pl “ ⇡⌦pM2

6M2
Pl

lÿ

m“0

mp1 ` p´1qmqu2lmpr̄{2q|Ylmp⇡{2, 0q|2. (A.26)

As expected, the power radiated in the monopole mode is zero (because l “ 0 constrains

m to vanish). As in GR, the monopole being zero can be understood as a consequence of

conservation of energy.

Further, the power in the dipole mode is also zero because for l “ 1,m “ 0, the leading

m kills the power, and for l “ 1,m “ 1, the term p1 ` p´1qmq will be zero. This is also

understood (as in GR) as a consequence of conservation of momentum.

This means that the first non-zero multipole will be the quadrupole. Further since m ° 0

and must be even in order that p1 ` p´1qmq is non-zero, we know that the m “ 2 term is the

only contributing term to the quadrupole power.
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We define the modified d’Alembertian operator l̃, as

l̃� “ Bµ pZµ⌫B⌫q� “ Zttprq :� ` 1

r2
B
Br

ˆ
r2Zrrprq B

Br�
˙

` Z⌦⌦prqr2
⌦� , (A.11)

and the mode functions for this operator have the form

�lm!pt, r, ✓,�q “ ul!prqYlmp✓,�qe´i!t. (A.12)

Imposing periodicity TP on the mode functions forces ! to be discretized, ! Ñ n⌦p for integer

n.

A.2 Radiation from the E↵ective Action

Following [32, 33, 36, 65] we compute the power radiated by a field using the e↵ective action

technique. The e↵ective action is defined by integrating out perturbatively the scalar field

from eq. (A.7). At leading order we can express � in terms of the Feynman propagator

�Fpxq “ i?
6MPl

ª
d4y GFpx, yq�T pyq, (A.13)

where the propagator is defined as

l̃GFpx, yq “ i�4px ´ yq, (A.14)

and the modified d’Alembertian operator is that given in eq. (A.11). Once we have the

solution for �Fpxq in eq. (A.13), we can compute the amplitude of the non-linear operators

that enter eq. (A.7) and confirm that they are indeed negligible within the regime we are

working in. We write down the propagator in terms of the Wightman functions

GFpx, yq “ ⇥pxt ´ ytqW`px, yq ` ⇥pyt ´ xtqW´px, yq , (A.15)

where the Wightman functions are defined as

W˘px, yq “
ÿ

lm

ª 8

0
d! �lm!p˘xt, ~xq�˚

lm!p˘yt, ~yq , (A.16)

and the �lm! are the complete set of mode functions defined in eq. (A.12). Thus integrating

out � from eq. (A.7) yields the e↵ective action

Se↵ “ i

12M2
Pl

ª
d4x d4y �T pxqGF�T pyq. (A.17)

As pointed out in [32, 65] the time averaged power in the system is

P “
ª 8

0
d! !fp!q, (A.18)

– 19 –



WKB Matching

Strong Coupling region

Free Field 
in Minkowski

@µ(Z
µ⌫(⇡0)@⌫

⇥
u`(r)Y`m(⌦)e�i!t

⇤
) = 0



Scalar Gravitational Waves: 
Power Radiated
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Dominated by Quadrupole Radiation:

For realistic binary pulsars suppressed by 10-9-10-7
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Vainshtein in static and spherical symmetry case
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Numerics tests

Movie

https://www.dropbox.com/s/c7d36qxako9e3i6/3Ddf2.mov?dl=0


Figure 4. Energy density of the cubic Galileon field after the simulation has relaxed t “ 22Tp for
rbox “ 60r̃, rv “ 50r̃, and ⌦pr̃ “ ⇡{22. Red is higher energy density and blue lower.

We show ten other simulations to probe the dependence on the quadrupole power on

both ⌦p and rv, depicted in figure 5.

3.4.1 Dependence on Orbital Period

As ⌦p shrinks we find that the quadrupole mode remains the dominant mode, always con-

taining more than 98% of the power. The monopole mode grows, but always stays at less

than 2% of the total power (see table 1). Increasing ⌦p is constrained by requiring mini-

mal relativistic corrections to the orbit and power. Despite these constraints, the computed
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Power per multipole (numerics)

Figure 2. Left Panel: Free field ( “ 0) time averaged power in each multipole divided by the total
power at late time for the simulations with parameters rbox “ 60r̃, and ⌦pr̃ “ ⇡{22. Total Power:
solid black, Monopole: dotted blue, Dipole: dotted gray, Quadrupole: dashed red, l “ 3: dashed
gray, l “ 4: dot-dashed green, l “ 5: dot-dashed gray, l “ 6: dashed green. Right Panel: Late
time, time averaged quadrupole power for simulations of the free Klein Gordon field ( “ 0) with
⌦p P t⇡{22,⇡{25,⇡{30,⇡{33,⇡{38,⇡{44u and rbox “ 60r̄. The analytic power eq. (2.5) is shown as the
solid black line where the analytic expectation (P th

tot9!8) is the dashed red line.

total final power (left panel). The simulation has fully relaxed at about 15Tp » 650r̃. The

instantaneous power is shown after the simulation has relaxed in the right panel of figure 3.

As predicted by perturbative analysis the quadrupole is the dominant mode, containing more

than 99% of the total radiated power. This can be seen visually in the plot of the energy

density figure 4. Oddly the monopole is the next dominant mode. This is likely due to a poor

hierarchy. That is, both rv �" ⌦´1
p and rbox �" ⌦´1

p , implying that we are not computing the

power deeply in the linear WKB regime.

Figure 3. Cubic Galileon time averaged power (left) and instantaneous power (right) in each multipole
divided by the total power at late time for the fiducial parameters rbox “ 60r̃, rv “ 50r̃, and ⌦pr̃ “
⇡{22. Total Power: solid black, Monopole: dotted blue, Dipole: dotted gray, Quadrupole: dashed red,
l “ 3: dashed gray, l “ 4: dot-dashed green, l “ 5: dot-dashed gray, l “ 6: dashed green. The vertical
dashed gray line is at t3 “ 350r̃., when the non-linear terms are turning on.
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Consistent with analytic estimate:

Black: Total power
Dotted Blue: Monopole
Dotted Grey: Dipole
Dashed Red: Quadrupole

quadrupole power dependence on ⌦p gives us

P cub
2

PKG
2

ˇ̌
ˇ̌
numeric

9 ⌦´2.49
p while

P cub
2

PKG
2

ˇ̌
ˇ̌
analytic

9 ⌦´5{2
p . (3.14)

We therefore see a remarkable agreement with the expected analytic dependence derived in

eq. (2.7).

Figure 5. Cubic Galileon late time, time-averaged quadrupole power from simulation divided
by the Klein-Gordon power. The left panel shows simulations with rv “ 50r̄ and ⌦p P
t⇡{22,⇡{25,⇡{30,⇡{33,⇡{38,⇡{44u. The best fit for P cub

2 {PKG
2 9 !´2.49 is the solid black line

where the best fit with the analytic scaling (P theory
2 {PKG

2 9 !´5{2) is the dashed red line. The
right panel shows simulations with ⌦pr̃ “ ⇡{22 and rv{r̃ P t50, 44, 39, 34, 31, 27u. The best
fit for P cub

2 {PKG
2 9 r´1.44

v is the solid black line where the best fit with the analytic scaling
(P theory

2 {PKG
2 9 r´3{2

v ) is the dashed red line.

3.4.2 Dependence on Vainshtein Radius

As rv shrinks we weaken the hierarchy ⌦´1
p ! rv. We find that we can go down to a relative

hierarchy of rv « 3⌦´1
p and maintain more than 98% of the power in the quadrupole mode.

Similarly, increasing rv is constrained by being able to resolve all scales of the problem. We

find that the quadrupole mode remains the dominant mode, always containing more than

98%. Despite these constraints the computed quadrupole power dependence on rv gives us

P cub
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PKG
2

ˇ̌
ˇ̌
numeric

9 r´1.44
v while

P cub
2

PKG
2

ˇ̌
ˇ̌
analytic

9 r´3{2
v , (3.15)

which is again in good agreement with the expected dependence of eq. (2.7).

4 Conclusion

We have successfully performed full four dimensional simulations of a cubic Galileon coupled

to a binary system on Keplerian orbits, and computed the resulting radiated scalar gravita-

tional power. Our numerical results exhibit a power law dependence on the parameters ⌦p
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Numerical simulation of  
Galileons and Massive Gravity 

• Simulations problematic due to lack of manifest well-
posedness

• Truncated EFTs, 

• Tricomi or keldysh problem (Enrico’s talk)

• Two successful approaches - High pass filter - Fixing 
equations (numerical UV completion) 



Numerical UV Completion I

3

which explicitly solving the equations of motion for the
heavy fields in terms of the light fields as a derivative
expansion, and substituting back in the action will result
in the action for the desired low energy e↵ective field
theory. Since the would-be UV completion is valid at
arbitrary high energy scales, we would expect it to be well
posed. Indeed if the UV completion is Lorentz invariant,
we would expect the characteristics of the UV theory to
match the Lorentz lightcone, which is to say that the
front velocity of propagating modes should be luminal.

In practice we are rarely lucky enough to know the UV
theory and in many cases it may be possible to argue that
one does not exist, at least satisfying familiar principles.
In the particular case of the massless Galileon [31] or
massive/weakly-broken Galileon [23, 32], there are now
well established arguments from positivity bounds that
appear to rule out a standard local Lorentz invariant UV
completion. It should be stressed, however, that there are
implicit assumptions in these arguments which are not
required of a UV completion (the UV completion may for
example be mildly non-local [24]), and so this does not rule
out the Galileon playing a role as an interesting e↵ective
field theory. In particular Lorentz violating Galileons
emerge in the context of fractons [25, 26]. They also seem
to play a special role in scattering amplitude methods both
for Lorentz invariant theories [33, 34] and non-relativistic
theories [35, 36].
In the present context, our goal is not to find a UV

completion satisfying all the principles of unitarity and an-
alyticity, but rather the more modest goal of a completion
with high energy behavior that is numerically more stable
than that of the initial system (2). Given this, we do not
require an action, and at the price of a mild breaking of
Lorentz invariance can introduce friction terms to tame
unphysical modes. Our proposed method is motivated by
how the Galileon arises in massive gravity theories as the
helicity zero mode of a massive spin 2 field. In particular
given a spin-2 field Hµ⌫ , the helicity-zero part of it is
encoded in Hµ⌫ ⇠ @µ@⌫⇡. Indeed, in massive theories of
gravity, this enters explicitly via a dynamical gauge trans-
formation x

µ ! x
µ + A

µ with Aµ ⇠ @µ⇡ [9, 10, 37, 38].
With this in mind, we introduce an auxiliary massive
spin-1 field Aµ and an auxiliary massive spin-2 field Hµ⌫

that satisfy damped hyperbolic sourced equations. The
problematic derivative terms in the Galileon equation of
motion are replaced by interactions build out of algebraic
functions of the massive spin-2 field. Thus, the UV theory
is defined by

⇤⇡ +
1

3⇤3

⇣
H

µ⌫
Hµ⌫ � (H⌫

⌫ )
2
⌘
= � T

3MPl
(5)

⇤Aµ � 1

⌧
@tAµ �M

2
Aµ = �M

2
@µ⇡ (6)

⇤Hµ⌫ � 1

⌧
@tHµ⌫ �M

2
Hµ⌫ = �M

2

2
(@µAµ + @⌫Aµ) .

(7)

The presence of the friction terms, parametrized by ⌧
�1,

ensures that the homogenous spin-1 and spin-2 mode

solutions of (6) and (7) decay in a time of order ⌧ . The
sources on the RHS of (6) and (7) are introduced to ensure
that the particular solutions asmptote at low energies
k,! ⌧ M to

Aµ ⇠ @µ⇡ (8)

and

Hµ⌫ ⇠ 1

2
(@µAµ + @⌫Aµ) ⇠ @µ@⌫⇡ . (9)

Assuming the approximate validity of (8) and (9), then it
is simple to see that (5) reduces to (2), which ensures a
faithful UV extension. It is apparent that the UV comple-
tion (5),(6),(7) has conventional second order equations
of motion with characteristics at high energy determined
by the Minkowski lightcone. While not a guarantee of sta-
bility of the system, this removes the particular problems
associated with the derivative interactions present in the
Galileon equations of motion (2). This comes at the cost
of replacing the original single field system with a system
of 15 dynamical fields. Crucially though, the additional
degrees of freedom, even if initially excited, decay away
over a time scale ⌧ .
There is an alternative way to write the UV comple-

tion that makes its connection with the IR theory more
transparent. Assuming the homogenous modes of Hµ⌫

and Aµ are set to zero initially, then we may solve for
them directly via

Hµ⌫(x) = M
2

Z
d4y Dret(x, y)

1

2
(@µAµ(y) + @⌫Aµ(y)) ,

Aµ(x) = M
2

Z
d4y Dret(x, y)@µ⇡(y) , (10)

whereDret(x, y) is the retarded Green’s function satisfying

[⇤� 1

⌧
@t �M

2]Dret(x, y) = �
4(x, y) , (11)

with solution

Dret(x, y) = ✓(x0 � y
0)e�

(x0�y0)
⌧ Gret(x, y;M

2 � 1

4⌧2
) ,

(12)
where Gret(x, y;M2 � 1

4⌧2 ) is the conventional retarded
Green’s function for a Klein-Gordon field of mass squared
M

2 � 1
4⌧2 . Combining these relations we have

Hµ⌫(x) =

Z
d4y[D2]ret(x, y)@µ@⌫⇡(y) , (13)

where

[D2]ret(x, y) =

Z
d4k

(2⇡)4
e
ik.(x�y)

M
4

(k2 + i
⌧ k0 +M2)2

, (14)

vanishes for x0 � y
0
< 0, given that the poles lie in the

upper half k0 plane. Substituting (13) in (5) yields a
Numerical UV Completion II
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FIG. 3. (Left) The quadrupole power emitted by the fiducial system using auxiliary fields (as described in Section III B) for
Mr̄ ⇡ 0.8 (red) and Mr̄ ⇡ 10 (blue). (Right) The late-time quadrupole power emitted by the fiducial system using auxiliary
fields for di↵erent values of M . In both panels, the lower dotted black line shows the analytic expectation for a Klein-Gordon
Field and the higher dotted black line shows the analytic expectation for the fully non-linear system.

linear terms on the system; the Klein-Gordon (or near
Klein-Gordon) simulations have significantly more power
on smaller scales which is suppressed as the nonlinear
terms become important.

One of the issues we encountered while simulating this
model was that the code would crash as we increased
the mass of the Auxiliary fields, M . For our simulations,
long-term stability became intractable around Mr̄ ⇡ 10.
For the specific borderline case of Mr̄ = 10, our fiducial
model was able to achieve stability for many orbits of the
system; however, after some time high-frequency modes
are excited and the code becomes unstable. This insta-
bility does not seem to arise from a problem with the
dynamics of the system, rather, it emerges as a conse-
quence of our boundary conditions. In the boundary, we
calculate the derivatives of the Auxiliary fields assuming
that the constraints are satisfied and eq. (23). This is
a good approximation if (1) we are su�ciently far away
from the source such that the ⇡ field is Klein-Gordon
and (2) the constraints are satisfied exactly. For values
of Mr̄ > 5 we seem to violate these assumptions. To
demonstrate, we look at our marginal, Mr̄ = 10, case,
and test whether the instability is a consequence of nu-
merical instability (by reducing the time-step) or a result
of the boundary conditions (by keeping dx the same, but
increasing resolution to send the boundary further away
from the source). Figure 5 shows that the simulations are
not stabilized by increasing time resolution (which would
indicate that we’re not numerically resolving the problem
well); however, the system remains stable for much longer
if the boundary is moved away from the source.

C. Restricted Auxiliary Field Method

In addition to the above described UV completion, we
also numerically explore a partial UV completion which is
obtained from the system (5),(6),(7) by taking the scaling

limit M ! 1 for fixed

⌧̂ =
1

⌧M
. (35)

In this limit, the equation of motion for the ⇡ field remains
the same, however those for the additional fields can be
reduced to second order equations of motion for the ten
auxiliary fields, Hµ⌫ , given by

(1 + ⌧̂ @t)
2
Hµ⌫ = @µ@⌫⇡ . (36)

or more explicitly

Ḧµ⌫ =
1

⌧̂2
(@µ@⌫⇡)�

2

⌧̂
Ḣµ⌫ � 1

⌧̂2
Hµ⌫ . (37)

This restricted system is similar in spirit to the approach
taken in [14, 15] based on the Müller-Israel-Stewart formu-
lation [16–19] which has recently been successfully applied
to e↵ective field theories of gravity in [41] (for related
work on cubic Horndeski theories see [42]). In this ap-
proximation, as with the fully UV complete system, we
employed outward-going boundary conditions on the ⇡

field. In contrast to the full system of Auxilliary fields,
however, we did not need to enforce any boundary con-
ditions on the Hµ⌫ fields since these restricted Auxiliary
fields are not propagating degrees of freedom and neither
the equations of motion for ⇡ nor for Hµ⌫ depend on
derivatives of Hµ⌫ . Given this, we only need to define
Hµ⌫ in the bulk.
To compare it to the first system, we simulate this

system using numerical parameters comparable to the
largest stable value of Mr̄ = 8.22—calculating ⌧̂ from
eq. (35). Figure 6 shows a comparison of the period-
averaged quadruple power.

IV. DISCUSSION

E↵ective field theories inevitably involve derivative in-
teractions, the e↵ects of which can have important and
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linear terms on the system; the Klein-Gordon (or near
Klein-Gordon) simulations have significantly more power
on smaller scales which is suppressed as the nonlinear
terms become important.

One of the issues we encountered while simulating this
model was that the code would crash as we increased
the mass of the Auxiliary fields, M . For our simulations,
long-term stability became intractable around Mr̄ ⇡ 10.
For the specific borderline case of Mr̄ = 10, our fiducial
model was able to achieve stability for many orbits of the
system; however, after some time high-frequency modes
are excited and the code becomes unstable. This insta-
bility does not seem to arise from a problem with the
dynamics of the system, rather, it emerges as a conse-
quence of our boundary conditions. In the boundary, we
calculate the derivatives of the Auxiliary fields assuming
that the constraints are satisfied and eq. (23). This is
a good approximation if (1) we are su�ciently far away
from the source such that the ⇡ field is Klein-Gordon
and (2) the constraints are satisfied exactly. For values
of Mr̄ > 5 we seem to violate these assumptions. To
demonstrate, we look at our marginal, Mr̄ = 10, case,
and test whether the instability is a consequence of nu-
merical instability (by reducing the time-step) or a result
of the boundary conditions (by keeping dx the same, but
increasing resolution to send the boundary further away
from the source). Figure 5 shows that the simulations are
not stabilized by increasing time resolution (which would
indicate that we’re not numerically resolving the problem
well); however, the system remains stable for much longer
if the boundary is moved away from the source.

C. Restricted Auxiliary Field Method

In addition to the above described UV completion, we
also numerically explore a partial UV completion which is
obtained from the system (5),(6),(7) by taking the scaling

limit M ! 1 for fixed

⌧̂ =
1

⌧M
. (35)

In this limit, the equation of motion for the ⇡ field remains
the same, however those for the additional fields can be
reduced to second order equations of motion for the ten
auxiliary fields, Hµ⌫ , given by
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or more explicitly
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which explicitly solving the equations of motion for the
heavy fields in terms of the light fields as a derivative
expansion, and substituting back in the action will result
in the action for the desired low energy e↵ective field
theory. Since the would-be UV completion is valid at
arbitrary high energy scales, we would expect it to be well
posed. Indeed if the UV completion is Lorentz invariant,
we would expect the characteristics of the UV theory to
match the Lorentz lightcone, which is to say that the
front velocity of propagating modes should be luminal.

In practice we are rarely lucky enough to know the UV
theory and in many cases it may be possible to argue that
one does not exist, at least satisfying familiar principles.
In the particular case of the massless Galileon [31] or
massive/weakly-broken Galileon [23, 32], there are now
well established arguments from positivity bounds that
appear to rule out a standard local Lorentz invariant UV
completion. It should be stressed, however, that there are
implicit assumptions in these arguments which are not
required of a UV completion (the UV completion may for
example be mildly non-local [24]), and so this does not rule
out the Galileon playing a role as an interesting e↵ective
field theory. In particular Lorentz violating Galileons
emerge in the context of fractons [25, 26]. They also seem
to play a special role in scattering amplitude methods both
for Lorentz invariant theories [33, 34] and non-relativistic
theories [35, 36].
In the present context, our goal is not to find a UV

completion satisfying all the principles of unitarity and an-
alyticity, but rather the more modest goal of a completion
with high energy behavior that is numerically more stable
than that of the initial system (2). Given this, we do not
require an action, and at the price of a mild breaking of
Lorentz invariance can introduce friction terms to tame
unphysical modes. Our proposed method is motivated by
how the Galileon arises in massive gravity theories as the
helicity zero mode of a massive spin 2 field. In particular
given a spin-2 field Hµ⌫ , the helicity-zero part of it is
encoded in Hµ⌫ ⇠ @µ@⌫⇡. Indeed, in massive theories of
gravity, this enters explicitly via a dynamical gauge trans-
formation x

µ ! x
µ + A

µ with Aµ ⇠ @µ⇡ [9, 10, 37, 38].
With this in mind, we introduce an auxiliary massive
spin-1 field Aµ and an auxiliary massive spin-2 field Hµ⌫

that satisfy damped hyperbolic sourced equations. The
problematic derivative terms in the Galileon equation of
motion are replaced by interactions build out of algebraic
functions of the massive spin-2 field. Thus, the UV theory
is defined by

⇤⇡ +
1

3⇤3

⇣
H

µ⌫
Hµ⌫ � (H⌫

⌫ )
2
⌘
= � T

3MPl
(5)

⇤Aµ � 1

⌧
@tAµ �M

2
Aµ = �M

2
@µ⇡ (6)

⇤Hµ⌫ � 1

⌧
@tHµ⌫ �M

2
Hµ⌫ = �M

2

2
(@µAµ + @⌫Aµ) .

(7)

The presence of the friction terms, parametrized by ⌧
�1,

ensures that the homogenous spin-1 and spin-2 mode

solutions of (6) and (7) decay in a time of order ⌧ . The
sources on the RHS of (6) and (7) are introduced to ensure
that the particular solutions asmptote at low energies
k,! ⌧ M to

Aµ ⇠ @µ⇡ (8)

and

Hµ⌫ ⇠ 1

2
(@µAµ + @⌫Aµ) ⇠ @µ@⌫⇡ . (9)

Assuming the approximate validity of (8) and (9), then it
is simple to see that (5) reduces to (2), which ensures a
faithful UV extension. It is apparent that the UV comple-
tion (5),(6),(7) has conventional second order equations
of motion with characteristics at high energy determined
by the Minkowski lightcone. While not a guarantee of sta-
bility of the system, this removes the particular problems
associated with the derivative interactions present in the
Galileon equations of motion (2). This comes at the cost
of replacing the original single field system with a system
of 15 dynamical fields. Crucially though, the additional
degrees of freedom, even if initially excited, decay away
over a time scale ⌧ .
There is an alternative way to write the UV comple-

tion that makes its connection with the IR theory more
transparent. Assuming the homogenous modes of Hµ⌫

and Aµ are set to zero initially, then we may solve for
them directly via

Hµ⌫(x) = M
2

Z
d4y Dret(x, y)

1

2
(@µAµ(y) + @⌫Aµ(y)) ,

Aµ(x) = M
2

Z
d4y Dret(x, y)@µ⇡(y) , (10)

whereDret(x, y) is the retarded Green’s function satisfying

[⇤� 1

⌧
@t �M

2]Dret(x, y) = �
4(x, y) , (11)

with solution

Dret(x, y) = ✓(x0 � y
0)e�

(x0�y0)
⌧ Gret(x, y;M

2 � 1

4⌧2
) ,

(12)
where Gret(x, y;M2 � 1

4⌧2 ) is the conventional retarded
Green’s function for a Klein-Gordon field of mass squared
M

2 � 1
4⌧2 . Combining these relations we have

Hµ⌫(x) =

Z
d4y[D2]ret(x, y)@µ@⌫⇡(y) , (13)

where

[D2]ret(x, y) =

Z
d4k

(2⇡)4
e
ik.(x�y)

M
4

(k2 + i
⌧ k0 +M2)2

, (14)

vanishes for x0 � y
0
< 0, given that the poles lie in the

upper half k0 plane. Substituting (13) in (5) yields a

Similar `Fixing Equations’ (Luis Lehner and co), Israel-Stewart method 
(Discussed in Enrico’s talk yesterday)

Gerhardinger, Giblin, AJT, Trodden 2022
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The coefficients ci are dimensionless, and so far arbitrary, although c2, c3, c4 must be
positive for the stability of the theory (see Ref. [5]). Without loss of generality, we can
absorb c2 into the definition of π and c3 into that of Λ (i.e. we can set c2 = 1 and
c3 = 1/3)2. The Λi are the scales associated with each of the Galileon interactions.
These scales are typically assumed to be of the same order Λ and in theories of ghost-
free massive gravity this scale is related to the mass of the graviton by Λ ∼ (m2MPl)1/3.
Current bounds on the graviton mass typically require m not to be too much larger
than m ∼ H0 ∼ 10−33eV, in which case Λ ∼ (1000 km)−1. However, for a generic
Galileon theory, one could potentially consider these scales as being different. The
non-renormalization theorem present in Galileon theories allows for such a hierarchy
without fine-tuning issues, [5, 40]. The notation used here is similar to that in Ref. [35],
after setting Λ3 = Λ, c2 = 1, c3 = 1/3. For simplicity we also set c4 = 1 in what follows.
We leave c5 arbitrary because it can be of either sign.

In the rest of this paper, we will assume that a Vainshtein mechanism does oc-
cur and that at short enough distances the interactions (2.5) or (2.6) dominate over
the standard kinetic term (2.4). This depends on the relation between the different
coefficients in the theory, which we assume to be a given fact.

If Λ4 ! Λ3 then L3 never has any effect because it will only become relevant
at energies where it is already dominated by L4. If on the other hand Λ3 ≤ Λ4,
then the interactions L3 can dominate for a little while before being taken over by
L4 at short enough distances. As we will see, it will also be convenient to take Λ5 ≥
(Λ4/Λ3)1/3Λ4. In the first part of this paper we will have in mind the situation Λ4 !
Λ3 ∼ (1000km)−1. Notice that for a spherically symmetric configuration, the quintic
interactions Λ5 vanish, and so these interactions are only relevant at the perturbed
level (however as we shall see, even at that level, they simply correspond to a rescaling
of some parameters).

Our basic philosophy for computing the power emission is to perform a back-
ground+perturbation split in the Galileon where the background is static and spher-
ically symmetric and the deviations from spherical symmetry is captured by the per-
turbations. In effect this decomposition assumes that the majority of the Vainshtein
screening comes from the monopole moment of the binary system. More precisely we
split the field π and the source as

π("x, t) = π(r) +
√

2/3φ(1)("x, t) + · · · (2.10)

T = T0 + δT , (2.11)

where (∂∂π(r))3 ∼ T0 and (∂∂π(r))2 ∂∂φ(1) ∼ δT , if the interaction Λ4 dominates.
Physically this split is suggested from standard Effective Field Theory consider-

ations, where we expect that the physics responsible for the radiation should arise at
the (energy) scale ΩP . Since this is scale is much smaller than the scale associated
with the size of the system r̄−1 (typical distance between the two objects), where the

2Strictly speaking redefining c2 corresponds to changing the coupling to external matter. Of course
by making that coupling small we reduce the amount of radiation into the Galileon, but in their natural
realizations the coupling to matter is of order 1 and one is bound to rely on the Vainshtein mechanism
to hide this scalar field.
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spherical symmetry is broken, we expect that spherical background should be a good
approximation when computing the power, barring some unusual circumstances. How-
ever we emphasize that we are free to choose any background+perturbation split so
long as the resulting perturbative expansion remains under control.

The rest of this section is organized as follows. In the next two subsections we will
solve for the background field π and derive the equations of motion for the fluctuations
φ(1). Then we will review how to compute the power using the Feynman propagator
constructed from the fluctuations.

2.1 Static and Spherically Symmetric Background

Assuming a point source T µ
0 ν = −Mtotδ(3)($x)δ

µ
0 δ

0
ν , where Mtot = M1 +M2 is the total

mass of the binary system, the background solution for π is spherically symmetric.
Using the notation $∇π(r) = r̂E(r), the background field equation for π takes the
simple algebraic form

(

E

r

)

+
2

3Λ3
3

(

E

r

)2

+
2

Λ6
4

(

E

r

)3

=
1

12π

Mtot

MPl

1

r3
. (2.12)

The quintic Galileon does not affect the background configuration, [5]. This is because
the k-th Galileon term is a topological invariant in dimensions smaller than k− 1, and
since the system is static it is effectively three dimensional. One therefore has three
branches of solution. We focus here on the ‘normal’ branch, which smoothly connects
a free (weakly interacting) field E ∼ 1/r2 at spatial infinity r → ∞ to a strongly
interacting field at short distance scales, so as to achieve the Vainshtein mechanism.

The source has two Vainshtein radii, r",3 and r",4 associated to the two interaction
scales Λ3 and Λ4,

r",3 ≡
(

Mtot

16MPl

)1/3 1

Λ3
(2.13)

r",4 ≡
(

Mtot

16MPl

)1/3(Λ3

Λ4

)3 1

Λ4
. (2.14)

These two radii define three regimes in space, where L2,3,4 dominate in turn. More
precisely, E(r), which is just the radial derivative of the background solution, is given
by

E(r ' r",3) =
Mtot/MPl

12π

1

r2
(2.15)

E(r",4 ( r ( r",3) =
(Mtot/MPl)

1/2

√
8πr

Λ3/2
3 (2.16)

E(r ( r",4) =
(Mtot/MPl)1/3

(24π)1/3
Λ2

4 . (2.17)
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i.e. far from the source the field is weakly coupled and perturbations are free as
required.

• L3 region: r!,4 ! r ! r!,3
In this case, so long as Λ5 " (Λ4/Λ3)1/3Λ4 the equations of motion reduce to the
normal cubic Galileon equation of motion

!̂φ(1) =

√

512

9π

(r!,3
r

)3/2
(

−3∂2
t φ+ 4∂2

rφ+
2

r
∂rφ+

1

r2
∇2

Ωφ

)

. (2.27)

The case of small Λ5 is considered in Appendix B.
• L4 region: r ! r!,4

!̂φ(1) =
128× 31/3

π2/3

(

Λ4

Λ3

)6
(r!,4

r

)2
[

−
1

c2r
∂2
t φ+ ∂2

rφ+
kΩ
r2!,4

∇2
Ωφ

]

, (2.28)

where the speed of sound of the radial fluctuations cr is given by

cr =

(

1− c5
4

9

Λ12
4

Λ3
3Λ

9
5

)−1/2

, (2.29)

and the coefficient kΩ is given by

kΩ =
π2/3

1728× 31/3

(

1−
27

2

(

Λ3

Λ4

)6
)

. (2.30)

Note that in the L4 region the fluctuations effectively see a one dimensional metric
ds2 = −Zµνdxµdxν ∝ −dt2 + dr2 + r2!dΩ

2, where crucially the angular part of the
metric is multiplied by the constant r2! instead of the normal factor of r2.

Note that the second term is order 1 so long as Λ5 ≥ (Λ4/Λ3)1/3Λ4. This is the
same condition that we found above for the L5 contribution to be negligible in the L3

region. The effect of L5 here is to decrease the sound speed, cr ∼ (Λ9
5Λ

3
3/Λ

12
4 ). This

case is considered in Appendix B.
The stability of these theories was studied in Ref. [5], so as long as we take our

coefficients to satisfy the conditions of Ref. [5] perturbations are guaranteed to be
stable about the spherically symmetric configuration.

2.3 Computing the power using the effective action

Following [37] we compute the power in the binary pulsar system by looking at the
imaginary part of the effective action4 obtained by integrating out the fluctuations φ.
We start with the quadratic action for the perturbations

S[φ, xµ
i ] =

∫

d4x
√
−g

(

−
1

2
Zµν∂µφ∂νφ+

1√
6MPl

φδT

)

, (2.31)

4This method differs slightly from that followed in [36], but both strategies are valid and are
ultimately equivalent.
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Background

Perturbations

Deep in quartic Vainshtein region:

No-centrifugal repulsion - high momentum modes are not 
sufficiently suppressed -

 analytic approximation fails disastrously!!!!
+ numerics is naively not well-posed
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the general scaling expectations of analytic estimates [35, 36, 40]. This was significantly improved upon in [17] where
we considered the numerical evolution of the cubic Galileon using three distinct methods. The first amounted to
low-pass filter combined with the slow turn o↵ method of [16]. The other two methods involved replacing the Galileon
theory with a system of auxiliary higher spin fields that control the high frequency modes—a well-posed (numerical)
UV completion model. Motivated by the origins of the Galileon as a massive spin 2 field, these additional spin
fields propagate via either hyperbolic or parabolic equations of motion. The parabolic model is similar to systems
proposed in [18, 19] that have been successfully applied to simulating evolution within scalar-Gauss-Bonnet gravity
[20, 21], k -essence [22–25], Horndeski gravity [26], and other extensions to General Relativity [27–29]. This technique
is predicated on the idea that the theory of interest is a truncation of some larger theory that is well-behaved, and
the problems arise from the truncation [20]. These approaches, often referred to as fixing-the-equations, are based on
the Müller-Israel-Stewart formulation [30–33], in which the additional degrees of freedom obey their own wave equations.

In our work on the cubic Galileon [17], we demonstrated that the UV completion model asymptotically approaches
the original cubic Galileon theory in the low energy limit, and argued that our numerical treatment correctly reproduces
the dynamics of the Galileon in the IR regime. It is worth emphasizing that the system provides a purely numerical
completion, as there is no known Lorentz invariant local and unitary UV completion of the Galileon, and indeed there
are suggestions that such a theory does not exist [34]. We also compared the three di↵erent ways of resolving the
physics in the cubic Galileon model with numerical integration techniques. All three models reproduced the same long
wavelength physical processes up to expected numerical errors.

In this paper we take the next important step to understanding the Vainshtein screening by including both cubic
and quartic Galileon interactions. This is by no means straightforward since it is known that despite being moderately
successful for the cubic Galileon [16, 35], analytic attempts to describe the power radiated from a rotating system
completely fail in the case of the quartic Galileon [36]. This occurs because the large multipoles are not su�ciently
suppressed. For this reason it has remained unclear if the Vainshtein mechanism is even active for a time-dependent
system when the quartic Galileon is active. In the present paper, we extend our successful discussion of the cubic
Galileon using a well-posed UV completion of the equations of motion to account for quartic interactions. In a
companion paper we similarly extend the low-pass filter method to the quartic case [37].

II. QUARTIC GALILEON

The Galileon is a real scalar field, ⇡, which satisfies the symmetry ⇡ ! ⇡+ bµx
µ + c, for constant parameters bµ and

c. The relevant action for the Galileon including both cubic and quartic interactions is [11, 12, 36]) is1

S =

Z
d4x

✓
�3

4
(@⇡)2 � 1

4⇤3
3

(@⇡)2⇤⇡ � 1

24⇤6
4

(@⇡)2
�
(⇤⇡)2 � (@@⇡)2

�
+

1

2MPl
⇡T

◆
, (1)

where ⇤3 and ⇤4 control the strengths of the nonlinear couplings in the cubic and quartic terms respectively and T is
the trace of the stress energy tensor for the matter content of the theory. The slightly unusual choice of normalization
is a reflection of how ⇡ emerges as the helicity-zero mode in massive gravity theories where it naturally couples to the
trace of the stress energy momentum tensor. This gives rise to a classical equation of motion

⇤⇡ +
1

3⇤3
3

�
(⇤⇡)2 � (@µ@⌫⇡)

2
�
+

1

9⇤6
4

�
(⇤⇡)3 � 3⇤⇡(@µ@⌫⇡)

2 + 2(@µ@⌫⇡)
3
�
=

T

3MPl
, (2)
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⇡). The most important type of nonlinearity is controlled by the relative

magnitudes of 1/⇤3 and 1/⇤4. For a spherically symmetric, time-independent source with T = ⇢(r) the Galileon
system is well studied [36, 38, 39], and the equation of motion reduces to
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Throughout, we work in the mostly positive metric convention.
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We then promote the auxiliary fields to have their own dynamics and, at the same time, trade the higher derivative
Galileon interactions for the lower derivative fields so that the UV theory is described by the equations of motion
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Äµ = O
2
Aµ � 1

⌧
@0Aµ �M

2(Aµ � @µ⇡) , (11)

Ḧµ⌫ = O
2
Hµ⌫ � 1

⌧
@0Hµ⌫ �M

2(Hµ⌫ � 1

2
(@µA⌫ + @⌫Aµ)) . (12)

These equations have been constructed such that the friction term ensures that the new propagating degrees of freedom
in Aµ and Hµ⌫ decay on a time order of ⌧ . As in the cubic case, we have now turned a single propagating field into a
total of fifteen fields, all of which obey a form of the wave equation. Importantly, the fourteen additional degrees of
freedom should decay away on a time scale of order ⌧ . The only di↵erence between this quartic Galileon system and
the cubic Galileon system considered in [17] is an additional term in the equation of motion for the ⇡ field.

The terms on the right-hand side of (11) and (12) dictate that solutions will asymptote at low energies (k,! ⌧ M)
to the definitions of Aµ and Hµ⌫ respectively, given in (8). Additionally, the definitions of the auxiliary fields are
constraints on the boundary conditions of our numerical system. In the low energy limit, it is clear to see that (10)
reduces exactly to (2), the equation of motion for the Galileon that we started with. The addition of these fields does
not guarantee stability, however it does eliminate any issues that arise from the derivative interaction terms. For
another way to write out this numerical UV completion—one which makes the connection to the IR regime more
apparent—see [17].

III. NUMERICAL SIMULATIONS

The Galileon e↵ective field theory poses several problems for numerical simulations due to its nonlinear nature,
coupled derivative interaction terms, and the many scales of interest present in the system2. Having shown in a
previous work that the full cubic system can be solved numerically in a way that produces results which agree with
analytic expectations, we use here the most stable of our methods to produce the simulations of the quartic Galileon
model. These numerical simulations are conducted using GABE, a verified numerical program for simulating scalar
fields [51].3

To be concrete, we focus on the case when the source is comprised of two rotating Gaussian-shaped mass-energy
distributions. This is a challenging example that is closely related to physically relevant sources and also allows for easy
comparisons with our previous work with the cubic system as well as with other numerical simulations [16] and analytic
expectations [35, 40]. We parameterize the system through two dimensionless quantities: ↵ ⌘ ⌦r̄, which describes
the rotational speed of the system, and � ⌘ r̄/r⇤,3, which relates the diameter of the sources to the cubic Vainshtein
radius as defined by Eq. (7). To fully constrain the system, we can use Kepler’s Law (a reasonable approximation for
small velocities)

⌦2 =
Ms

8⇡M2
Plr̄

3
, (13)

where Ms is the total mass of the system, to describe the cubic nonlinear coupling term via

cubic =
32

3
p
2⇡

�
�3

↵
�1

. (14)

We choose � = 0.05 and ↵ = 0.2 as our fiducial model, which translates into a coupling strength cubic ⇡ 1.7⇥ 105.

A. Dimensionless Units

For the simulation to be independent of the physical parameters of this model, we rescale both our scalar field and
the spatial coordinates to yield dimensionless variables (denoted with the subscript pr), defined by

2
Other work has focused on singularities in the e↵ective metric of perturbations as a cause for numerical issues [50].

3
http://cosmo.kenyon.edu/gabe.html

Numerical UV completion

3 Numerical Implementation

The Galileon system has been studied both analytically and numerically (see e.g. [23, 27, 36–
38, 40, 41, 43, 47]). At least two of the numerical implementations use modified versions of
GABE using a standard, CPU implementation [43] as well as a GPU implementation [42].
In [43] the authors show that turning on the sources and the non-linear interactions slowly
at the beginning of the simulation can avoid the issue of a singluar e↵ective metric [41]. This
method was made more robust in the GPU implementation, one of the methods described
in [42], where e�cient Fast Fourier Transforms (FFTs) made it possible to calculate mixed
spatial derivatives using spectral methods and cut-o↵ high frequency modes. In the present
work our goal is to extend these methods to the quartic Galileon.

All of the simulations presented here use grid sizes of N3 = 3843 points where the length
of each side is L = 50r̄. These parameters are chosen as to be comparable to the previous
literature. We use a set of dimensionless units to rescale spacetime (we can choose physical
units such that MPl = 1)

xµpr =
2

r̄
xµ , (3.1)

and the Galileon field,

⇡pr =

r
r̄

Ms
⇡. (3.2)

In these dimensionless units, we can re-write the quartic equation of motion, (2.1), in a
pictorial form that allows us to separate the non-linear interactions On from the strength of
these interactions n and the numerical turn-on functions, fn,

O2 + f3(tpr)3O3 + f4(tpr)4O4 = �f1(tpr)Jpr ,

where O2 is the usual Klein-Gordon term

O2 = ⇤pr⇡pr , (3.3)

and we have two non-linear operators
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The source is taken to be

J =
2
p
2
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pr

⇣
e�(~r

pr
+ (t)/�pr)

2

+ e�(~r
pr
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2⌘
, (3.6)

where we take �pr = � 2/r̄ = 1/3. The cubic interaction is parameterized by the dimensionless
quantity

3 =
1

3⇤3
3

r
24Ms

r̄5
, (3.7)

whereas the quartic interaction is parameterized by

4 =
1

9⇤6
4

24Ms

r̄5
. (3.8)
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Figure 1. The relative contributions of the di↵erent terms on the left hand side of the spherically
symmetric equation of motion (2.2). We show the relative contributions of the quartic (blue), cubic
(red) and Klein-Gordon (black) contributions for our choice of ⇠ = 0.6 (solid) and what would happen
in the case of a larger, ⇠ = 0.95 (dashed). In both cases we set the size of 3 such that the Vainstein
radius is approximately r/r̄ = 20.

If we only consider the cubic term, there is a clear connection between the size of 3 and the
Vainstein radius,

rv =
1

⇤3

✓
Ms

16MPl

◆1/3

. (3.9)

In the presence of a quartic term, we have two important radii that di↵erentiate between the
regions where the quartic term, the cubic term, or the Klein-Gordon term dominates the left
hand side of (2.2). While we can set an expectation of where the second of these boundaries
is based on (3.9), we can numerically solve (2.2) to find both.

In a particular EFT realization, there might be a clear reason to expect that the two
interactions scales are related ⇤4 ⇠ ⇤3, however generically they can be independent. In
order to truly probe the Vainshtein screening e↵ect of the quartic Galileon we will chose a
value of 4 which is large enough for the quartic term to dominate in the region of the source.
To use the parameterization of [44], we set

4 = 23⇠
6 , (3.10)

where ⇠ = 0.6 is a fiducial value that realizes our goal. Fig. 1 demonstrates how this choice
puts the boundary between the region of quartic dominance and the region of cubic dominate
at a value of r/r̄ ⇡ 1.67 – this value is substantially far away from the sources which orbit
at r/r̄ = 0.5 with a width of �/r̄ = 1/6. Larger values of ⇠ should, in principle, be possible
however require significantly more computational time due to the need to slowly turn on the
interactions.

In the present work we need to be more careful than in previous work [42, 43] when
turning on the sources and interactions. These choices are not unique, but they allow us
to get all the simulations presented here to a stable state, where the code can run until its
endtime. We turn on the source using

f1(tpr) =
tanh(0.1(tpr � 25)) + tanh(2.5)

1 + tanh(2.5)� 0.01
, (3.11)
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Figure 2. The turn-on functions, f1(t) (blue, dashed), f3(t) (black, dotted), and f4(t) (red solid).
In the fiducial case, ⌦pr̄ = 0.2 so the system orbits about every t/r̄ = 30.

and the two interactions using

f3(tpr) =
1

4
(tanh(.015(tpr � 250)) + tanh(3.75))2 , (3.12)

and

f4(tpr) =
1

4
(tanh(.0075(tpr � 675)) + tanh(5.0625))2 . (3.13)

These are smoother and slower functions than are needed for pure cubic simulations and
are shown graphically in 2. In addition to the simulations needing longer program time to
initialize, we needed to reduce the timestep from the choice made in [42] to �t = 3�x/625 =
0.0048�x.

We use the same CUDA-accelerated version of GABE as described in section III a. of
[42]. In this numerical scheme, we employ spectral methods to calculate spatial derivatives
of ⇡ and �̇; because the derivatives exist in Fourier space, we apply a low-pass filter,

F (k) =
1

2
tanh�1

✓
1

10


N

2
�

k2

dk2

�◆
+

1

2
, (3.14)

on �̇ at the end of every timestep. As in [42], the cuto↵ scale is chosen to be the equivalent
1-dimensional Nyquist frequency, k1DN = dk N/2 = ⇡N/2, where dk = 2⇡/L. Again, this
is not a unique choice, but one that allows for our simulations to remain stable until late times.

One major challenge that has been apparent in numerical simulations of the Galileon
theories is the treatment of out-going wave boundary conditions [42]. In the present work we
continue to use

⇡̇ = �
⇡

r
� @r⇡ , (3.15)

which is strictly speaking only valid for massless Klein-Gordon fields. Although in principle
this should be suitable when applied to an interacting Galileon at large distances, in practice
it is hard to perform simulations for large hierarchies, meaning that in practice the radii at
which we evaluate the boundary conditions is not significantly larger than the Vainshtein
radii. Given this, the interaction terms have not truly switched o↵ and the above boundary
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Figure 4. Power as a function of time for the fiducial, ⌦pr̄ = 0.2 and ⇠ = 0.6 model. The curves
show the period-averaged power in the monopole (black), dipole (blue) and quadrupole (red) as a
function of time.

monopole dominates this is expected to be a su�ciently good approximation to the true
radiated power.

We evaluate the relation (4.1) at a radius where the Klein-Gordon term dominates,
r/r̄ = 22.5, which is halfway between the Vainshtein radius and the closest edge of the box.
Again, following the procedure first described in [42], we evaluate d⇡/dr and ⇡̇ on a set of
points on the sphere defined by the HEALPIX

2 standard using a tri-linear interpolation. We
can then use the e�cient Healpy [48] routines to decompose this power onto the spherical
harmonics. When we report the power, we further perform a rolling time-average over one
orbital period.

Fig. 4 shows how the first three moments, namely the monopole, dipole and quadrupole,
behave as a function of time. We note that the dipole power is zero to machine precision
throughout the simulation. The initially large monopole is an artifact of the way the inter-
actions and source are turned on for which energy is not conserved and a large monopole
artificially appears. We find that time-averaged quadrupole power remains the dominant
mode, as in Fig. 4 in the presence of the quartic interaction.

2http://healpix.sourceforge.net
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Quartic Galileon Conclusions

the scaling of the power with frequency gives

hP2i⌦
PKG
2

↵ / (⌦pr̄)
�2.07 , (4.2)

which varies significantly from the cubic-only case, where [43]
⌦
PCubic
2

↵
⌦
PKG
2

↵ / (⌦pr̄)
�2.5 , (4.3)

where the latter was consistent with analytic approximations [40, 41]. Unfortunately we do
not at present have a semi-analytic understanding of this distinct scaling, however it is worth
noting that already for the static solutions the scaling of ⇡ with r in the region where the
quartic dominates is quite di↵erent from the pure cubic theory.

5 Conclusions

In this work we have been able to successfully simulate a generic quartic Galileon, and use
this to determine the power radiated into scalar radiation for a rotating binary source. This is
of great interest in models of modified gravity where additional scalar degrees of freedom can
couple to the trace of the stress energy with gravitational strength, but are at the same time
screened by the Vainshtein mechanism. Understanding the amount of power for a generic
binary system such as a binary pulsar is important in order to put observational constraints
on such models. The present work is a step in this direction for modified gravity models
whose decoupling limit is well described by a quartic Galileon, as is common in both soft and
hard massive gravity theories.

First and foremost our results show that the Vainshtein mechanism is fully active in this
time-dependent situation, as previously found in simulations of the cubic Galileon [42, 43].
In particular the time averaged field configuration matches well analytic expectations of the
screened solution. This is a non-trivial result since attempts to provide an approximate semi-
analytic treatment fail [40, 41]. We confirm that despite the highly non-linear nature of the
system, the dominant scalar radiation is quadrupole, with the next most significant mode
` = 4 being typically several orders of magnitude smaller. Although these results parallel the
cubic case, we find that the quartic Galileon leads to a qualitatively similar but quantitatively
di↵erent scaling of the power with orbital velocity and multipole number.

Although the particular numerical scheme we have used here is successful, it was neces-
sary to turn each interaction and source on slowly to tame any potential numerical instabilities
which may arise due to the fact that the Galileon system is not strictly well-posed. Further-
more the larger the quartic coupling parameter ⇠ the slower the rate of turn on needed to
avoid any instabilities (we were able to simulate ⇠  0.6 with smaller ⇠ being considerably
easier). This unfortunately renders simulating large hierarchies ⇠ � 1 too costly in time at
present. A solution to the turn on problem is to use the UV completion method proposed in
[42] which is considered for the quartic case in [44]. This latter method avoids the particular
instabilities associated with the system of equations not being well-posed. Both the present
simulation and that of [44] have di�culty giving a proper treatment of the radial boundary
conditions and we suspect that a better treatment of the boundary conditions will improve
the stability of typical runs.
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FIG. 2. (Left) The ⇡ field profile along the x axis after the system has reached stability using a mass value of Mpr = 3 and an
increasing nonlinear quartic term, controlled by ⇠. The cubic case (⇠ = 0) is denoted by an solid black line, the ⇠ = 0.4 a gray
dashed line, and ⇠ = 0.6 a red dot-dashed line.

FIG. 3. Instantaneous and averaged power emitted in the fiducial system with Mr̄ = 3.76 and ⇠ = 0.8 for the monopole up to
` = 3 modes clearly demonstrating the dominance of the quadrupole at late times. The Monopole is denoted by a red, dashed
line, the dipole a black dashed line, the quadrupole a blue solid line, and the ` = 3 pole a solid gray line. The dipole and ` = 3
modes are both at machine zero.

previous cubic work [17].

In addition, we have investigated the dynamics of this quartic model by examining the multipole power in the system
radiated by the ⇡ field. Figure 3 depicts the period-averaged power contained in each multipole for a single value of ⇠,
the parameter controlling the relative strength of the quartic term. The multipoles diminish in power as the multipole
number increases and only select even poles (` = 2n,m = 2n where n 2 N) have appreciable nonzero power, with any
power in odd multipoles arising from numerical errors. Although these results match the analytic expectations discussed
in Section IIID we stress that for comparable mass binary sources for which the orbit lies inside the quartic region, the
analytic approach breaks down. Our result is hence nontrivial and match the results of the low-pass filter method in [37].

While the period-averaged power contained in each multipole highlights the di↵erences between the quartic and
cubic dominated systems, we can also study the e↵ects of varying M for a fixed quartic strength, ⇠. Figure 4 shows
how the final quadrupole power depends on the Mr̄ parameter. At Mr̄ = 0, the only source for ⇡ is H2

µ⌫ , but Hµ⌫

itself is unsourced. Therefore, any oscillations in Hµ⌫ will decay away and, in the long time limit, ⇡ will approximately
satisfy the Klein-Gordon equation. For large M , the power converges to a value that is insensitive to increasing
M further, indicating that the UV physics is decoupled from the IR regime. Comparing Figure 4 to the analogous
one for the cubic only system in [17], we see that the final quadrupole power depends on the Mr̄ parameter in a
similar way, and we note that the same asymptotic behavior is exhibited with higher resolution runs as was noticed
in the previous paper. In other words, in theMr̄ > 7 regime, the simulations approximate theMr̄ ! 1, decoupled limit.
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Dynamical formulation of  Massive Gravity

5

In particular we have

L0[K] = 4! (4)
L1[K] = 3! [K] (5)
L2[K] = 2!

!
[K]2 ≠ [K2]

"
(6)

L3[K] =
!
[K]3 ≠ 3[K][K2] + 2[K3]

"
(7)

L4[K] =
!
[K]4 ≠ 6[K]2[K2] + 3[K2]2 + 8[K][K3] ≠ 6[K4]

"
, (8)

where square brackets represent the trace of tensors (taken with respect to the dynamical metric). We see that L0 is
a cosmological constant and L1 includes a tadpole, so there are only three linearly independent terms that will lead
to the graviton gaining a mass. The building block Kµ

‹
defined as

Kµ

‹
= ”µ

‹
≠ Eµ

‹
= gµ– (g–‹ ≠ E–‹) , (9)

is constructed out of the symmetric vielbein Eµ‹ = E(µ‹) [28] which is defined from the metric and reference metric
as,

gµ‹ = (f≠1)–—E–µE—‹ , (10)

where (f≠1)µ‹ is the inverse to the Minkowski reference metric. We may equivalently write the relation as,

fµ

‹
= (g≠1)µ–f–‹ = Eµ

–
E–

‹
, (11)

so that symbolically, we may write Eµ

‹
=


fµ

‹ . We also define (E≠1)µ‹ as the inverse to Eµ‹ in the sense that
(E≠1)µ–E–‹ = ”µ

‹
, so that

(E≠1)µ
‹ =

Ò
gµ–(f≠1)–‹ =

Ò
(f≠1)µ

‹ . (12)

Omitting for now the EFT contributions that enter at the cuto� scale, and including coupling to matter, the
formulation of massive gravity we shall be interested in is given by

SmGR = 1
16fiGN

⁄
d4x

Ô
≠g

A
R[g] + m2

2
ÿ

n

–nLn[K]
B

+ S(matter)[g, Âi] , (13)

where R is the standard scalar curvature of the dynamical metric gµ‹ and matter fields Âi only couple to the physical
metric g. When perturbing about flat spacetime, each Lagrangian Ln[K] is order n in fluctuations, which allows us
to establish the order at which each interaction enters. The minimal model corresponds to the special case where all
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associated with L1[K], –0 = ≠–1/4, so that gµ‹ = fµ‹ is a vacuum solution. Focusing on minimal and quadratic mass
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with the two following mass terms
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Omitting for now the EFT contributions that enter at the cuto� scale, and including coupling to matter, the
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so that the minimal model corresponds to –2 = 0, while the quadratic model corresponds to –2 = ≠1/2. In both
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where

� = 1
2

!
m2

1gµ‹ + m2
2Eµ‹

"
Eµ‹ + Ò · › . (36)

Some comments on this variation are in order. Linearizing about flat space, so gµ‹ = ÷µ‹ +hµ‹ and Eµ‹ = ÷µ‹ + 1
2 hµ‹ ,

we simply recover the spin-0 part of (25), namely ”gµ‹ = fi

2 m2÷µ‹ +ˆµˆ‹fi, but have now identified the fully non-linear
equivalent excitation about an arbitrary background. We note that in the ‘vielbein-like’ language, this perturbation
takes the simple form,

”Eµ‹ = fi

4
!
m2

1Eµ‹ + m2
2÷µ‹

"
+ 1

2Ò̃µÒ̃‹fi , (37)

where the covariant derivative Ò̃ is taken with the connection �̃–

µ‹
expressed in terms of the standard dynamical

metric connection by the relation,

�–

µ‹
= E–

—
(E≠1)“

(µ|�̃
—

|‹)“
+ (E≠1)–—ˆ(µ|E|‹)— . (38)

In terms of Eµ‹ , the scalar equation can be explicitly written as,

� = 1
2

1
m2

1�(1) + m2
2�(2)

2
= 0 , (39)

where we have defined,

�(1) = A–—“µ‹fl

(1) ˆ[–E—]“ˆ[µE‹]fl + m2
1(3[E] ≠ 12) + m2

2

3
1
2 [E]2 ≠ 1

2 [E2] ≠ 6
4

≠ T , (40)

�(2) = A–—“µ‹fl

(2) ˆ[–E—]“ˆ[µE‹]fl + m2
1

!
≠[E2] + [E]2 ≠ 3[E]

"
(41)

+ m2
2

3
1
2 [E3] ≠ 3

4 [E][E2] + 1
4 [E]3 ≠ 3

2 [E]
4

≠ Eµ‹Tµ‹ .

Let us assume the matter is such that the stress tensor does not involve derivatives of the metric, as for example is
the case for (minimally coupled) scalar or vector fields, Yang-Mills theories or perfect fluids. Then the scalar equation
� = 0 never involves terms with more than one derivative acting on the metric (or equivalently on Eµ‹), and thus is
a constraint equation. Furthermore, the one derivative terms are determined by the tensors,

A–—“µ‹fl

(1) = ÷“flg–[µg‹]— ≠ 2(E≠1)fl[–g—][µ(E≠1)‹]“ + 4(E≠1)“[–g—][µ(E≠1)‹]fl , (42)

A–—“µ‹fl

(2) = [E]
3

1
2÷“flg–[µg‹]— ≠ (E≠1)fl[–g—][µ(E≠1)‹]“ + 2(E≠1)“[–g—][µ(E≠1)‹]fl

4
(43)

≠ 2÷“flg–[µE‹]— + (E≠1)“flg‹[–g—]µ ≠ 4(E≠1)fl[µg‹][–g—]“

+ 2(E≠1)fl[–E—][µ(E≠1)‹]“ ≠ 4(E≠1)“[–E—][µ(E≠1)‹]fl .

An important point that will be relevant shortly is that due to the derivatives of Eµ‹ entering only via the combination
ˆ[–E—]“ , the scalar constraint contains no time derivatives of Ett at all. However it does contain spatial derivatives of
Ett.

III. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition and since the map Eµ‹ æ gµ‹ is explicit, it will prove convenient to work
with Eµ‹ as our dynamical variable. Given a novel choice for momentum variables, this 3+1 decomposition will allow
us to solve the vector and scalar constraints explicitly. Our starting point is the action, which written in terms of Eµ‹

takes the rather elegant form,

S =
⁄

d4x|detE|
3

≠1
2A–—“µ‹‡

(1) ˆ[–E—]“ˆ[µE‹]‡ ≠ m2Lmass + Lmatter

4
. (44)

Note the derivative term is identical to the one entering in �(1). This is because, in the absence of matter, the terms
containing derivatives of the E matrix in �(1) are simply equal to ≠R + 2Ò · ›(1) with this last term being a total
divergence. Hence we see the Einstein-Hilbert term in the action is just given by the derivative terms in ≥ | det E|�(1)

9

where

� = 1
2

!
m2

1gµ‹ + m2
2Eµ‹

"
Eµ‹ + Ò · › . (36)

Some comments on this variation are in order. Linearizing about flat space, so gµ‹ = ÷µ‹ +hµ‹ and Eµ‹ = ÷µ‹ + 1
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we simply recover the spin-0 part of (25), namely ”gµ‹ = fi

2 m2÷µ‹ +ˆµˆ‹fi, but have now identified the fully non-linear
equivalent excitation about an arbitrary background. We note that in the ‘vielbein-like’ language, this perturbation
takes the simple form,
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Let us assume the matter is such that the stress tensor does not involve derivatives of the metric, as for example is
the case for (minimally coupled) scalar or vector fields, Yang-Mills theories or perfect fluids. Then the scalar equation
� = 0 never involves terms with more than one derivative acting on the metric (or equivalently on Eµ‹), and thus is
a constraint equation. Furthermore, the one derivative terms are determined by the tensors,
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A–—“µ‹fl

(2) = [E]
3

1
2÷“flg–[µg‹]— ≠ (E≠1)fl[–g—][µ(E≠1)‹]“ + 2(E≠1)“[–g—][µ(E≠1)‹]fl

4
(43)

≠ 2÷“flg–[µE‹]— + (E≠1)“flg‹[–g—]µ ≠ 4(E≠1)fl[µg‹][–g—]“
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An important point that will be relevant shortly is that due to the derivatives of Eµ‹ entering only via the combination
ˆ[–E—]“ , the scalar constraint contains no time derivatives of Ett at all. However it does contain spatial derivatives of
Ett.

III. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition and since the map Eµ‹ æ gµ‹ is explicit, it will prove convenient to work
with Eµ‹ as our dynamical variable. Given a novel choice for momentum variables, this 3+1 decomposition will allow
us to solve the vector and scalar constraints explicitly. Our starting point is the action, which written in terms of Eµ‹

takes the rather elegant form,
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Note the derivative term is identical to the one entering in �(1). This is because, in the absence of matter, the terms
containing derivatives of the E matrix in �(1) are simply equal to ≠R + 2Ò · ›(1) with this last term being a total
divergence. Hence we see the Einstein-Hilbert term in the action is just given by the derivative terms in ≥ | det E|�(1)
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In particular we have
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!
[K]3 ≠ 3[K][K2] + 2[K3]

"
(7)

L4[K] =
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, (8)

where square brackets represent the trace of tensors (taken with respect to the dynamical metric). We see that L0 is
a cosmological constant and L1 includes a tadpole, so there are only three linearly independent terms that will lead
to the graviton gaining a mass. The building block Kµ

‹
defined as
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‹
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‹
≠ Eµ

‹
= gµ– (g–‹ ≠ E–‹) , (9)

is constructed out of the symmetric vielbein Eµ‹ = E(µ‹) [28] which is defined from the metric and reference metric
as,

gµ‹ = (f≠1)–—E–µE—‹ , (10)

where (f≠1)µ‹ is the inverse to the Minkowski reference metric. We may equivalently write the relation as,
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so that symbolically, we may write Eµ
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, so that
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Omitting for now the EFT contributions that enter at the cuto� scale, and including coupling to matter, the
formulation of massive gravity we shall be interested in is given by
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16fiGN
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+ S(matter)[g, Âi] , (13)

where R is the standard scalar curvature of the dynamical metric gµ‹ and matter fields Âi only couple to the physical
metric g. When perturbing about flat spacetime, each Lagrangian Ln[K] is order n in fluctuations, which allows us
to establish the order at which each interaction enters. The minimal model corresponds to the special case where all
coe�cients –n vanish aside from –0 and –1, and the cosmological constant –0 is tuned so as to remove the tadpole
associated with L1[K], –0 = ≠–1/4, so that gµ‹ = fµ‹ is a vacuum solution. Focusing on minimal and quadratic mass
terms, we may set –3 = –4 = 0, –0 = ≠–1/4 = ≠(1 ≠ –2)/6, so the action for massive gravity hence takes the form
(still omitting the higher order operators for now),
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with the two following mass terms
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2 = ≠2m2–2 , (15)

so that the minimal model corresponds to –2 = 0, while the quadratic model corresponds to –2 = ≠1/2. In both
cases, the graviton mass in the vacuum is m.

The resulting Einstein equation is,
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where the mass terms contributions are given by,
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where
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Eµ‹ + Ò · › . (36)

Some comments on this variation are in order. Linearizing about flat space, so gµ‹ = ÷µ‹ +hµ‹ and Eµ‹ = ÷µ‹ + 1
2 hµ‹ ,

we simply recover the spin-0 part of (25), namely ”gµ‹ = fi

2 m2÷µ‹ +ˆµˆ‹fi, but have now identified the fully non-linear
equivalent excitation about an arbitrary background. We note that in the ‘vielbein-like’ language, this perturbation
takes the simple form,

”Eµ‹ = fi

4
!
m2

1Eµ‹ + m2
2÷µ‹
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+ 1

2Ò̃µÒ̃‹fi , (37)

where the covariant derivative Ò̃ is taken with the connection �̃–
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Let us assume the matter is such that the stress tensor does not involve derivatives of the metric, as for example is
the case for (minimally coupled) scalar or vector fields, Yang-Mills theories or perfect fluids. Then the scalar equation
� = 0 never involves terms with more than one derivative acting on the metric (or equivalently on Eµ‹), and thus is
a constraint equation. Furthermore, the one derivative terms are determined by the tensors,

A–—“µ‹fl

(1) = ÷“flg–[µg‹]— ≠ 2(E≠1)fl[–g—][µ(E≠1)‹]“ + 4(E≠1)“[–g—][µ(E≠1)‹]fl , (42)
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4
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+ 2(E≠1)fl[–E—][µ(E≠1)‹]“ ≠ 4(E≠1)“[–E—][µ(E≠1)‹]fl .

An important point that will be relevant shortly is that due to the derivatives of Eµ‹ entering only via the combination
ˆ[–E—]“ , the scalar constraint contains no time derivatives of Ett at all. However it does contain spatial derivatives of
Ett.

III. 3+1 DYNAMICAL FORMULATION

We now employ a 3+1 decomposition and since the map Eµ‹ æ gµ‹ is explicit, it will prove convenient to work
with Eµ‹ as our dynamical variable. Given a novel choice for momentum variables, this 3+1 decomposition will allow
us to solve the vector and scalar constraints explicitly. Our starting point is the action, which written in terms of Eµ‹

takes the rather elegant form,

S =
⁄

d4x|detE|
3

≠1
2A–—“µ‹‡

(1) ˆ[–E—]“ˆ[µE‹]‡ ≠ m2Lmass + Lmatter

4
. (44)

Note the derivative term is identical to the one entering in �(1). This is because, in the absence of matter, the terms
containing derivatives of the E matrix in �(1) are simply equal to ≠R + 2Ò · ›(1) with this last term being a total
divergence. Hence we see the Einstein-Hilbert term in the action is just given by the derivative terms in ≥ | det E|�(1)
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without matter.

Consider now the canonical conjugate momenta to Eµ‹ . Firstly note that the action contains no momentum
conjugate to Ett since Ėtt does not appear in the Lagrangian. Then the canonical momenta conjugate to Eti and Eij

are given by,

fii = |E|Aittµ‹‡

(1) ˆ[µE‹]‡ , fiij = ≠|E|Atijµ‹‡

(1) ˆ[µE‹]‡ , (45)

where we use the notation |E| = | det E|. In what follows we will work with the simpler momentum variables,

Pi = ˆ[tEi]t , Pij = ˆ[tEi]j , (46)

which are linearly related to fii and fiij with coe�cients depending only on Eµ‹ . An important point we return
to later is that when the action is written in these variables, there are then no derivatives of Ett at all – the only
derivatives that enter above are spatial ones, and these can only occur in the combination Pi = ˆ[tEi]t.

Now using the (spatial part of the) reference metric we may decompose the spatial components Eij and our momenta
Pij into their traceless parts, Ẽij and P̃ij , and trace parts Ẽ and P̃ , as,

Eij = Ẽij + Ẽ”ij , Pij = P̃ij + P̃ ”ij , ”ijẼij = ”ijP̃ij = 0 . (47)

We now regard the upper triangular components of the symmetric spatial traceless Ẽij (so j Ø i) as the dynamical
variables of our massive gravity theory, in the sense that they have second order time evolution equations. As we will
shortly discuss, the remaining components Ẽ and Eit have first order evolution equations from the vector equation,
and the last component Ett is algebraically determined (at least for conventional matter) in terms of the other variables
by the scalar constraint. Thus we may write coordinates on the phase space as,

!
Eti, Ẽ, Ẽij , Pi, P̃ , P̃ij

"
, (48)

and then Ett is a function of these phase space variables and their first derivatives which we can regard as an auxilliary
variable. We now explicitly show how this works.

A. Vector equation

Focusing on the vector equation, ›µ = 0, given in equation (32) then performing the 3+1 decomposition in phase
space variables (48) and expanding about flat space, so Eµ‹ ƒ ÷µ‹ , we can write,

V t–—‡ˆ[–E—]‡ = 2V t[ti]tPi + 2V t[ti]
i
P̃ + 2V t[ti]jP̃ij + V tij‡ˆ[iEj]‡ ƒ 6m2P̃

V i–—‡ˆ[–E—]‡ = 2V i[tj]tPj + 2V i[tj]
j
P̃ + 2V i[tj]kP̃jk + V ijk‡ˆ[jEk]‡ ƒ ≠2m2Pi , (49)

where the approximation ƒ is understood to mean up to terms that only involve spatial derivatives acting on Eµ‹ .
Hence we may regard these 4 equations as linear constraints for the 4 momentum variables P̃ and Pi, and at least
near flat space we may invert this linear system to solve for these momenta. These 4 momenta then depend on all
the metric components Eµ‹ , including Ett, through the components of V µ–—‡. They also depend linearly on spatial
derivatives of metric components through ˆ[iEj]‡, but crucially they do not depend on derivatives of Ett.

B. Scalar equation

Now we turn to the scalar constraint � = 0 given in (39), again assuming our matter is of a conventional type so
that while the stress tensor depends on the metric, it does not explicitly involve metric connection terms. As already
observed above, this equation only depends on first derivatives of Eµ‹ . These enter through the combination ˆ[µE‹]‡,
so as noted above, there are no Ėtt terms. Furthermore spatial gradients of Ett come in the structure ˆ[tEi]t, and
hence are replaced with the momenta Pi. Therefore, we may write the scalar constraint in terms of our phase space
variables (48), and their derivatives, together with Ett so that it contains no derivatives of Ett at all.

The dependence on the momenta is quadratic and will be given more explicitly below. First note that (E≠1)µ‹ can
be written as,

(E≠1)µ‹ = 1
|E|Q

µ‹ , (50)

Conjugate variables

BD Constraint!!!
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where each component Qµ‹ is a polynomial in those of Eµ‹ , and linear in each one. Hence given the form of A–—“µ‹‡

(1)
above we might have naively expected a quartic expansion of its derivative terms of the form,

|E|4A–—“µ‹‡

(1) ˆ[–E—]“ˆ[µE‹]‡ = C4E4
tt

+ C3E3
tt

+ C2E2
tt

+ C1Ett + C0 , (51)

with the coe�cients CA depending on the components of Eµ‹ other than Ett, together with the spatial gradients
ˆ[iEj]k and also all the momenta, Pi, P̃ and P̃ij , but no derivatives of these. Likewise taking |E|5A–—“µ‹‡

(2) we might
have expected a quintic expansion in the component Ett. However, as we explain in detail in Appendix A, due to the
index antisymmetries of these two tensors, A–—“µ‹‡

(1,2) , in fact we find simpler quadratic and cubic expansions going as,

|E|2A–—“µ‹‡

(1) ˆ[–E—]“ˆ[µE‹]‡ = C Õ
2E2

tt
+ C Õ

1Ett + C Õ
0

|E|3A–—“µ‹‡

(2) ˆ[–E—]“ˆ[µE‹]‡ = C ÕÕ
3 E3

tt
+ C ÕÕ

2 E2
tt

+ C ÕÕ
1 Ett + C ÕÕ

0 . (52)

Since the mass terms have similar structures, then for certain types of matter this constraint may determine Ett as
the root of a polynomial. As an example, consider matter that is a canonical scalar field „ with potential V („), so

Tµ‹ = ˆµ„ˆ‹„ ≠ 1
2gµ‹

!
(ˆ„)2 + V („)

"
. (53)

Now restricting ourselves to the case of a minimal mass term (so m2 = 0), we can always scale the scalar constraint
by the determinant of E, and consider the constraint |E|2� = 0. The quadratic gradient term takes the form above.
For the remaining terms, the explicit Ett dependence of the stress tensor term that enters takes an identical form,

|E|2
!
m2

1 (3[E] ≠ 12) ≠ gµ‹Tµ‹

"
= DÕ

2E2
tt

+ DÕ
1Ett + DÕ

0 , (54)

so in this minimal case with a canonical scalar field the scalar constraint is in fact a simple algebraic quadratic
polynomial in Ett. We will give its explicit form in the case of spherical symmetry in our later numerical example, but
emphasize that this reduction to a quadratic condition doesn’t require any symmetry. Including also the non-minimal
mass term, so m1, m2 ”= 0, then considering |E|3� = 0 yields an algebraic cubic equation in Ett for such scalar field
matter.

Since the scalar constraint is algebraic in Ett we may wonder whether we can solve it for real Ett. Near flat
spacetime, Eµ‹ ƒ ÷µ‹ , the scalar constraint reduces to the form in linear theory as written earlier in (23), so in our
variables,

m2 !
≠Ett + 3Ẽ

"
= ≠2

3T , (55)

and thus (given a non-zero mass) near flat spacetime we may always solve this for Ett. However when the geometry
deforms away from flat spacetime non-linearly in Eµ‹ it is then an interesting question whether these algebraic
relations can be solved for Ett (such that it is real). Since the EFT breaks down when the the algebraic relation can
no longer be solved for real Ett, this simply indicates a sensitivity on UV physics at that point. We will return to this
issue in our explicit numerical example later.

C. Physical degrees of freedom

Starting with our phase space coordinates, (Ẽ, Eti, Ẽij , P̃ , Pi, P̃ij) and auxiliary Ett, the evolution of Ẽ, Eti and
Eij is determined by,

˙̃E = 2P̃ + 1
3ˆiEti , Ėti = 2Pi + ˆiEtt , ˙̃Eij = 2P̃ij + ˆiEtj ≠ 1

3”ijˆkEtk . (56)

However, we have now seen that Ett is determined algebraically by the phase space variables through the scalar
constraint. This statement is fully non-linear and valid about any background. Further we have seen that the vector
equation ›µ = 0 gives linear constraints on P̃ and Pi, the coe�cients in these linear equations again depending
algebraically on the auxiliary variable Ett. Thus the evolution of Ẽ, Eti is first order in time, and determined by
this vector equation. Hence we may reduce to the physical phase space of the theory, the component which enjoys a
second order dynamics,

(Ẽij , P̃ij) , (57)

Is algebraic!!!
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without matter.

Consider now the canonical conjugate momenta to Eµ‹ . Firstly note that the action contains no momentum
conjugate to Ett since Ėtt does not appear in the Lagrangian. Then the canonical momenta conjugate to Eti and Eij

are given by,

fii = |E|Aittµ‹‡

(1) ˆ[µE‹]‡ , fiij = ≠|E|Atijµ‹‡

(1) ˆ[µE‹]‡ , (45)

where we use the notation |E| = | det E|. In what follows we will work with the simpler momentum variables,

Pi = ˆ[tEi]t , Pij = ˆ[tEi]j , (46)

which are linearly related to fii and fiij with coe�cients depending only on Eµ‹ . An important point we return
to later is that when the action is written in these variables, there are then no derivatives of Ett at all – the only
derivatives that enter above are spatial ones, and these can only occur in the combination Pi = ˆ[tEi]t.

Now using the (spatial part of the) reference metric we may decompose the spatial components Eij and our momenta
Pij into their traceless parts, Ẽij and P̃ij , and trace parts Ẽ and P̃ , as,

Eij = Ẽij + Ẽ”ij , Pij = P̃ij + P̃ ”ij , ”ijẼij = ”ijP̃ij = 0 . (47)

We now regard the upper triangular components of the symmetric spatial traceless Ẽij (so j Ø i) as the dynamical
variables of our massive gravity theory, in the sense that they have second order time evolution equations. As we will
shortly discuss, the remaining components Ẽ and Eit have first order evolution equations from the vector equation,
and the last component Ett is algebraically determined (at least for conventional matter) in terms of the other variables
by the scalar constraint. Thus we may write coordinates on the phase space as,

!
Eti, Ẽ, Ẽij , Pi, P̃ , P̃ij

"
, (48)

and then Ett is a function of these phase space variables and their first derivatives which we can regard as an auxilliary
variable. We now explicitly show how this works.

A. Vector equation

Focusing on the vector equation, ›µ = 0, given in equation (32) then performing the 3+1 decomposition in phase
space variables (48) and expanding about flat space, so Eµ‹ ƒ ÷µ‹ , we can write,

V t–—‡ˆ[–E—]‡ = 2V t[ti]tPi + 2V t[ti]
i
P̃ + 2V t[ti]jP̃ij + V tij‡ˆ[iEj]‡ ƒ 6m2P̃

V i–—‡ˆ[–E—]‡ = 2V i[tj]tPj + 2V i[tj]
j
P̃ + 2V i[tj]kP̃jk + V ijk‡ˆ[jEk]‡ ƒ ≠2m2Pi , (49)

where the approximation ƒ is understood to mean up to terms that only involve spatial derivatives acting on Eµ‹ .
Hence we may regard these 4 equations as linear constraints for the 4 momentum variables P̃ and Pi, and at least
near flat space we may invert this linear system to solve for these momenta. These 4 momenta then depend on all
the metric components Eµ‹ , including Ett, through the components of V µ–—‡. They also depend linearly on spatial
derivatives of metric components through ˆ[iEj]‡, but crucially they do not depend on derivatives of Ett.

B. Scalar equation

Now we turn to the scalar constraint � = 0 given in (39), again assuming our matter is of a conventional type so
that while the stress tensor depends on the metric, it does not explicitly involve metric connection terms. As already
observed above, this equation only depends on first derivatives of Eµ‹ . These enter through the combination ˆ[µE‹]‡,
so as noted above, there are no Ėtt terms. Furthermore spatial gradients of Ett come in the structure ˆ[tEi]t, and
hence are replaced with the momenta Pi. Therefore, we may write the scalar constraint in terms of our phase space
variables (48), and their derivatives, together with Ett so that it contains no derivatives of Ett at all.

The dependence on the momenta is quadratic and will be given more explicitly below. First note that (E≠1)µ‹ can
be written as,

(E≠1)µ‹ = 1
|E|Q

µ‹ , (50)

Decomposing - trace  + trace free
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focusing on a specific formulation and gauge choice), but rather to show that the low-energy EFT we consider can in
principle be embedded within a well-posed formulation and that low-energy observables are immune to the details of
this high-energy-inspired formulation.

Instead of going back to the covariant formulation of higher order operators at the level of the action, a more
pragmatic approach we will follow here is to include dissipative contributions directly at the level of our 3+1 formu-
lation. These are understood to mimic the e�ect of higher order (covariant) EFT operators on short distance modes
entering at the cuto� scale �cuto� . In doing so, we will need to ascertain that adjusting the precise value of that
scale bears little e�ects on low-energy physics. This will then ensure that the completed theory is di�usive, rather
than hyperbolic, and well-posed. More details on how di�usive or higher order gradient terms arise from the UV
completion of related types of theories are found in [125]. We now discuss the concrete inclusion of these terms and
their e�ects on the posedness of the system.

Our dynamical system comprises the fields Ẽij , Ej , Ẽ and momenta P̃ij once we have algebraically eliminated Ett,
Pi and P̃ , and we may write this system as,

ˆtP̃ij = Sij , ˆtẼij = Uij , ˆtEi = Vi , ˆtẼ = W . (78)

The latter three relations simply follow directly from the definition of our momenta in (46). The first derives from
solving (61) and (62) for ˆtP̃ij .

Focussing on the highest spatial derivative terms in these evolution equations, the equation for the time evolution
of the momenta P̃ij contains second spatial derivatives of these fields,

Sij = J klmn

ij
ˆkˆlẼmn + J klm

ij
ˆkˆlẼm + J kl

ij
ˆkˆlẼ + . . . (79)

where the ellipses include terms with only first spatial derivatives acting on Ẽij , Ej , Ẽ and P̃ij . The coe�cient
functions, the J ’s above, depend on the fields and also their first spatial derivatives (as they generally depend on
the Ett, Pi and P̃ , which when eliminated introduce first derivatives of the other fields). The remaining evolution
equations for the fields Ẽij , Ej , Ẽ only contain first order spatial derivatives.

While the Einstein equations are second order in spatial derivatives, the structure above is quite non-trivial in
the sense that one might imagine Sij should contain spatial derivatives of higher order for two reasons. Firstly, as
discussed in section III D it derives not just from the Einstein equations Ẽ i

j
, as in (61), but also from time derivatives

of the scalar and vector constraints, as in (62). Secondly we might imagine Sij should contain spatial derivatives
of higher order than two once Ett, Pi and P̃ are eliminated, since we know that these depend quadratically on first
derivatives of the fields Ẽij , Ej , Ẽ.

To address these points, we recall the fact noted earlier, that the action (44) when written in our momentum
variables Pi and Pij is only algebraic in Ett, having no terms with derivatives (time or space) acting on it. Further
it is clearly algebraic in the Pi and P̃ . Hence being first order in derivatives, when this action is varied to obtain the
Einstein equations, and in particular the components Ẽ i

j
, and these are written in our momentum variables, these

contain at most first derivative terms in Ett, Pi and P̃ . In addition, since the scalar and vector constraints contain no
derivatives in Ett, Pi and P̃ , and only first derivatives in the other fields, then solving (61) and (62) for ˆtP̃ij still gives
an expression that contains at most second spatial derivatives in Ẽij , Ej , Ẽ, and first spatial derivatives in the Ett, Pi

and P̃ . Now finally given the structure (58), so that Ett, Pi and P̃ depend on first derivatives (albeit quadratically)
in the other dynamical fields, when they are eliminated to yield Sij they will generate at most second derivative terms.

As motivated by the previous discussion and by the inclusion of higher order operators in our EFT (1), we now
simply include additional spatial di�usion terms given by the flat reference metric into each evolution equation as,

ˆtP̃ij = Sij + ¸2”mnˆmˆnP̃ij , ˆtẼij = Uij + ¸2”mnˆmˆnẼij , (80)
ˆtEi = Vi + ¸2”mnˆmˆnEi , ˆtẼ = W + ¸2”mnˆmˆnẼ , (81)

where the scale ¸ is the length scale associated to the short distance completion. Then for time scales T and length
scales L such that,

T π 1/¸2 , L ∫ ¸ , (82)

Equations reduce to
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and P̃ . Now finally given the structure (58), so that Ett, Pi and P̃ depend on first derivatives (albeit quadratically)
in the other dynamical fields, when they are eliminated to yield Sij they will generate at most second derivative terms.

As motivated by the previous discussion and by the inclusion of higher order operators in our EFT (1), we now
simply include additional spatial di�usion terms given by the flat reference metric into each evolution equation as,

ˆtP̃ij = Sij + ¸2”mnˆmˆnP̃ij , ˆtẼij = Uij + ¸2”mnˆmˆnẼij , (80)
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these di�usion terms will be irrelevant. Now to understand the character of the system we should linearize about a
general background, and consider the highest derivative terms for a perturbation about this. We then see the highest
derivative terms, which are those of second order, take the form,

ˆt

Q

cca

”P̃ij

”Ẽij

”Ei

”Ẽ

R

ddb =

Q

cca

¸2”m

i
”n

j
”kl J klmn

ij
J klm

ij
J kl

ij

0 ¸2”m

i
”n

j
”kl 0 0

0 0 ¸2”m

i
”kl 0

0 0 0 ¸2”kl

R

ddb ˆkˆl

Q

cca

”P̃mn

”Ẽmn

”Em

”Ẽ

R

ddb + . . . , (83)

where the ellipses represent terms that are lower order in derivative terms. In the previous expression, the coe�cients
J are understood to be evaluated on the background. Then on short scales the two derivative terms dominate, and
we may think of the coe�cient functions in the matrix controlling this term as approximately constant. To elicit the
local behaviour, we write the perturbation in Fourier space as,

”P̃ij = aije≠Êteikmx
m

, ”Ẽij = bije≠Êteikmx
m

, ”Ei = cie
≠Êteikmx

m

, ”Ẽ = ce≠Êteikmx
m

(84)

so that on small scales, locally we have,

Ê
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ddb

Q

ca

amn

bmn

cm

c

R

db + . . . , (85)

with k2 = ”ijkikj . Clearly Ê is given by the eigenvalues of the matrix on the righthand side. However its upper
triangular form implies that its eigenvalues are simply given by its diagonal entries. Hence we have,

Ê = ¸2k2 , (86)

for all the eigenvectors of this system, and thus all the field and momentum perturbations di�use on small scales,
governed by the di�usion length scale ¸. Thus this di�usive short distance completion has a well-posed initial value
formulation, for any positive di�usion constant ¸.

The formulation (80, 81), motivated by the existence of a meaningful completion allows the theory to enjoy a well-
posed continuum that can then be discretized and numerically solved. We are taking here a pragmatic (unashamedly
artificial) approach which should not be regarded as the actual physical completion, such as, for example one arising
from integrating out additional massive degrees of freedom7. Rather it is a pragmatic proxy for what one would
expect to arise. We emphasize that classical dRGT must be completed by something, but the precise details of what
this completion is, is irrelevant to the description of long wavelength phenomena. Despite being more artificial (and
not formulated covariantly), our formulation is very attractive from a numerical perspective, being simple, and also
is very natural when using a (3+1)-phase space formulation – the decomposition in time naturally defining the frame
for di�usion. We also emphasize that with a short distance completion, the theory is not guaranteed to be free from
instabilities and pathologies. This is an independent question from that of well-posedness. Instabilities or pathologies
may still arise in the long wavelength dRGT dynamics, but they will not be associated with arbitrarily short scales,
and instead will be associated to the dynamical length scales in the problem, set by the length scale of the graviton
mass, as well as the scales included in the initial data. Such instabilities or pathologies, should they exist, would
be independent of the irrelevant di�usion terms of the completion, and then interpreted as physical phenomena of
the long wavelength description, signalling its breakdown. If such phenomena arise, then a physical short distance
completion would be required to continue dynamical evolution, rather than the artificial one we have introduced. We
now turn to explicit simulation of the dRGT theory to illustrate the above formulation with its di�usive short distance
contributions.

VI. SPHERICAL COLLAPSE IN THE MINIMAL THEORY

While the minimal theory is not thought to exhibit the non-linearity required to switch on an active Vainshtein
mechanism, it is nonetheless interesting to explore what happens under gravitational collapse, even though we do not
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A specific covariant example of how integrating out additional massive degrees of freedom leads to EFT operators that change the nature

of the dispersion relation and ultimately lead to a trivial eigenvalue for the system was presented in [135, 136].
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these di�usion terms will be irrelevant. Now to understand the character of the system we should linearize about a
general background, and consider the highest derivative terms for a perturbation about this. We then see the highest
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where the ellipses represent terms that are lower order in derivative terms. In the previous expression, the coe�cients
J are understood to be evaluated on the background. Then on short scales the two derivative terms dominate, and
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, ”Ẽij = bije≠Êteikmx
m

, ”Ei = cie
≠Êteikmx

m
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with k2 = ”ijkikj . Clearly Ê is given by the eigenvalues of the matrix on the righthand side. However its upper
triangular form implies that its eigenvalues are simply given by its diagonal entries. Hence we have,

Ê = ¸2k2 , (86)

for all the eigenvectors of this system, and thus all the field and momentum perturbations di�use on small scales,
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general gravitational type theories which admit weaker notion of locality [54, 55]. Indeed, the entire
strength of the standard positivity bound story rests on the assumption that the scattering amplitude
is bounded by |s|

2, at large |s| and fixed momentum transfer, which is traditionally derived from the
assumptions of polynomial or (linear) exponential boundedness. The validity of these assumptions in
the gravitational context is unclear. In essense, since we typically do not expect local gauge invariant
observables in a quantum theory of gravity, it is unclear why the scattering amplitude should respect
locality in the usual manner. These issues are further closely intertwined with the technical issues in
the applicability of positivity bounds in the presence of gravity [35, 50–52].

The paper is organized as follows: In Section 2, we review the Y positivity bounds derived in [9],
as we will compare the new bounds with the Y bounds later, and also establish some notations along
the way; In Section 3, as a warm-up, we derive some simple examples of the new positivity bounds; In
Section 4, we apply the first new positivity bounds to theories with soft amplitudes - specifically the
weakly broken Galileon theory and show that such soft amplitude theories cannot have an analytical
UV completion; In Section 5, we take a more systematical approach to derive a few sets of di↵erent
positivity bounds, first using only the s $ u symmetric dispersion and then further imposing the
s $ t symmetry; The best triple crossing symmetric bounds up to level 1/µ10 in 4D are presented in
explicit form; In Section 6, we explore the di↵erences between the Y bounds and the new positivity
bounds; In Section 7, we use these new bounds to constrain SU(2) chiral perturbation theory; We
conclude in Section 8.

Note added: While we were putting final touches on this draft, [56] appeared which contains
some overlap in results obtained through a slightly di↵erent method. In particular, these authors reach
a similar conclusion about theories with soft amplitudes [15, 40–42].

2 Review of the linear Y positivity bounds

In this section, we shall review the linear positivity bounds derived in [9] for the case of a single scalar,
which can be conveniently formulated as a recurrence relation that defines positive Y (2N,M) quantities,
which in turn are sums of derivatives of the scattering amplitude with respect to the Mandelstam
variables. Slightly di↵erent from [9], here we shall present the results in D dimensions. The formulas
in the following are valid only, strictly speaking, for D � 4, but as we will see in Appendix B, with
some appropriate definitions, the results also hold for D = 3.

The 2-to-2 scattering amplitude for scalar particles is a Lorentz invariant function of Mandelstam
variables s, t and u that satisfy the constraint s + t + u = 4m2 and the scattering angle ✓ can be
expressed as

cos ✓ = 1 +
2t

s� 4m2
. (2.1)

Choosing s and t as the independent variables, the amplitude A(s, t) can be viewed as an analytic
function with complex variables s and t, except for certain poles and branch cuts already seen in
perturbation theory. The partial wave expansion in D dimensions is facilitated by D-dimensional
generalization of the Legendre polynomials — the Gegenbauer polynomials C(↵)

` (x):
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where
�n
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�
= n!/[k!(n� k)!] are the binomial coe�cients. Then the dispersion relation can be written
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where for simplicity we have suppressed the summation and the integration limits, which are from
(✏⇤)2 from 1.

New positivity bounds are easiest to see when the derivatives of the amplitude are evaluated at
s = t = 0 and the limit (✏⇤)2 � m

2
! 0 is taken for the expansion coe�cients, which is the approach

we take in this section. In other words, we shall evaluate s and t derivatives of B✏⇤(s, t) at s = t = 0,
which leads to a dispersion relation where the integrand is a function of µ and m

2, and since the low
limit of µ is (✏⇤)2, we can neglect all the subleading terms with m

2. Clearly, the m ! 0 limit can be
taken earlier, and also choosing µp = 0 we have
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To see the simplest examples of these positivity bounds, we may define

f
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s B✏⇤(s, t)|s,t!0. (3.5)

Making use of dispersion relation (3.4), we have

f
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X
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1

µ2N
> 0, N = 0, 1, 2, ..., (3.6)

which are positive, and f
(2N�1,0) = 0 for N = 1, 2, 3, .... Making connection to the triple symmetric

expansion coe�cient ai,j defined in Eq (2.16), we have f
(2N,0) = aN+1,0/2 and so

aN,0 > 0 for N = 1, 2, ... . (3.7)

Now, we can define an “expected value” or “moment” over the “distribution” ⇢`,↵(µ):1

hhX(µ, l)ii =

P
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R
dµ⇢`,↵(µ)X(µ, l)P
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R
dµ⇢`,↵(µ)

. (3.8)

We will see that, since the scattering amplitude can be directly linked to this expected value, inequali-
ties associated with generic expected values can be used to derive positivity bounds on the amplitude.

3.1 Nonlinear positivity bounds with s derivatives only

We first look for new positivity bounds with only s derivatives on the amplitude. For this case,
we consider X(µ, l) = 1/µ2N and we have

⌦⌦
1/µ2N

↵↵
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/f

(0,0). Then the Cauchy-Schwarz
inequality for expected values,
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1The significance of the moment of the positive distribution has been emphasized by [58].
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Crossing Symmetry
What is impact of FULL crossing symmetry?

3.2 Triple crossing and t derivatives

To extract new positivity bounds with t derivatives, we can make use of detailed properties of the
Gegenbauer polynomial and the fact that a scalar amplitude is trivially triple crossing symmetric.
The dispersion relation (2.9) is manifestly s $ u crossing symmetric B(s, t) = B(u, t). Triple crossing
symmetry means that B(s, t) should also be s $ t crossing symmetric B(s, t) = B(t, s), which one
can impose as a condition on Eq (2.9). Being more precise, in the case where there scattering states
are massive and their is a mass gap to the branch cut, the scattering amplitude will be an analytic
function in the so-called Mandelstam triangle, for which the s and t channel dispersion relations may
be identified
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Note that this relation is not valid outside of the Mandelstam triangle in general.
The ✏⇤ subtracted amplitude (2.18) that is used in the improved positivity bounds is in general

not triple crossing symmetric, because the 4m2 to (✏⇤)2 subtraction is only s $ u crossing symmetric.
Nevertheless, when there is a weakly coupled tree level UV completion, the dispersion relation for the
tree level amplitude Btr(s, t) is triple crossing symmetric, as the 4m2 to (✏⇤)2 subtraction vanishes
then. With this in mind, triple crossing becomes most powerful in the case of weakly coupled tree
level UV completions.

To proceed and to simplify the core argument we shall assume m ⌧ ⇤ and neglect the mass
dependence in the partial wave formula, as appropriate for weakly coupled UV completions for which
the leading bounds are on the tree amplitudes. Imposing s $ t crossing symmetry at s = 0, that is,
Btr(0, t) = Btr(t, 0), we can express the unknown subtraction function a(t) in terms of the dispersion
integral:
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Imposing the s $ t crossing symmetry in general and then expanding in terms of powers of kinematic
invariants (which amounts to an expansion in 1/µ) gives rise to
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where we have defined

HD,` = `(`+D � 3)[4� 5D � 2(3�D)`+ 2`2]. (3.20)

Since this relation must be true for any s and t, it follows that

X

`

Z
dµ ⇢`,↵(µ)

HD,`

µ2
= 0. (3.21)

must hold as an identity. This is one of the many nontrivial consequences of full crossing symmetry
on the partial wave expansion coe�cients, which will be explored systematically in Section 5.3. For
now, as we shall see, the condition Eq (3.21) already turns out to be remarkably fruitful.

– 10 –

0 = A(s, t)�A(t, s) =
X

`

Z
dµ⇢`,↵(µ)


2HD,`st(s2 � t

2)

(D � 2)Dµ2
+ . . .

�

3.2 Triple crossing and t derivatives

To extract new positivity bounds with t derivatives, we can make use of detailed properties of the
Gegenbauer polynomial and the fact that a scalar amplitude is trivially triple crossing symmetric.
The dispersion relation (2.9) is manifestly s $ u crossing symmetric B(s, t) = B(u, t). Triple crossing
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then. With this in mind, triple crossing becomes most powerful in the case of weakly coupled tree
level UV completions.

To proceed and to simplify the core argument we shall assume m ⌧ ⇤ and neglect the mass
dependence in the partial wave formula, as appropriate for weakly coupled UV completions for which
the leading bounds are on the tree amplitudes. Imposing s $ t crossing symmetry at s = 0, that is,
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where for simplicity we have suppressed the summation and the integration limits, which are from
(✏⇤)2 from 1.
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We will see that, since the scattering amplitude can be directly linked to this expected value, inequali-
ties associated with generic expected values can be used to derive positivity bounds on the amplitude.

3.1 Nonlinear positivity bounds with s derivatives only

We first look for new positivity bounds with only s derivatives on the amplitude. For this case,
we consider X(µ, l) = 1/µ2N and we have

⌦⌦
1/µ2N

↵↵
= f

(2N,0)
/f

(0,0). Then the Cauchy-Schwarz
inequality for expected values,

⌧⌧
1

µ2I

��⌧⌧
1

µ2J

��
�

⌧⌧
1

µI+J

��2

, (3.9)

1The significance of the moment of the positive distribution has been emphasized by [58].
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Figure 2. Positivity bounds on c3,3/
p
c4,0c5,0 and c4,1/

p
c4,0c5,0. The red (blue) lines are the D

stu
3,3

(D̄stu
3,3) bounds with di↵erent choices of k. The enclosed region pentagon is the region allowed by the

optimal positivity bounds. Non-optimal positivity bounds are also plotted with equal interval choices
of k.

Figure 3. Positivity bounds on c4,4/c6,0 and c5,2/c6,0. The red (blue) lines are the Dstu
4,4 (D̄stu

4,4) bounds
with di↵erent choices of k. The enclosed region hexagon is the region allowed by the optimal positivity
bounds.

• The linear P > Q bounds:
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UV Constraints on IR Symmetries

1. No strict local Wilsonian UV completion for Galileons
2. Conformal Galileon allowed provided
3. DBI, AdS-DBI are allowed

Contradiction!!!

x = s2 + t2 + u2
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Compact positivity bounds and causality

The goal of this paper is then to determine constraints we obtain on a given EFT by imposing
(1.8) around di↵erent backgrounds. Since our primary concern will be non-gravitational scalar field
theories, we can choose to probe the EFT by adding an external source. This device allows us to
consider backgrounds which are not solutions of the unsourced background equations of motion. By
choosing di↵erent sources, we can adjust the background solution to probe di↵erent possible scatter-
ing phases, and by extremising over the choices of backgrounds we will be able to obtain competitive
constraints from the scattering time delay.

The rest of the paper is structured as follows. In Section 2, we introduce the shift-symmetric
low energy scalar EFT we will be considering and discuss the positivity constraints that arise from
consideration of their scattering amplitudes. We also provide generic arguments for the expected time
delay within a WKB approach on generic backgrounds. For concreteness, we then focus on specific
profiles for the rest of the manuscript. In Section 3, we consider the simple case of a homogeneous
background and argue for the need of less symmetric configurations to make further contact with
positivity bounds. We then proceed to consider the scattering of perturbations around a spherically-
symmetric background in Section 4. We examine two limits: one where the waves have no angular
dependence and the other where they have large angular momentum. For each of these cases, we
spell out carefully the conditions for the validity of the EFT and the WKB approximation. After
computing the time delay and requiring that we cannot obtain a resolvable violation of causality we
obtain bounds on the Wilson coe�cients of the EFT. The case of no angular momentum gives rise
to a lower bound while the large angular momentum case draws an upper bound that approaches
the non-linear positivity bounds obtained in [33, 34]. Lastly, we discuss our results and conclude in
Section 5. In the Appendices, we show details of our calculations at higher orders in the EFT and for
large angular momentum. We also explain our setup for obtaining bounds on the Wilson coe�cients.

2 Low energy e↵ective field theory and propagation speed

In this paper, we consider the requirements for a scalar e↵ective field theory to be causal. For ped-
agogical simplicity we focus on theories invariant under a shift symmetry � ! � + c. Since we are
interested in comparing the constraints arising from 2 ! 2 tree-level scattering, we will consider only
operators up to quartic order in the field �, and we will ensure to work in a regime where operators
that are higher order in the field remain irrelevant to our causality considerations. In the following,
we work with a minimal set of such independent operators up to dimension-12, so that our Lagrangian
is given by [95]

L = �
1

2
(@�)2 �

1

2
m

2
�
2 +

g8

⇤4
(@�)4 +

g10

⇤6
(@�)2

h
(�,µ⌫)

2
� (⇤�)2

i
+

g12

⇤8
((�,µ⌫)

2)2 � gmatter�J , (2.1)

where (�,µ⌫)2 = @µ@⌫�@
µ
@
⌫
�, (@�)2 = @µ�@

µ
�, gmatter is the coupling strength to external matter and

J is an arbitrary external source. Note that for convenience we choose to write down the dimension-10
operator as the quartic Galileon5 [96]. The scale ⇤ has been introduced as the standard cuto↵ of this
low energy EFT. Note that even though some EFTs may be reorganised so as to remain valid beyond
⇤ (see for instance [97] for a discussion), here we take the more conservative approach and consider the
low energy EFT to break down at ⇤. Except when we consider the case g8 = 0, it proves convenient
to redefine ⇤ so that g8 = 1.

5
The time delay remains manifestly invariant under field redefinitions as long as we can neglect boundary terms.

This can be seen for instance explicitly in Section 4.2 for the zero angular momentum case up to the EFT order that

we consider here.
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For Goldstone model:

5 Discussion and conclusions

We have seen that requiring that the e↵ective field theory only leads to causal propagation around
a given spherically-symmetric background allows us to put tight bounds on the Wilson coe�cients
of a low energy EFT, independently of its ultimate high energy completion. Remarkably, there are
two physical regimes that give rise to di↵erent bounds. The propagation of zero angular momentum
partial waves gives rise to lower bounds while the propagation of high ` modes imposes both lower
and upper bounds, although the lower bounds are in general not competitive with those arising from
` = 0 modes. We can summarise our findings by combining both results from the monopole and the
higher-order multipoles. This is shown in the blue causal regions depicted in Fig. 4.

Figure 4: Infrared Causality constraints on the Wilson coe�cients of two scalar low-energy EFT,
a shift-symmetric one with g8 = 1 on the left and a Galileon-symmetric one with g8 = 0 on the
right. In both cases, the white areas are regions in the Wilson coe�cients space where a violation
of causality can be observed at low-energy, whereas the orange one is derived from positivity bounds
requiring assumptions in the UV. To obtain these results, we combined lower and upper bounds derived
respectively in the ` = 0 and ` > 0 cases.

On the left pane of Fig. 4 we observe the causality bounds (blue) compared to the positivity
bounds (orange). While our causality bounds are not as constraining as the positivity ones, we note
two important points. First, contrary to the positivity bounds, causality bounds do not require any
assumptions of the UV completion (including notably, unitarity and locality) they arise purely from
infrared physics that is well described by the EFT. Second, positivity bounds have by now been opti-
mised using various techniques allowing to probe features of the EFT beyond its forward limit, while
ours were so far obtained using a simple static and spherically symmetric profile with a simple ex-
tremisation procedure. It is likely that tighter bounds could be derived by allowing for more generic
and less symmetric profiles.
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For example, for one-particle scattering in a spherically symmetric background, the S-matrix diago-
nalises in multipoles ` and we may define the associated multipole time delays

�T` = 2
@�`

@!

���
`
. (1.4)

In the large-` limit, we may consider scattering at fixed impact parameter b = (` + 1/2)!�1, giving
the time delay traditionally calculated in the Eikonal approximation [93, 94]

lim
`!1

�`=b!�1/2(!) = �Eikonal(!, b) , (1.5)

for which the time delay is (see for example [76])

�Tb = 2
@�`

@!

���
b
. (1.6)

The signature of true causality violation would be the manifest existence of closed-time-like-curves
within the regime of validity of the EFT, however it is understood that such phenomena are akin to
experiencing a resolvable4 scattering time advance, (within the regime of validity of the EFT). The
resolvability requirement comes from the uncertainty principle which is reflected in the fact that a time
advance no bigger than the uncertainty �t ⇠ !

�1 is clearly not in conflict with causality. Indeed in
general, as is well understood, scattering time advances can be mildly negative without contradicting
causality, but only in a bounded way. For example for s-wave (monopole) scattering in a spherically
symmetric potential which vanishes for r > a, causality imposes the bound on the scattering time
delay of the form [69–73]

�T`=0 � �
2a

v
+

1

kv
sin(2ka+ �0) � �

2a

v
�

1

kv
, (1.7)

with v the group velocity and k the momentum with ! ⇠ O(kv). The first term gives the allowed time
advance associated with the spherical waves scattering of the boundary r = a, and the second term
gives an allowed time advance due to the wave nature of propagation, i.e. the uncertainty principle. For
the intermediate scale frequencies and smooth backgrounds considered in what follows the first term
will be absent (see Appendix A for a discussion) but we must still allow for the uncertainty principle. In
other words, we will consider frequencies larger than the scale of variation of the background (within
the WKB semi-classical region) and su�ciently high such that we do not encounter any potential
barriers, but within the regime of validity of the EFT. All these conditions will be carefully monitored
throughout the analysis performed below. Note that lower frequencies do not probe the support of
the retarded Green’s function and hence are not probing causality. Working in the regime of validity
of the WKB approximation, our de facto relativistic causality requirement is that

�T & �
1

!
. (1.8)

applied in the relativistic region where the background is su�ciently smooth and no potential barrier
is encountered on scales set by the wavelength !

�1 such that the hard sphere type time advances
�2a/v are absent.

4
Strict positivity of the scattering time delay is sometimes incorrectly imposed. This is not required since the time

delay is only a meaningful indication of causality in the semi-classical region (WKB or eikonal).
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Causality = 
positivity of Eisenbud-Wigner 
scattering time delay
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Figure 8: Allowed region for |bg3|2 and g4 in terms of Newton’s constant and the spin-

4 mass gap M . Note that both axes are rescaled by an infrared logarithm log(M/mIR).

Manifestly, both |bg3|2 and g4 obey two-sided bounds; a nonvanishing cubic coupling bg3 requires

a nonvanishing quartic g4. The dashed line gives the bound eq. 4.6.

stronger ones by using the numerical parameter choices in appendix C. Our optimal bounds

are:

|bg3|2M8  24.9 log(M/mIR) � 27.6 , (4.4)

g4M
6

8⇡G
 12.3 log(M/mIR) � 13.5 . (4.5)

To obtain these, we included all improved sum rules B
imp
2 and B

imp
3 with nmax = 6, and we

included additional @
q
p2B

(1) imp
4 (0) up to q = 2 to get the bound on g4.

A finer way to present the constraint is to carve out the allowed space in the three EFT

parameters |bg3|2, g4 and G, as shown in figure 8. These were are computed by using all im-

proved B2 and B3 for nmax = 5 and additional forward-limit contributions from @
q
p2B

(1) imp
4 (0)

up to q = 2.

A special limit of the bound is the dashed line in figure 8 which is tangent to the allowed

region near origin; from its slope we find numerically that

g4

8⇡G
� 0.26|bg3|2M2

. (4.6)

This is e↵ectively equivalent to the bound g4
8⇡G � 1

4 |bg3|2M2 reported in (6.13) of [52] using

forward-limit bounds of spin k � 4. This bound indicates that it is not possible to turn on a

cubic coupling without having a quartic coupling as well.
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(a) (b)

Figure 11: Allowed region for (a) g5 and g4 and (b) Re bg5 and g4 in units of Newton’s

constant, the spin-4 mass gap M , and an infrared cuto↵ mIR, with light spin-0 and spin-2

matter fields allowed. The dashed lines show the positivity bounds (4.8) and (4.9) respectively.

Solid lines display the loop amplitudes of subsection 4.1.

Curiously, this bound appears stronger than what we could derive from forward limit func-

tionals.

To compute bounds plotted in figures 11a and 11b, we truncated the space of functionals

to nmax = 5 built from improved sum rules to from spin-2 to spin-6, i.e., B
imp
i with i = 2 . . . 6.

In the former case we also include forward-limit of sum rules @
k
t B

(1) imp
4 (0) and @

k
t B

(1) imp
5 (0)

and in the latter @
q
p2B

(1) imp
4 (0) and @

q
p2B

(2) imp
4 (0), with up to q = 4 to guarantee the large J

behaviour of functionals are positive. Other detailed parameter choices are listed in table 2.

4.4 Bounds involving D
4
R

4
and low spin dominance

In section 2.5 we reviewed how expanding higher-spin sum rules around forward-limit produces

homogeneous bounds involving e.g., g
0
6/g6, which gives eq. (2.44), which we reproduce here:

�90

11
 g

0
6

g6
 6 (using forward limits and a single null constraint) . (4.10)

An important observation made in [45] was that the space of couplings spanned by the theories

in Section 4.1, a.k.a “the theory island”, is much smaller than that given by such homogeneous

bounds. In [45], in order to approach the theory island, the authors propose an additional

assumption called low-spin-dominance (LSD), which is a constraint on possible UV spectra

stating that higher-spin states are suppressed compared to low-spin states. Quantitively, for

MHV amplitudes, LSD implies

LSD : |c+±
4,m2 | � ↵|c+±

J>4,m2 |2 , (4.11)
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where hatted couplings are complex (the real and imaginary part representing parity-even and

parity-odd couplings, respectively). The subscript “low” emphasizes that this expansion is

used only for |s| < M
2. The signs on the first line have been chosen so that our couplings relate

simply to those in [45].3 The matter contributions fmatter(s, u), gmatter(s, u), and hmatter(s, u)

are recorded in appendix B.

It is straightforward to write down Lagrangians that give rise to the above amplitudes.

Before doing so, it is important to note that Lagrangian densities are only defined mod-

ulo field redefinitions (which change contact interactions by equation of motions) and total

derivatives. In particular, any higher-derivative term involving the Ricci tensor Rµ⌫ or scalar

R is removable, so only powers of the Riemann curvature Rµ⌫�⇢ must be kept.4 Furthermore,

numerous identities relate various contractions of Riemann tensors and derivatives. This is

the reason why we do not include R
2: R

2-terms can be recast into the Gauss-Bonnet term,

which is topological in d = 4. In contrast, the amplitudes (2.7) are unambiguous.

With this being said, it is straightforward to list a minimal set of irreducible higher-

dimension operators and map them to the amplitudes (2.7) by computing the resulting tree-

level amplitudes. For example, the parity-even sector of cubic gravity contains 10 di↵erent

operators, but field redefinitions and various identities leave us with only one independent

operators [46]. Up to dimension eight, our e↵ective action is

S =
1

16⇡G

Z
d

4
x
p

�g

h
R � 1

3!

⇣
↵3R

(3) + ↵̃3R̃
(3)

⌘

+
1

4

⇣
↵4(R

(2))2 + ↵
0
4(R̃

(2))2 + 2↵̃4R
(2)

R̃
(2)

⌘
+ . . .

i
+ Smatter , (2.9)

where we defined

R
(2) = Rµ⌫⇢�R

µ⌫⇢�
, R̃

(2) = Rµ⌫⇢�R̃
µ⌫⇢�

, R̃µ⌫⇢� ⌘ 1
2✏µ⌫

↵�
R↵�⇢� ,

R
(3) = Rµ⌫

⇢�
R⇢�

↵�
R↵�

µ⌫
, R̃

(3) = Rµ⌫
⇢�

R⇢�
↵�

R̃↵�
µ⌫

.

(2.10)

It is then straightforward to expand gµ⌫ = ⌘µ⌫ +
p

32⇡Ghµ⌫ and apply the standard Feynman

techniques to evaluate scattering amplitudes and compare with eqs. (2.7):

bg3 = ↵3 + i↵̃3, g4 = 8⇡G(↵4 + ↵
0
4) , bg4 = 8⇡G(↵4 � ↵

0
4 + i↵̃4) . (2.11)

Note that we absorbed a factor of 8⇡G in three-point couplings but not in four-point couplings.

3The conversion is simply:

{g4, g5, g6, g
0
6}here = {a0, a1, a2,0, a2,1}there

. (2.8)

In our notation the subscript always denotes half the number of derivatives in the contact interaction.
4It is well-known for example that f(R) gravity is equivalent to standard Einstein gravity minimally coupled

to a scalar field with a specific potential. From our perspective, f(R) gravity thus does not constitute a higher-

derivative correction to Einstein’s gravity. Instead, it is a specific choice of matter sector.
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4It is well-known for example that f(R) gravity is equivalent to standard Einstein gravity minimally coupled

to a scalar field with a specific potential. From our perspective, f(R) gravity thus does not constitute a higher-

derivative correction to Einstein’s gravity. Instead, it is a specific choice of matter sector.
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S =
1

16⇡G

Z
d

4
x
p

�g

h
R � 1

3!

⇣
↵3R

(3) + ↵̃3R̃
(3)

⌘

+
1

4

⇣
↵4(R

(2))2 + ↵
0
4(R̃

(2))2 + 2↵̃4R
(2)

R̃
(2)

⌘
+ . . .

i
+ Smatter , (2.9)
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µ⌫⇢�
, R̃

(2) = Rµ⌫⇢�R̃
µ⌫⇢�

, R̃µ⌫⇢� ⌘ 1
2✏µ⌫

↵�
R↵�⇢� ,

R
(3) = Rµ⌫

⇢�
R⇢�

↵�
R↵�

µ⌫
, R̃

(3) = Rµ⌫
⇢�

R⇢�
↵�

R̃↵�
µ⌫

.

(2.10)
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In our notation the subscript always denotes half the number of derivatives in the contact interaction.
4It is well-known for example that f(R) gravity is equivalent to standard Einstein gravity minimally coupled

to a scalar field with a specific potential. From our perspective, f(R) gravity thus does not constitute a higher-
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Locality in Quantum gravity?
In field theory with UV fixed point at finite volume, 
density of states for most operators grows as 

Aharony and Banks ‘98

In Quantum Gravity we expect high energy properties to be dominated   
by production of black holes

By contrast for a gravitational theory, we expect the density of states at high energies

to be determined by the density of states for black holes which scales as

⇢(E) ⇠ eSBH entropy = ec(E/MPl)
d�2

d�3

. (3.10)

In other words, as in the previous S-matrix argument, we expect the physics at high energies

to be dominated by the production of black holes which are known to have exponentially

large density of states. Contrary to the field theory case, this grows faster than a linear

exponential in any dimension d > 3. This stronger growth is related to the negative spe-

cific heat capacity of Black Holes in asymptotically Minkowski spacetime. Thus, operators

whose spectral density scales as the density of states ⇢O(E) ⇠ ⇢(E) can no longer give rise

to well defined Wightman functions, i.e. they are no longer associated with well defined

localized Heisenberg fields.

The resolution is to look at operators for which the high energy behavior is su�-

ciently cuto↵, meaning in practice that the spectral densities are cuto↵ above the Planck

scale. This can easily be achieved by working with modified operators whose inner prod-

uct between the vacuum and energy eigenstates decays exponentially at high energies, e.g.

Ô0 = e�L2Ĥ2/2Ôe�L2Ĥ2/2, however this resulting operator will not be local. Inevitably this

implies that there is no precise notion of time locality, i.e. no tempered distribution W (t)

for the original operators Ô(t). Alternatively this high energy cuto↵ may be achieved by

smearing the original operator over a length scale L comparable to the Planck scale M�1
Pl .

Ô(t) ! Ô(t) =

Z
1

�1

dt0
1p
2⇡L

e�
1

2L2
(t�t0)2Ô(t0) . (3.11)

The Wightman function of the smeared operator is well defined

W̃ (t) = h0|Ô†(t)Ô(t)|0i =
Z

1

0
dE e�

L2

2
E2

e�iEt⇢O(E) , (3.12)

provided that L2 � 2cM�2
Pl . There is no contradiction with the validity of the EFT at

low energies since as long as we simultaneously make observations at energies below MPl

and distances above M�1
Pl the Wightman functions can be replaced by their smeared values

which satisfy the usual requirements of a local field theory.

3.3 Giddings-Lippert bound for time non-locality

At a mathematical level, the claim of [61] is that the Wightman functions are no longer

tempered distributions, however they do exist as distributions but must be defined using

test functions from an appropriate Gel‘fand-Shilov space [62] S↵, which contain no functions

of compact support. If f(t) and g(t) are drawn from such a space then

W (f, g) = h0|Ô†(f)Ô(g)|0i , (3.13)
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⇢(E) ⇠ eEr⇤(E)

r⇤(E)where is Schwarzschild radius

This implies Giddings-Lippert 2001 locality bound. e.g. local correlation functions only 
exist for 

b > r⇤(E)

Giddings-Porto 2009

polynomial
stricly localizable

quasi-local
nonlocalizable

pole

mass
gap

Figure 1. Schematic form of the spectral density for a theory with a mass gap in each of the
possible cases. In addition, bound states may exist between the pole and the beginning of the
continuum. In the massless limit, applicable for the examples computed in the text, the continuum
begins at the position of the pole located at µ = 0.

to be a massless field. Define the operator Ô(x) to be the normal ordered :: exponential

[95, 105, 106]

Ô(x) =
1X

n=1

gn

n!
: �̂(x)n :=: eg�̂(x) � 1 : . (4.15)

An elementary application of Wick’s theorem tells us that the two-point Wightman function

for Ô(x) is given by

h0|Ô(x)Ô(y)|0i =
1X

n,m=1

gn+m

n!m!
h0| : �̂(x)n :: �̂(y)m : |0i (4.16)

=
1X

n=1

g2n

n!

⇣
h0|�̂(x)�̂(y)|0i

⌘n
(4.17)

= eg
2
h0|�̂(x)�̂(y)|0i � 1 . (4.18)

For a massless field in four dimensions the Wightman function is given by

W (x, y) = h0|�̂(x)�̂(y)|0i = 1

4⇡2

1

(~x� ~y)2 � ((x0 � y0)� i✏)2
. (4.19)

The Wightman function is a ‘generalized function’ or ‘distribution’ [62] so even products of

it must be interpreted with great care. The problem with the eq. (4.18) is that in e↵ect it

includes the exponential of a delta function from the support of the Wightman function on

the light cone, which is meaningless as it stands. To deal with this more rigorously we must

smooth the operators with test functions to give meaning to the operator product. However,

– 33 –

⇢(E) ⇠ ec
0V 1/dE(d�1)/d

with preferential operators polynomial ⇢(E) ⇠ Ep

A(s, t) ⇠ er⇤(
p
s)
p
t t > 0



An exactly solvable case: 
dRGT Massive Gravity in 2D ….. 

S� =

Z
d2x

1

2�
✏ab✏

µ⌫(e� f)a
µ
(e� f)b

⌫
+ Smatter(e,') + SEH

TopologicalGhost-free nonlinear Fierz-Pauli mass

Unique structure for which Boulware-Deser ghost is removed

AJT, de Rham, Gabadadze 2010

… Or why two zweibeins are better than one

S� =

Z
ddx


� 1

2�
(Tr[K2]� (Tr[K])2)

�
+ Smatter(g,') + SEH



A tale of two T’s
S� =

Z
d2x

1

2�
✏ab✏

µ⌫(e� f)a
µ
(e� f)b

⌫
+ Smatter(e,') + SEH

Stress energy for f det fTµ
a =

�S�

�fa
µ(x)

= � 1

�
✏ab✏

µ⌫(eb⌫ � f b
⌫)

Equation of motion for e 1

�
✏ab✏

µ⌫(eb⌫ � f b
⌫) + det e T µ

M a = 0

@S�

@�
= �

Z
d2x

1

2�2
✏ab✏

µ⌫(e� f)aµ(e� f)b⌫

= �
Z

d2x
1

2
✏abT

a
µT

b
⌫

= �
Z

d2x detT

f stress energy

Equivalent to  deformation!!T T̄

AJT 2019



Massive Gravity in Two 
dimensions

How do we describe a massive gravity theory in two dimensions?

Massive Gravity = Diffeomorphisms Spontaneously Broken

Three ingredients: 

1. Dynamical metric describing spacetime
2. Fixed reference metric (acts as VEV of Higgs field)
3. Stueckelberg Fields (Goldstone Modes)

gµ⌫
�µ⌫

�µ⌫ = �̂AB(�)@µ�
A@⌫�

B

�A

Diff(M) ! Isom(M)



Field Dependent Diffeomorphisms
The undeformed theory is not diff invariant, hence the 
diffeomorphism symmetry in Stuckelberg form is a redundancy. 
We can gauge fix to define the theory - however different gauge 
fixings lead to different formulations which are related by field 
dependent diffeomorphisms

Unitary gauge - �a = xa

Generic gauge - �a(x) = xa + ⇡a(x)

Transformation of scalar -

Transformations: 
Perturbatively local - non-perturbatively non-local

S̃(�a) = S(xa) = S̃(xa + ⇡a(x))

Unitary gauge

Generic gauge



Quantum equivalence
Quantum deformation is defined by path integral flow

• Zweibein superspace measure equivalent to Polyakov measure

i
@Z�

@�
= �1

2
r2

eZ� = �1

2

Z
d2x✏µ⌫✏

ab �2Z�

�eaµ(x)�e
b
⌫(x)

Solution:

Z�(f) =

Z
De(x) ei

R
d2x 1

2� ✏µ⌫✏ab(e�f)aµ(e�f)b⌫Z0(e)

Undeformed Seed theory

�s2 = �
Z

d2x ✏µ⌫✏ab�e
a
µ(x)�e

b
⌫(x) = �2

Z
d2x det(�eaµ(x)) �s2 =

Z
d2x

p
�g


2�!2 +

1

4

�
gµ⌫g↵��gµ↵�g⌫�

�
� 1

4
(gµ⌫�gµ⌫)

2
�

Polyakov measure used in 
quantizing string!!

�eaµ(x) = ⌘ac✏cd�!(x)e
d
µ(x) + �ha

µ(x)

AJT 2019

T T̄ deformation



Topological property for flat metric

fa = d�a(x) ea = dXa(x)

Noted by Cardy via less transparent means 2018

then

Hence
�a e.o.m.s impose

At the S-matrix level, the deformation corresponds to a 
Castillejo-Dalitz-Dyson (CDD) factor

S({pi}) !
h
⇧i<je

i 1
2�✏

abpi
ap

j
b

i
S({pi})

Fixing

Smass =

Z
d2x

1

2�
✏ab✏

µ⌫(d(��X))aµ(d(��X))b⌫

=

Z
dxµ

1

2�
✏ab✏

µ⌫(�a �Xa)(d(��X))b⌫

e.g. integrable theory maps to an integrable theory!!



S-matrix growth
S-matrix satisfies:

• Lorentz Invariant
• Analyticity (Causality)
• Crossing symmetry
• Unitarity

but violates:
• Polynomial/exponential boundedness (locality)

e2i�(s) = ei
1
2�s

Ŝ({p}) = S({p})ei
�
2

P
i<j ✏abp

a
i p

b
j

e.g. 2-2 scattering:

by comparison, a local 2D field theory looks like which is polynomially 
bounded

e2i�(s) = ⇧j

✓
µj + s

µj � s

◆

Im(s) > 0

Im(s) > 0



Deformation of a CFT = (Non-) Critical String Theory
Now assume seed theory is classically conformal

Mass term breaks Conformal symmetry - Introduce conformal Stueckelberg fields via

Integrating out the conformal Stueckelberg field gives

deformed theory is a worldsheet string with target space metric
in a non-zero B-field B+�(�) = �̂+�(�)

For example for

Massive gravity coupled to a CFT with central charge c=24 is 
equivalent to critical bosonic string with nonzero B field

S� =

Z
d2x

p
�g


� 1

4�
�̂AB(�)g

µ⌫@µ�
A@⌫�

B � 1

2
GIJg

µ⌫@µ'
I@⌫'

B � 1

4�
BAB(�)✏

µ⌫@µ�
A@⌫�

B

�

AJT 2019

g ! ⌦̂2g 'I ! ⌦̂��I'I

SCFT (⌦
2g, {⌦��I'I}) = SCFT (g, {'I})



Locality bound
Given a wavepacket of energy or momentum E, the minimum distance over 
which it may be localized is

If interpreted as a time delay/advance, associated phase shift is

At any finite order in perturbation theory, correlation functions are local (tempered distrubutions/
polynomially bounded) - Non-perturbatively they resum to a Jaffe non-localizable behaviour (e.g. 
Cardy 2019)

CDD factors!

If bootstrap/positivity bounds were applied to scattering on string world 
sheet - they would conclude that it has no UV completion!!

L ⇠ E� �xR�xL > �

G(k) ⇠ e�k
2

�(E) ⇠ LE ⇠ E2� ⇠ �s

Landscape versus Swampland
Be wary of assumptions! in


