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Worldwide network
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Gravitational plane waves in flat spacetime
Tiny perturbation to flat space metric:

Solution to the Einstein eqn. for plane waves, in 

Transverse Traceless gauge:

Two polarizations, 45º apart, (for z propagation):



GW detection with a Michelson interferometer
 Assume that GW wavelength is much 

longer than arms, and that light traverses 
arms quickly compared with GW period.

 Calculate spacetime interval between test 
mass and beamsplitter.

 Use arm-arm difference in light travel time 
(phase) to measure strain.

Weiss 1972, MIT RLE Report No. 105, https://dcc.ligo.org/LIGO-P720002/public/main
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How LIGO sees the waves, 
in cartoon form
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Generation of Gravitational Waves,
or the experimentalist nightmare math

 GW radiation requires a time-varying non-zero quadrupole moment of the source’s mass.
 Constants of nature come together to make the effect very tiny, even for enormous 

sources.
 ‘Hertzian’ experiment probably impossible.
 Sources include inspiraling binary compact objects, non-spherical core implosion, driven or 

relaxing normal modes of compact objects, …  

where          is the non-spherical kinetic energy of the source. This formula is roughly the 
best-case, with optimal orientation.   

Ens
k
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Patience and stewardship over generations:
~110 years ago: Albert Einstein published his theory of General Relativity, including prediction 
of gravitational waves.
~60 years ago: Weber builds bar antennas to attempt detection of the waves.
~50 years ago: Key ideas for interferometric antennas developed by Weiss and others.  Bar 
antenna work continues, including cryogenics.  ALLEGRO  cryo. detector work underway at LSU.
~45 years ago: (U.S.) National Science Foundation funding of pre-LIGO R&D, continued GW 
detector research internationally, including Glasgow in the U.K. and MPQ in Germany.
~35 years ago: LIGO proposed to the NSF by MIT and Caltech.
~30 years ago: LIGO site construction began.
~20 years ago: initial LIGO running at design sensitivity.
~13 years ago: Advanced LIGO installation began with major international contributions, 
including from the U.K. and Germany.
September 2015: Advanced LIGO detectors see astrophysical signal from Black Holes.
August 2017: Advanced LIGO and Virgo detectors see signal from Neutron Stars.
June 2018: LIGO Livingston and Hanford recognized as APS historic physics sites.LIGO-G2400279-v2 8



Advanced LIGO Detectors:     
    installation 2010, first run fall 2015

PRL 116, 06112 (2016) LIGO-G2400279-v2 9



Detector noise sources

test mass actuation and 
angular controls

quantum (shot) noise

thermal (kT) noise in coating

• Lowest frequencies: 
noise dominated by 
control actuation 
necessary to maintain 
optical alignment, 
resonance and balance

• Mid frequencies: 
noise dominated by 
kT (thermal) noise in 
test mass coatings

• High frequencies: 
quantum (shot) noise. 
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1938 seismic isolation technology

General Motors LIGO-G2400279-v2 11



Active Seismic Isolation
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Seismic Isolation
• HEPI: Hydraulic External Pre-Isolator

large throw, isolation below ~5 Hz

• ISI: Internal Seismic Isolation
Isolates above ~0.2 Hz

• Quadruple pendulum: superior 
performance at 10 Hz and above

HEPI

ISI

Test Mass
at end of quad pendulum13



Monolithic Mirror Suspensions:
Fused silica test mass, hung from similar 

mass via pure silica fiber and ‘ears.’

Design from U.K.-German 
GEO 600 suspension

GEO 600 photo

Goal: thermal 
noise from 
mechanical 
dissipation as 
low as possible
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End station test mass

 Baffle assembly
 Quad pendulum, with reaction chain
 High reflectivity test mass mirror
 Transmission light telescope and 

instrumentation.
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GW170817: Localization and optical counterpart discovery
or, why astrophysics need a global GW network.

 From LIGO/Virgo/Many partners 
Multi-messenger paper, 
https://doi.org/10.3847/2041-
8213/aa91c9

 Fermi/GBM, LIGO/Virgo 
localization areas nicely 
intersect.

 1M2H team using Swope 
telescope found counterpart and 
galaxy 10 hours later.

LIGO-G2400279-v2 18
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Gamma-ray bursts seen

 mention what can be learned from delta t

• Strong evidence connecting short GRBs 
with NS mergers.

• https://doi.org/10.3847/2041-8213/aa920c
• ~2 s delay between GW and GRB signal 

can be used to limit theories that would 
make speed of GW and Gamma rays differ.
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Light, X-ray, radio

 First optical counterpart ID’d by 
1M2H team using Swope: DOI: 
10.1126/science.aap9811

 Object was near the Sun, making
it hard work. 

 Light dimmed and reddened over 
days.

 X-ray data taken with Chandra’s 
3-10 keV band: 
https://doi.org/10.3847/2041-
8213/aa8ede

 J VLA radio data, 3 and 6 GHz: 
DOI: 10.1126/science.aap9855

LIGO-G2400279-v2 20
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LVK runs and plans

Past (O1, O2, O3); Present (O4); future (O5)
 O4b is to begin early April, 2024 

and run until around the end of 
the year.

 Installation, commissioning and 
tests leading to O5 will occupy 
2025 and 2026.
Ø key feature is coatings with less 

mechanical dissipation and 
fluctuation, allowing other upgrades 
to be effective.
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Frequency-dependent squeezed vacuum
 Between O3 and O4, both LIGO detectors were outfitted 

with a frequency-dependent squeezed source.
Ø For the first time since LIGO was built, we added new piece 

of major detector-related architecture, a new 300 m 
enclosure beside Y arm, with a pass-through to the main 
(LVEA) high-bay space.

Ø This was a critical part of the A+ project, intended to 
augment and improve the Advanced LIGO detectors. 

Ø Briefly, an improved version of the O3-era squeezed state 
was reflected from a 300 m Fabry-Perot filter cavity. Opto-
mechanical interactions rotated the squeeze angle.

Ø At high frequencies, > 5 dB of squeezing in phase noise and 
anti-squeezing on amplitude noise

Ø At low frequencies, modest squeezing (or absence of anti-
squeezing) in amplitude noise.

 The squeezed vacuum state is injected into the 
antisymmetric Michelson port, in place of unaltered 
vacuum.

 The filter cavity length/ alignment and various squeezer 
degrees of freedom are stably controlled for performance 
and stability

 https://doi.org/10.1103/PhysRevX.13.041021  D. 
Ganapathy, W. Jia, M. Nakano, et. al. (LIGO O4 Detector 
Collaboration)
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New-for-O4 frequency-dependent squeezed 
vacuum preparation and injection
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Squeezing overview

 https://doi.org/10.1103/PhysRevX.13.
041021   D. Ganapathy, W. Jia, M. 
Nakano, et. al. (LIGO O4 Detector 
Collaboration)

 The squeezer generates squeezed 
vacuum at 1064 nm using a 
subthreshold optical parametric 
oscillator, pumped at 532 nm 
stabilized from main laser.

 Two sidebands are added, to allow 
extraction of error signals for the 
squeeze angle and filter cavity length 
with offset.

 Long-term angle and length stability is 
controlled globally with main 
interferometer degrees of freedom.

 Various diagnostic states are 
available.
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Scattered light

Corey Austin,
LSU Ph.D. student

View of the effect of one of the baffles
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Scattered light abatement (Corey Austin, LSU Ph.D. ’20)

Corey Austin
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Reduction of noise from scattered light

 Search for coupling of out-of-
band ground motion to detector 
output implicated undamped 
resonance in beam cavity baffle. 
This was damped, and a short 
removed, leading to reduced 
coupling

 arXiv:2401.17495v1 [gr-qc] 30 
Jan 2024.  S. Soni, J. Glanzer, 
A. Effler, V. Frolov, G. 
González, A. Pele, R. Schofield.

 D Davis et al 2021 Class. 
Quantum Grav. 38 135014 DOI 
10.1088/1361-6382/abfd85
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Comparison between O3b and O4a
 Overlay of typical O3b and early O4a 

Livingston noise
 Changes:

Ø Arm power increase 250 kW/200 kW (O3a/O3b) 
to 320 kW O4a, and due to the higher level of 
(frequency dependent) squeezing ~2.5 dB -> 5.3 
dB, which also reduces the radiation pressure 
noise.

Ø The DARM noise reduction at low frequency is 
due to the following improvements:
v change of the TM spot position control 

scheme: dither->camera
v rework of the subtraction and cut off filters of 

the LSC/ASC/BOSEM noises
v removing the mechanical shorting on the 

arm cavity baffles
v reduction of the HAM1 table motion
v reduction of the AS port back scatter: removal 

of the HAM5/6 septum plate, cleaning of the 
output mode cleaner, and new output 
Faraday isolator

 V. Frolov. https://alog.ligo-
la.caltech.edu/aLOG/index.php?callRep=66948
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LIGO O4a noise performance
 Typical O4a Livingston noise 

spectrum, with modeled 
contributions, 29 Jul 2023

 Interesting contributions include
Ø Quantum sensing
Ø Coating Brownian
Ø Angular controls
Ø Mystery (near 20 Hz)

 Range for NS/NS mergers, 
averaged over pol. and angles: 
155 Mpc.

 A. Effler, V. Frolov. https://alog.ligo-
la.caltech.edu/aLOG/index.php?callRep=
66532

LIGO-G2400279-v2 31



FROM O3 TO O4: ADV+ DESIGN SENSITIVITY

ØPhase I (before O4: 2023-24)
– Reduce quantum noise, hit against 

thermal noise
– Reduction of technical noises
– Preparation of Phase II
– BNS range ~ 100 Mpc

ØPhase II (before O5: 2027-28)
– Lower thermal noise wall
– BNS range ~ 200 Mpc

Virgo Status,
from Gianlucca Gemme
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ADVANCED VIRGO+ PHASE I

Ø Installation within a year 
despite pandemic
─ Main interferometer complete in

December 2020
─ Quantum noise reduction system

complete in April 2021
Ø Commissioning

─ Started in January/May 2021 for
main ITF/QNR system

Ø Two aspects fundamentally 
new (in Virgo)
─ Signal recycling
─ Frequency-dependent 

squeezing

Virgo Status,
from Gianlucca Gemme
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O4 COMMISSIONING
Ø Stable and reproducible control of interferometer mostly achieved in fall 2022, after

– Lowering input power from nominal 40 W to 33 W (further reduced to 23 W in Feb 2023)
– Installing new thermal actuator to correct power-recycling mirror curvature
– Learning to deal with signal-recycling cavity with resonating higher-order modes

o Due to Virgo specific optical configuration: marginally-stable recycling cavities

Ø Commissioning took (and is taking) much longer than expected

Ø Virgo will join O4 in March 2024 and with a worse sensitivity than expected
(mitigation of known noise sources: around 50 Mpc)

Virgo Status,
from Gianlucca Gemme
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STABLE VS. MARGINALLY STABLE OPTICAL CAVITIES

Stable optical recycling cavities

Marginally stable optical 
recycling cavities

Virgo Status,
from Gianlucca Gemme
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WHAT’S NEXT? O5, POST-O5 AND 3RD GEN

ØPlans for O5 being revised

Ø Install stable recycling cavities in Virgo?
– Realistic options, timing, cost, impact on 

ongoing activities, impact on observing 
timeline

ØPost-O5 [not funded yet]
– Goal: another x 2 astrophysical range 
– In progress: A# and Virgo_nEXT
– Conceptual design by the end of 2024
– Target: early 2030’s 

ØLIGO India approved
– The Government of India approved the 

construction of the LIGO India Observatory with 
~$315M (US $ equivalent) in funding

– LIGO Lab/NSF is providing the components for 
one Advanced LIGO detector to be housed at 
the LIGO Aundha Observatory (LAO) as well as 
technical advice & support

– The facility's construction is expected to be 
completed by 2030 (Post-O5 era)

Ø3rd generation detectors
– x10 sensitivity improvement
– Einstein telescope in Europe

o 10 km arm, underground, cryogenics, triangle
– Exceptional science reach

Virgo Status,
from Gianlucca Gemme
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Science overview 
through O3

 GW150914
Ø First astrophysical source
Ø Binary black holes exist

 GW170817
Ø Binary neutron star mergers are gamma-

ray burst progenitors
 GW190521

Ø Black holes exist in pair instability mass 
gap

 GW190814
Ø Compact objects exist with masses 

between 2-5 M☉
 This short summary based on P. Brady: 

https://dcc.ligo.org/LIGO-G2302128/public 
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GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the
Second Part of the Third Observing Run

Previous NS-NS mergers New features entries from GWTC-3 and O3b
 Recently published GWTC-3 catalog paper 

lists a total of 90 compact object mergers 
from O1, 02 and both halves of O3.
Ø new criteria for signals with probability of 

astrophysical origin greater than 50%.
Ø it is likely that a handful will be false and a 

handful of the unlisted are true.
 New objects from O3b include:

Ø two NS-NS mergers (alas, no non-GW signals): 
GW191219_163120 and GW200115_042309.

Ø a few BH-BH mergers that seem to have spin > 
0.8.

 https://doi.org/10.1103/PhysRevX.13.041039 
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O4a is complete; O4b is to begin after commissioning.

 The 8-month run brought 81 non-
retracted public alerts for compact 
object mergers, and 11 retractions.
Ø The astro community likes that ratio, 

preferring not to miss anything.
Ø We also had 1610 low significance 

‘events.’
 O4a is the first run for which we began 

with calibration that wasn’t intended to 
need updates and refinements.
Ø The goal is to avoid analysis projects 

waiting for calibration to be set.
Ø Calibration error estimates began a 

bit later.
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O4a

 For the bulk of O3b, both sites had passed the 160 Mpc range 
intended for the run.

 Integrated spacetime search volume was approximately 
equivalent to all prior runs combined.

 Stay tuned for careful data analysis and astrophysical 
interpretation!
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Usually (but not always), commissioning pays off

 When detector improvements and 
commissioning make even modest 
improvements in range, the event 
rate disproportionately rises.

 We carefully plan and optimize this 
work during scheduled breaks 
between runs.

 Sometimes the improvements 
happen as a result of careful work 
during the runs; see late O2.
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 http://gw-openscience.org/
Easy point & click downloads 
of calibrated strain data
Includes: 
ØData Discovery
ØDocumentation
ØExamples
ØData Quality 
ØSegments
ØInjections

 https://papers.ligo.org 
LSC publications
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LIGO Science Education Center: a partnership with Southern 
University, the SF Exploratorium, and educators. 

 The U.S. NSF has funded SUBR, Caltech 
and the Baton Rouge Area Foundation to 
build and carry out educational programs 
related to LIGO science and inquiry-based 
learning.

 The LIGO SEC programs reach over 
20,000 people each year, focusing on 
classroom visits and teacher training.

 Docents serve as role models for children 
who wish to pursue science and technology 
careers.
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LSU and Southern inter/docents at the helms of 
both LIGO detectors as the wave was detected

Nutsinee Kijbunchoo and William ParkerLIGO-G2400279-v2 44



Thank you!
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