Holographic dark energy for inflationary cosmology and the trans-Planckian censorship conjecture

Main reference: Physical Review D 103, 083505 (2021)

The YITP long-term workshop "Gravity and Cosmology 2024 (GC2024)" Kyoto University, February 29, 2024

Fukushima University Presentor: Kazuharu Bamba (Fukushima University)

Collaborators: Abolhassan Mohammadi, Tayeb Golanbari (University of Kurdistan)

Iarley P. Lobo (Federal University of Paraiba)

I. Introduction

- According to the observations of Type Ia Supernovae, the current expansion of the universe is accelerating ("Dark Energy Problem")
- The universe is considered to be spatially flat.
- \rightarrow Two main approaches

[N. Suzuki *et al.* [Supernova Cosmology Project Collaboration], Astrophys. J. **746**, 85 (2012)]

(1) To introduce dark energy within General Relativity (GR)(2) To extend gravity theories

Reviews: E.g., [Copeland, Sami and Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)]

[Nojiri and Odintsov, Phys. Rept. **505**, 59 (2011)]

[KB, Capozziello, Nojiri, Odintsov, Astrophys. Space Sci. 342, 155-228 (2012)]

Candidates of dark energy and modified gravity theories

(1) Candidates of dark energy

Cosmological constant
 Scalar field (Quintessence)
 Fluid description

Horographic dark energy

[Hsu, Phys. Lett. B **594**, 13 (2004)] [Horvat, Phys. Rev. D **70**, 087301 (2004)] [M. Li, Phys. Lett. B **603**, 1 (2004)]

Holographic principle:

(2) Candidates of modified gravity theories

- *f*(*R*) gravity
- f(R): Arbitrary function of the Ricci scalar R
- DGP braneworld scenario
- Galileon gravity
- Horndeski theory
- Massive gravity
- DHOST
- Bimetric gravity

Entropy of the system is measured by area and not volume.

[G. 't Hooft, Conf. Proc. C **930308**, 284 (1993), gr-qc/9310026]

Relation between holographic entropy and dark energy

Generalization of black hole entropy

Holographic dark energy[Saridakis, KB, Myrzakulov,
Anagnostopoulos, JCAP 1812, 012
(2018)]• Dark energy density
$$\rho_{DE} = BL^{2\delta-4}$$
 $B : \text{constant}(\text{dimension}: [L]^{-2\delta})$ • Homogeneous and isotropic universe
 $ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$ $a(t) : \text{Scale factor}$ • Future event horizon
[M. Li, Phys. Lett. B 603, 1 (2004)] $R_h \equiv a \int_t^{\infty} \frac{dt}{a} = a \int_a^{\infty} \frac{da}{Ha^2} \longrightarrow \rho_{DE} = BR_h^{2\delta-4}$ • Friedmann equation
 $3M_p^2H^2 = \rho_m + \rho_{DE} + \rho_{DE}$
 $-2M_p^2\dot{H} = \rho_m + p_m + \rho_{DE} + p_{DE}$ ρ_m, p_m :Matter energy
density, pressure
 p_{DE} :Dark energy pressure• Energy conservation $P_{DE} = DR_h^{2\delta-4}$

 $\dot{\rho}_m + 3H(\rho_m + p_m) = 0, \quad \dot{\rho}_{DE} + 3H\rho_{DE}(1 + w_{DE}) = 0$

Density parameters

$$\Omega_{DE} \equiv \frac{1}{3M_p^2 H^2} \rho_{DE} \,, \quad \Omega_m \equiv \frac{1}{3M_p^2 H^2} \rho_m$$

Future event horizon

 $\rho_m = \rho_{m0}/a^3$

 $\Omega_m + \Omega_{DE} = 1$

 \times `0' · present value

 $\Omega_m = \Omega_{m0} H_0^2 / (a^3 H^2)$

 $a_0 = 1$

> Differential equation of the cosmic evolution of dark energy

$$\frac{\Omega_{DE}'}{\Omega_{DE}(1-\Omega_{DE})} = 2\delta - 1 + Q(1-\Omega_{DE})^{\frac{1-\delta}{2(2-\delta)}} (\Omega_{DE})^{\frac{1}{2(2-\delta)}} e^{\frac{3(1-\delta)}{2(2-\delta)}x}$$
$$Q \equiv 2(2-\delta) \left(\frac{B}{3M_p^2}\right)^{\frac{1}{2(\delta-2)}} \left(H_0\sqrt{\Omega_{m0}}\right)^{\frac{1-\delta}{\delta-2}}$$

Conservation of dark energy

$w_{DE} \equiv p_{DE}/\rho_{DE}$: Equation of state of dark energy

$$\dot{\rho}_{DE} + 3H\rho_{DE}(1 + w_{DE}) = 0$$

$$\dot{\rho}_{DE} = 2(\delta - 2)BR_h^{2\delta - 5}\dot{R}_h, \quad \dot{R}_h = HR_h - 1$$

$$\longrightarrow 2(\delta-2)B\left(\frac{\rho_{DE}}{B}\right)^{\frac{2\delta-5}{2(\delta-2)}} \left[H\left(\frac{\rho_{DE}}{B}\right)^{\frac{1}{2(\delta-2)}} - 1\right] + 3H\rho_{DE}(1+w_{DE}) = 0$$

Equation of state
of dark energy
$$w_{DE} = \frac{1-2\delta}{3} - \frac{Q}{3}(\Omega_{DE})^{\frac{1}{2(2-\delta)}}(1-\Omega_{DE})^{\frac{\delta-1}{2(\delta-2)}}e^{\frac{3(1-\delta)}{2(\delta-2)}x}$$
Deceleration
parameter
$$q \equiv -1 - \frac{\dot{H}}{H^2} = \frac{1}{2} + \frac{3}{2}(w_m\Omega_m + w_{DE}\Omega_{DE})$$

Evolution of cosmological parameters

Evolution of the equation of state of dark energy

Stability analysis

Squared sound speed

[Tavayef, Sheykhi, KB, Moradpour, Phys. Lett. B **781**, 195-200 (2018)]

$$v_s^2 = \frac{dP_D}{d\rho_D} = \frac{\dot{P}_D}{\dot{\rho}_D} = \frac{\rho_D}{\dot{\rho}_D} \ \dot{w}_D + w_D$$

 $\frac{\rho_D}{\dot{\rho}_D} = \frac{-1}{3H} \left(\frac{1 - (2 - \delta)\Omega_D}{2 - \delta - (2 - \delta)\Omega_D} \right)$: For the case that the IR cutoff is the Hubble horizon $\longrightarrow \rho_D = BH^{-2\delta+4}$ $(2-\delta)(1-\delta)H\Omega'_D$. $d\Omega_D$ lna)

$$w_D = \frac{(1 - (2 - \delta)\Omega_D)^2}{\left[1 - (2 - \delta)\Omega_D\right]^2}, \quad \Omega_D = H\Omega'_D, \quad \Omega'_D = \frac{d}{d(1 - \delta)\Omega_D}$$

$$\bigvee v_s^2 = \frac{(\delta - 1)(\Omega_D - 1)}{\left[1 - (2 - \delta)\Omega_D\right]^2}$$

$$\delta \le 1 \longrightarrow v_s^2 \ge 0$$
 : Stable against perturbations

 $0 < \Omega_D < 1$

Stability analysis (2)

[Abdollahi Zadeh, Sheykhi, Moradpour, KB, Eur. Phys. J. C **78**, 940 (2018)]

 $\Omega_D^0 = 0.73, \alpha = 0.8, \beta = 0.5, H_0 = 67$

Stability analysis (3)

Stability analysis (4)

[Abdollahi Zadeh, Sheykhi, KB, Moradpour, Mod. Phys. Lett. A **35**, 2050053 (2019)]

14

 $\Omega_D^0 = 0.73, \ \delta = 1, \ \lambda = 1.5, \ \Omega_\sigma = .001, \ H_0 = 67$

Purposes of this study

- We argue entropy based on the holography principle, which can be related to dark energy.
- Since the length scale is regarded as small enough during inflation, the energy density from the holographic principle can be expected to be large enough to drive inflation.

Cf. [Nojiri, Odintsov and Saridakis, Phys. Lett. B **797**, 134829 (2019)] [Oliveros and Acero, EPL **128**, 59001 (2019)]

- We investigate the application of holographic principle to inflationary cosmology by analyzing inflationary observables. By comparing with the observations, we show a realistic parametric space.
- We also discuss the trans-Planckian censorship conjecture for the present scenario consistent with the Planck 2018 data.

Application to inflationary cosmology

 α, β : dimensionless constant

• Energy density $\rho = \sqrt{B} L_{IR}^{\delta-2}$

Infrared cut off

 $L_{IR}^{-2} = \alpha H^2 + \beta \dot{H}$

Friedmann equation

$$H^2 = \frac{Bc^2}{3M_p^2} \left(\alpha H^2 + \beta \dot{H}\right)^{2-\delta}$$

→ Time derivative of the Hubble parameter

$$\dot{H} = \frac{H^2}{\beta} \left[\left(\frac{3M_p^2}{Bc^2} \right)^{\frac{1}{(2-\delta)}} \left(H^2 \right)^{\frac{\delta-1}{2-\delta}} - \alpha \right]$$

[Mohammadi, Golanbari, KB, Lobo, Phys. Rev. D **103**, 083505 (2021)]

Dimensional analysis: [Granda and Oliveros, Phys.Lett. B 669, 275 (2008); Phys. Lett. B 671, 199 (2009)]

 $N = \ln \left(a/a_i \right), \quad dN = Hdt$

 $\tilde{H} \equiv H/M_p~$: dimensionless Hubble parameter

$$\widetilde{H}_e^2 = \left(\frac{C}{\alpha - \beta}\right)^{\frac{\delta - 2}{\delta - 1}} \quad \text{``e': End of inflation} \\
\epsilon_1 = 1$$

Taking integration in H in terms of the number of e-folds during inflationary stage

$$\left[\bigwedge^{\tilde{H}_{2}} \ln \left[\tilde{H}^{2} \left(\underline{C} \left(\tilde{H}^{2} \right)^{\frac{\delta-1}{2-\delta}} \right)^{\frac{\delta-2}{\delta-1}} - \alpha \right] \left| \stackrel{\tilde{H}_{e}}{B_{i}} = \frac{-2\alpha N}{\beta} \right| , \qquad C \equiv \left(\frac{3M_{p}^{2}}{Bc^{2}} \right)^{\frac{1}{(2-\delta)}} M_{p}^{\frac{2(\delta-1)}{2-\delta}}$$

$$16$$

• Slow-roll parameters ($-\dot{H}$) $\epsilon_{n+1} =$

$$\epsilon_1 = \frac{-\dot{H}}{H} = \frac{-1}{\beta} \left[C \left(\tilde{H}^2 \right)^{\frac{\delta - 1}{2 - \delta}} - \alpha \right]$$
$$\epsilon_2 = \frac{\dot{\epsilon}_1}{H\epsilon_1} = \frac{2C}{\beta} \left(\frac{\delta - 1}{2 - \delta} \right) \left(\tilde{H}^2 \right)^{\frac{\delta - 1}{2 - \delta}}$$

$$\epsilon_{n+1} = d\ln(\epsilon_n)/dN$$
$$\tilde{H}_{\star}^2 = \left[\frac{C}{\alpha} \left(1 + \frac{\beta}{\alpha - \beta} e^{2\alpha N/\beta}\right)\right]^{\frac{\delta - 2}{\delta - 1}}$$

: Value of \tilde{H} at the horizon crossing time (\star)

- → Inflationary observables
 - $n_s = 1 2\epsilon_1 2\epsilon_2$: Spectral index of the scalar mode
 - : Tensor to scalar ratio
 - $\mathcal{P}_s = H^2 / 8\bar{\pi^2} \epsilon M_p^2$ $\sim 10^{-9}$

 $r = 16\epsilon_1$

: Amplitude of the power spectrum of the scalar mode

$$C = \frac{\alpha}{\left(1 + \frac{\beta}{\alpha - \beta} e^{2\alpha N/\beta}\right)} \left(8\pi^2 \epsilon \mathcal{P}_s\right)^{\frac{\delta - 1}{\delta - 2}}$$

Cf. [Nojiri, Odintsov and Saridakis, Phys. Lett. B **797**, 134829 (2019)] 17

(α,β) space consistent with the Planck 2018 data

[Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020)]

IV. Correspondence between holographic dark energy and scalar field

→ We show that the behavior of inflation provided by the holographic dark energy approach into the dynamics of a scalar filed.

(i) Canonical scalar field

$$S = \int d^{4}x \sqrt{-g} \left[-\frac{1}{2} (\nabla \phi)^{2} - V(\phi) \right] (\nabla \phi)^{2} = g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

$$\rho_{\phi} = \frac{1}{2} \dot{\phi}^{2} + V(\phi), \quad p_{\phi} = \frac{1}{2} \dot{\phi}^{2} - V(\phi)$$

$$V(\phi) = \rho_{DE} - \frac{1}{2} \dot{\phi}^{2} = \left(\frac{1 - w_{DE}}{2}\right) \rho_{DE} = \rho_{DE} + M_{p}^{2} \dot{H}$$

$$= Bc^{2} \left(\alpha H^{2} + \beta \dot{H}\right)^{2 - \delta} + M_{p}^{2} \dot{H}$$

$$\phi'^{2} = -2M_{p}^{2} \dot{H}/H^{2}, \quad \phi' = d\phi/dN$$

$$V(\phi) (\times 10^{-9})$$

$$V(\phi) (\times 10^{-9})$$

$$V(\phi) (\times 10^{-9})$$

$$Large-field potential$$

$$(\phi > M_{p})$$

$$(\phi > M_{p})$$

$$W(\phi) (\times 10^{-9})$$

$$(\phi > M_{p})$$

$$(\phi = M_{p$$

0.4

→ With the definition of the 1st slow-roll parameter, the scalar field is obtained by the following integration

$$\bigtriangleup \Delta \phi(N) = \sqrt{2} \ M_p \ \int_0^N \ \sqrt{\frac{-1}{\beta}} \ \left[C \left(\tilde{H}^2 \right)^{\frac{\delta - 1}{2 - \delta}} - \alpha \right] \ dN$$

 ${\cal N}=0$: corresponds to the Horizon crossing of the perturbations

Cf. [Copeland, Sami and Tsujikawa, Int. J. Mod. Phys. D **15**, 1753-1936 (2006)]

V. Trans-Planckian Censorship Conjecture

Trans-Planckian Problem

If inflation lasted more than enough, it is possible to observe the length scale which would be originated on the scale smaller than the Planck length $l_p = m_p^{-1}$.

Trans-Planckian Censorship Conjecture

The question how we should treat the trans-Planckian mode (this is the question that does not arise in a consistent theory of quantum gravity).

[Bedroya, Brandenberger, Loverde and Vafa, Phys. Rev. D 101, 103502 (2020)]

 H_f, a_f : Hubble parameter, scale factor at the end of inflation

Values of the present model consistent with the Planck 2018 data (P.19)

Possible solutions [Dvali, Kehagias and Riotto, 2005.05146]

• The great part of the de Sitter fluctuations are produced with wavelength: $L \sim H^{-1}$

• Only the fluctuations with wavelength $L \ll H^{-1}$ are exponentially suppressed with a factor $e^{-1/LH}$ 22

VI. Conclusions

- It has been proposed that entropy based on the holography principle can be related to dark energy.
- Since the length scale is considered to be small enough during inflation, the energy density from the holographic principle can be expected to be large enough to drive inflation.
- We have explored the application of holographic principle to inflationary cosmology. The slow-roll parameters, scalar spectral index n_s , and tensor-to-scalar ratio r have been analyzed. By comparing with the Planck $r n_s$ diagram, a parametric space for the constants of the model can be shown.
 - → It has been discussed that for the present model consistent with the Planck 2018 data, the trans-Planckian censorship conjecture could not be satisfied.

Recent related study "The Area of a Rough Black Hole"

ABSTRACT

[J. D. Barrow, Phys. Lett. B 808, 135643 (2020)]

We investigate the consequences for the black hole area of introducing fractal structure for the horizon geometry. We create a three-dimensional spherical analogue of a 'Koch Snowflake' using a infinite diminishing hierarchy of touching spheres around the Schwarzschild event horizon. We can create a fractal structure for the horizon with finite volume and infinite (or finite) area. This is a toy model for the possible effects of quantum gravitational spacetime foam, with significant implications for assessments of the entropy of black holes and the universe, which is generally larger than in standard picture of black hole structure and thermodynamics, potentially by very considerable factors. The entropy of the observable universe today becomes $S \approx 10^{120(1+\Delta/2)}$, where $0 \le \Delta \le 1$, with $\Delta = 0$ for a smooth spacetime structure and $\Delta = 1$ for the most intricate. The Hawking lifetime of black holes is also reduced.

$$S_B = \left(\frac{A}{A_0}\right)^{1+\Delta/2}, \ \rho_{DE}L^4 \leq S$$
$$0 \leq \Delta \leq 1$$

$$\bigcap \rho_{DE} = CL^{\Delta - 2}$$

Applications to cosmology

[Saridakis, Phys. Rev. D **102**, 123525 (2020); JCAP **2007**, 031 (2020)] [Mohammadi and Salehi, Phys. Lett. B **839**, 135643 (2023)]

Cf. Microscopic thermodynamic description for an arbitrary generalized entropy in terms of theparticle system [Nojiri and Odintsov, Phys. Lett. B **845**, 138130 (2023)] 24

Back up slides

Barrow holographic dark energy

Emmanuel N. Saridakis^{1, 2, 3, *}

¹National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece ²Department of Physics, National Technical University of Athens, Zografou Campus GR 157 73, Athens, Greece ³Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China

We formulate Barrow holographic dark energy, by applying the usual holographic principle at a cosmological framework, but using the Barrow entropy instead of the standard Bekenstein-Hawking one. The former is an extended black-hole entropy that arises due to quantum-gravitational effects which deform the black-hole surface by giving it an intricate, fractal form. We extract a simple differential equation for the evolution of the dark energy density parameter, which possesses standard holographic dark energy as a limiting sub-case, and we show that the scenario can describe the universe thermal history, with the sequence of matter and dark energy eras. Additionally, the new Barrow exponent Δ significantly affects the dark energy equation of state, and according to its value it can lead it to lie in the quintessence regime, in the phantom regime, or experience the phantom-divide crossing during the evolution.

[Saridakis, Phys. Rev. D 102, 123525 (2020)]

Modified cosmology through spacetime thermodynamics and Barrow horizon entropy

[Saridakis, JCAP **2007**, 031 (2020)]

Emmanuel N. Saridakis^{*a,b,c*}

^aNational Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece

^bDepartment of Physics, National Technical University of Athens, Zografou Campus GR 157 73, Athens, Greece

^cDepartment of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China

E-mail: msaridak@phys.uoa.gr

ABSTRACT: We present modified cosmological scenarios that arise from the application of the "gravity-thermodynamics" conjecture, using the Barrow entropy instead of the usual Bekenstein-Hawking one. The former is a modification of the black hole entropy due to quantum-gravitational effects that deform the black-hole horizon by giving it an intricate,

fractal structure. We extract modified cosmological equations which contain new extra terms that constitute an effective dark-energy sector, and which coincide with the usual Friedmann equations in the case where the new Barrow exponent acquires its Bekenstein-Hawking value. We present analytical expressions for the evolution of the effective dark energy density parameter, and we show that the universe undergoes through the usual matter and dark-energy epochs. Additionally, the dark-energy equation-of-state parameter is affected by the value of the Barrow deformation exponent and it can lie in the quintessence or phantom regime, or experience the phantom-divide crossing. Finally, at asymptotically large times the universe always results in the de-Sitter solution.

Figure 2. The evolution of w_{DE} as a function of the redshift z, for $A_0 = 1$, and for $\Delta = 0$ (blue-dashed), $\Delta = 0.2$ (purple-dotted), $\Delta = 0.4$ (red-dashed-dotted), and $\Delta = 0.6$ (orange-solid). We have imposed $\Omega_{m0} \approx 0.3$ at present time.

Infrared cut-off proposal for the Holographic density

L.N. Granda^{*} and A. Oliveros[†] Department of Physics, Universidad del Valle A.A. 25360, Cali, Colombia

Abstract

We propose an infrared cut-off for the holographic the dark-energy, which besides the square of the Hubble scale also contains the time derivative of the Hubble scale. This avoids the problem of causality which appears using the event horizon area as the cut-off, and solves the coincidence problem.

[Granda and Oliveros, Phys. Lett. B 669, 275 (2008)]

Trans-Planckian Problem

It is stated that with the ordinary renormalizable theories with Wilsonian UVcompletion one could probe an arbitrary short distance. However, in Einstein theory of gravity the tracking only goes on until one reaches the Planck length scale. It is shown that the minimal localization radius is described by a classical gravitational radius which turns out to be larger than the Compton wavelength, thus indicating that the described object is classical. It is an intrinsic feature of the Einstein gravity that by further tracking beyond the Planck scale, the theory classicalizes and presents a black hole. Therefore, by tracking perturbations to the trans-Planckian time, we are actually scaling them back to their classicalization.

[G. Dvali and C. Gomez, 1005.3497]

Micro-canonical and canonical description for generalised entropy

Shin'ichi Nojiri^{1,2}, Sergei D. Odintsov^{3,4}

¹⁾ Department of Physics, Nagoya University, Nagoya 464-8602, Japan
 ²⁾ Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602, Japan
 ³⁾ ICREA, Passeig Luis Companys, 23, 08010 Barcelona, Spain
 ⁴⁾ Institute of Space Sciences (ICE, CSIC) C. Can Magrans s/n, 08193 Barcelona, Spain

Few parameters dependent generalised entropy includes Tsallis entropy, Rényi entropy, Sharma-Mittal entropy, Barrow entropy, Kaniadakis entropy, etc as particular representatives. Its relation to physical systems is not always clear. In this paper, we propose the microscopic thermodynamic description for an arbitrary generalised entropy in terms of the particle system. It is shown that the change in the volume of the phase space of the particle system in the micro-canonical description or the difference in the integration measure in the phase space in the canonical description may lead to generalised entropy. Our consideration may help us understand the structure of quantum gravity.

[Nojiri and Odintsov, Phys. Lett. B 845, 138130 (2023)]