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PBH formation
- conventional scenario -
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There may be a high peak in the curvature 
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from CMB & LSS

almost no constraint 
on small scales
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N= log a
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The peak re-enters horizon during radiation 
era. If the amplitude > O(0.1), PBH will form. 
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Conventional PBH formation in a nutshell
• Primordial Black Holes (PBHs) are 

those formed in the very early 
universe, conventionally when the 
universe was radiation-dominated.

• Presumably they originate from a 
large positive curvature perturbation 
produced during inflation (which 
hence should be a rare event).

• For a BH to form during radiation 
dominance, the perturbation must be 
O(1) on the Hubble horizon scale.

time
Hubble radius = H-1 (∝ 𝑎!)

comoving length (∝ 𝑎)

PBH
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fraction β that turns into PBHs

• When sM << D c, β can be approximated by exponential:

for Gaussian probability distribution

Δ! ≡
𝛿𝜌!
𝜌 "#$%

∼ 0.4

Carr, ApJ 201, 1 (1975), …

• Recent studies indicates enhanced production: Δ& ∼ 0.2
Yoo, Harada, Garriga & Kohri, 1805.03946using peak theory

• Non-Gaussianity may significantly affect b 

non-Gaussianity

𝛽 ≈ ⁄' ,
-!
."

exp − ."#

'-!
#

Δ!
0.5

Young, Regan & Byrnes, 1512.07224, …. 6



no constraint due to
finite size effect/wave effect

Niikura et al. 1701.02151

observational constraints

𝑀012 ≈ 10!3 − 10''g Tre-entry	~	104 -108	GeVbig window at

Subaru
HSC LIGO-Virgo (LV)

BHs?
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induced GWs 
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GWs can capture PBHs!

curvature
perturbation

large peaks form PBHs

NL effect induces GWs spacetime oscillations

PBH

PBHs = CDM with MPBH ~1021g 
generates GWs with f~10-3 Hz

Background GWs
at LISA band

PBHs =LV BHs with MPBH ~10M⊙
generates GWs with f~10-8 Hz

Background GWs
at PTA band
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GWs can test PBH scenario!  

Saito & Yokoyama 0812.4339

(Ω"#$ℎ%, 𝑀"#$) = (10&', 100𝑀⊙)
(Ω"#$ℎ%, 𝑀"#$) = (10&),10%* g)

PBHs = CDM?
PBHs = LV BHs?

Cai, Pi, Wang & Yang 1907.06372

ØPBHs =LV BHs scenario is already constrained by 
PTA data
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NANOGrav: 2306.16213, EPTA: 2306.16214, CPTA: 2306.16216 

Recent News from NANOGrav + CPTA + EPTA 
Evidence for Stochastic GW Background!? 

NANOGrav 15 yr data

EPTA 25 yr/10 yr data

g=13/3

HD curve

HD curve

HD curve HD curve

14 nHz 18.7 nHz

g=13/3: expected index if SMBH mergers

CPTA 3 yr data
frequency dependence
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NANOGrav: 2306.16219
If NANOGrav Data = iGWs, with curvature perturbation spectrum, 

∆~1.6+0.4−1.0

𝐴~10&'.)±'.+ 𝐴
2𝜋∆

~0.1

too large!?

induced GWs?



Inflation models
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constraints on single-field case

Leach, MS, Wands & Liddle (‘01), …

k/Mpc-1
1

• a feature in the potential leads to the spectrum ∝k4

103 10910610-3

PR(k)

10-9

10-2

~M⊙MPBH~106M⊙ ~10-6M⊙

∝	k4∝	k4

Kohri, Lyth & Melchiorri, 0711.5006

𝑃ℛ 𝑘 = 𝑃ℛ(𝑘∗)exp[ 𝑛. − 1 ln( ⁄𝑘 𝑘∗) + 𝑛./ ln0 ⁄𝑘 𝑘∗ ]
• slow-roll case

Planck 2018 X, 1807.06211

10-5

slow-roll case
difficult but

not impossible 

featured potential
easy but 

needs tuning 

2-field model can avoid these issues!

14

amp necessary
for PBH formation



• scalaron f becomes massive at the end of Stage 1

Two-field model 1: 2-stage inflation
Pi, Zhang, Huang & MS, 1712.09896
Wang, Zhang & MS, 2302.xxxx

~ Starobinsky (scalaron) + curvaton

15

• many 2-stage models can lead to PBH formation
eg, Kawasaki et al., 1606.07631 
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10-6

10-4

0.01

Nend— end of inflation
Nexit— horizon exit

Superhorizon enhancement of curvature perturbation
curvature perturbation on comoving slices

log

• is enhanced due to 
contribution from 
decaying dc during 1st

stage

• non-Gaussianity seems
small

sharp peak

common in 2-stage models?



PBH mass function

scalaron+c model can realize
PBH=CDM scenario with
monochromatic mass function!

17

with criterion based on Press-Schechter formalism 
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can our model explain PTA result?

seems possible…
but this is NOT based on statistical analysis



Two-field model 2: non-minimal curvaton
Pi & MS, 2112.12680

𝑓(𝜑)

𝜑

dip • assume f <<1 when j ∼ j *

𝜑
*

(𝑚>
'≪ 𝐻')

• vacuum fluctuation: 𝑓 𝜑 𝛿𝑥 =
𝐻
2𝜋

𝛿𝑥 =
𝐻
2𝜋𝑓

• dc is enhanced at j = j *

1

𝑘𝑘*

𝑃 (𝑘)
dc

leads to PBH formation

peak ∝ 1/𝑓(𝜑∗)

𝑘∗ = 𝐻𝑎(𝑡∗)

𝜑∗ = 𝜑(𝑡∗)
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Highly non-Gaussian curvature perturbation

𝑒)1- ?@
AB@

1 + CD
D

'
𝑒E + A@FA

AB@
=0

z = curvature perturbation on uniform density slices
r = rc/rtot at epoch of curvaton decay

MS, Valiviita & Wands, 
astro-ph/0607627

• Criterion z > zcr~0.5 gives a highly nonlinear expression in 𝛿 ≡dc/c

20

• For 𝛿 ≡dc/c ≫1, r≪1, 

𝑒AE ≈ ?@
A
𝛿' 𝑃(𝜁) ≈ !

@$/#- exp − AG&'

H@-# +
A
' 𝜁 ; 𝜎'= 𝛿'

PDF tail is highly non-Gaussian for 𝜎0r≫1 

Power spectrum is still perturbative for 

for r<<1𝜁 = CD
D + A?@

CD
D

'
𝑃 (𝑘 )dc * 𝑃E 𝑘*

important for induced GWs
r≪1 
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single-field with featured potential
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Single-field model 1: potential w/ inflection point

V(f)

quantum diffusion may dominate
(ultra slow-roll)

Pattison, Vennin, Wands & Assadullahi, 2101.05741, …

𝛿𝜙~
�̇�
𝐻

𝐻
2𝜋

classical 
background 

motion

vacuum 
fluctuations= 𝛿N= −I

K̇ 𝛿𝜙~O(1)

tail is exponentially enhanced:                   instead of

slow roll

fully non-Gaussian PBH formation

exponential tail is actually quite common in potential with a feature

Pi & MS, 2211.13932

R

exp(- cR) exp(- cR2 )

𝑁~log(𝑎𝜙 + 𝑏)



!(#)

#!!

Slow-roll Stage-Ⅱ Slow-roll Stage-Ⅰ

(%! , '!)

(%", '")

(%# , '#)

(%# , '$)
(!

Single-field model 2: Upward step

Cai, Ma, MS, Wang & Zhou, 2112.13836

- One Small Step for an Inflaton, One Giant Leap for Inflation -

𝜋 ≡
𝑑𝜙
𝐻𝑑𝑡

even for a tiny step, DV<<V, 
PR(k) is enhanced by 1/g2  if

𝑔 ≡
𝜋*
𝜋+

≪ 1

𝜋*=- 𝜋+, − 6𝛥𝑉/𝑉
• energy conservation at the step:

𝜋+ = − 2𝜀+
𝜀!: SR parameter at f=fc

(in 𝑀2345"6 = 1 units)

23
1 − 𝛥𝑉/(𝑉𝜀+) ≪ 1
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non-perturbative non-Gaussian tail
• perturbative non-Gaussian parameters are small if −ℎ ≡

6 2𝜀7
𝜋8

≪ 1

𝒫 𝑘 ≈ 𝒫- 𝑘
power spectrum is 

given by Gaussian part

no PBH formation if ℛ+,- < ℛ+./-~0.5

• tail of distribution is extremely non-Gaussian

exponential enhancement
for |h|<O(1)

∙	∙	∙	∃cutoff
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Finite-width upward step
Kawaguchi, Fujita & MS, 2305.18140
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Note that the velocity perturbation �⇡ at the starting point is assumed to be negligibly small. In what follows, we
start from ' on the first SR attractor (' > '1), and compute �N generated in all stages 2.

In the first SR stage, the initial perturbation �' induces �N as well as the velocity perturbation at the end of the
first stage �⇡1. We obtain them by comparing Eq. (3.1) at i = 1 to its perturbed expression with ' ! ' + �' and
⇡1 ! ⇡1 + �⇡1 as (see Appendix.C 1 for derivation)

�N
(1)

' �
�'

⇡
, �⇡1 ' �

⌘1

2

✓
⇡

⇡1

◆ 6
⌘1

�' , (4.2)

where �N
(1) denotes the contribution to total �N from the first SR stage. This approximation is valid for |�N (1)

| ⌧

1/3. One can apparently choose ' from any values within the first SR stage. However, since 6/⌘1 is large, if we choose
' far from the step, �⇡1 would be substantially suppressed by the factor (⇡/⇡1)6/⌘1 . This is a consequence of the
fact that the background trajectory is an attractor in the first SR stage. If �⇡1 is strongly suppressed, there would
be no significant contribution to total �N from the subsequent evolution in the step stage. In this paper, therefore,
we consider ' close to '1 and investigate the e↵ect of the upward step on the curvature perturbations, that exit the
horizon slightly before entering the step stage.

In the second SR stage, �N is produced by �⇡2, contrary to �N
(1) induced by �'. Perturbing Eq. (3.2), we find

that �⇡2 is given by

�⇡2 = ⇡2

0

@
s

1 +
2

g2

�⇡1

⇡1
+

1

g2

✓
�⇡1

⇡1

◆2

� 1

1

A , (4.3)

where the Hubble friction in the step stage was ignored. Using Eq. (3.1) at i = 2 in a similar way to Eq. (4.2) but
only with ⇡2 ! ⇡2 + �⇡2, we obtain the contribution to �N from the second SR stage as (see Appendix.C 2)

�N
(2)

' �
g

3

�⇡2

⇡2
'

g

3

0

@1�

s

1 +
2

g2

�⇡1

⇡1
+

1

g2

✓
�⇡1

⇡1

◆2
1

A . (4.4)

Note that the first approximate equality in Eq. (4.4) relies only on |1/⌘2| � 1 and we do not assume that �⇡2/⇡2 is
small. Indeed, we will consider the case with |�⇡2/⇡2| = O(1) soon below.

The contribution to �N from the step stage is divided into two: one from the S1 region �N
(s1) and the other from

the S2 region �N
(s2). The former is highly suppressed by �' and (⇡/⇡1)6/⌘1 , and negligible compared to �N

(1) (see
Appendix.C 3). In contrast, �N (s2) can be significant. As discussed below Eq. (3.4), the background e-folds of the S2
region is given by

N
(s2)

'
1

!s2
sinh�1

✓
�'

2|⇡2|
!s2

◆
'

1

!s2
log

✓
�'

|⇡2|
!s2

◆
. (4.5)

Perturbing it, we obtain

�N
(s2)

' �
1

!s2
log

✓
1 +

�⇡2

⇡2

◆
. (4.6)

It is important to note that when �⇡2 is comparable to �⇡2, �N (s2) may diverge to infinity. This corresponds to
the perturbed cases in which the inflaton exhausts the most of the kinetic energy to climb up the step and takes an
enormous amount of time to pass through it. As we will see below, �N (s2) makes a significant impact on the curvature
perturbation.

Summing up the contributions to �N from the three stages, Eqs. (4.2),(4.4) and (4.6), we obtain

R = ��'+
g

3

 
1�

s

1 +
2�

g2
�'+

�2

g2
�'2

!
�

1

2!s2
log

✓
1 +

2�

g2
�'+

�
2

g2
�'

2

◆
, (4.7)

2
The e-folding number taken for the inflaton to pass through the step stage is only about �N ⇠ 1/!s1 ⌧ 1 and the corresponding band

of wavenumbers that exit the Hubble horizon during the step stage, is very narrow. Thus, we do not consider curvature perturbations

on such scales in this paper. The scales crossing the Hubble horizon after the step stage are not studied in this paper either, as they

are similar to the normal SR case, although the evolution of �' well inside the horizon is a↵ected by the step.
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r
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p
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, (2.10)

!s2 ⌘

r
�6B2

A2
'

p
2 |⇡1|

�'
, (2.11)

where ✏V ⌘ (@'v/v)2/2 and ⌘V ⌘ @''v/v are the potential slow-roll parameters and the subscript i indicates that a
quantity is evaluated at ' = 'i (i = 1, 2). The approximations used in Eqs. (2.10) and (2.11) assume �' ⌧ |⇡1| and
g ⌧ 1, and the dependence of !s1 and !s2 on �' will be emphasized in the later discussion.

III. BACKGROUND SOLUTION

In this section, we briefly discuss the background behavior of the scalar field in each of the three stages. In solving
the background equation of motion (2.3), we use the following three approximations. (I) The kinetic energy of the
scalar field is subdominant compared to the potential energy, h2

⇡
2
⌧ v. (II) Assuming the width of the step �' is

su�ciently small, we keep only its leading contributions. Consequently, 'min and 'max are identified with '1 and '2,
respectively. (III) The Hubble friction is negligible in the step stage. The detailed derivations of the solutions and the
discussions on the limitations of the above approximations can be found in Appendices. B and D.

In the SR stages, a general SR solution is applicable,

'(n)� 'i =
2
p
2✏V i

⌘i

⇣
1� e

⌘i
2 (n�ni)

⌘
+

1

3

�
⇡i +

p
2✏V i

� ⇣
e

⌘i
2 (n�ni) � e

�(3+
⌘i
2 )(n�ni)

⌘
. (3.1)

Again, we used the shorthand notation Xi ⌘ X('i). One needs to know ⇡i to fix the boundary condition. In the first
SR stage, the background trajectory is on the SR attractor, i.e. ⇡1 = �

p
2✏V 1 and hence the second term in Eq. (3.1)

vanishes. In the second SR stage, however, the trajectory is not on the attractor in the relaxation phase (see Fig. 1).
To find ⇡2 we use the approximated energy conservation during the step stage,

⇡2 = �

s

⇡
2
1 + 6 log

✓
v('1)

v('2)

◆
. (3.2)

Here ⇡
2
/2+ 3 log(v) is conserved, because the background equation of motion with the above approximations (I) and

(III) reduces to d⇡/dn+ 3@' log(v) = 0 as shown in Eq. (B.1).
The step stage is split into the S1 and S2 region, which has a normal and inverted harmonic potential, respectively

(see Eq. (2.6)). The background solutions in these regions are

'(n)� '1 =
⇡1

!s1
sin (!s1(n� n1)) , ('c  ' < '1) (3.3)

'(n)� '2 =
⇡2

!s2
sinh (!s2(n� n2)) . ('2 < ' < 'c) (3.4)

Note that for extremely small ⇡2, Eq. (3.4) can be inverted as !s2(n2 � n) ' log(2!s2('(n)� '2)/|⇡2|). This implies
that it takes logarithmically longer time for the background inflaton to climb up the upward step for smaller ⇡2. It
will have a significant impact on the final result.

IV. CALCULATION OF �N

We now turn our attention to the the curvature perturbation R. According to the �N formalism, the curvature
perturbation R can be calculated as the di↵erence in the number of e-folds between the perturbed spacetime and the
background spacetime [59–65],

R = �N ⌘ N('+ �',⇡ + �⇡;'f ,⇡f )�N(',⇡;'f ,⇡f ), (4.1)

where N(',⇡;'0
,⇡

0) is the number of e-folds for which the inflaton takes to evolve from (',⇡) to ('0
,⇡

0) in the phase
space. In this paper, we assign (',⇡) to the background value at the horizon crossing time for a scale of interest k.
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IV. CALCULATION OF �N

We now turn our attention to the the curvature perturbation R. According to the �N formalism, the curvature
perturbation R can be calculated as the di↵erence in the number of e-folds between the perturbed spacetime and the
background spacetime [59–65],

R = �N ⌘ N('+ �',⇡ + �⇡;'f ,⇡f )�N(',⇡;'f ,⇡f ), (4.1)

where N(',⇡;'0
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0) is the number of e-folds for which the inflaton takes to evolve from (',⇡) to ('0
,⇡

0) in the phase
space. In this paper, we assign (',⇡) to the background value at the horizon crossing time for a scale of interest k.

width parameter

Ø finite width gives rise to exponential tail
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(III) reduces to d⇡/dn+ 3@' log(v) = 0 as shown in Eq. (B.1).
The step stage is split into the S1 and S2 region, which has a normal and inverted harmonic potential, respectively

(see Eq. (2.6)). The background solutions in these regions are

'(n)� '1 =
⇡1

!s1
sin (!s1(n� n1)) , ('c  ' < '1) (3.3)

'(n)� '2 =
⇡2

!s2
sinh (!s2(n� n2)) . ('2 < ' < 'c) (3.4)

Note that for extremely small ⇡2, Eq. (3.4) can be inverted as !s2(n2 � n) ' log(2!s2('(n)� '2)/|⇡2|). This implies
that it takes logarithmically longer time for the background inflaton to climb up the upward step for smaller ⇡2. It
will have a significant impact on the final result.

IV. CALCULATION OF �N

We now turn our attention to the the curvature perturbation R. According to the �N formalism, the curvature
perturbation R can be calculated as the di↵erence in the number of e-folds between the perturbed spacetime and the
background spacetime [59–65],

R = �N ⌘ N('+ �',⇡ + �⇡;'f ,⇡f )�N(',⇡;'f ,⇡f ), (4.1)

where N(',⇡;'0
,⇡

0) is the number of e-folds for which the inflaton takes to evolve from (',⇡) to ('0
,⇡

0) in the phase
space. In this paper, we assign (',⇡) to the background value at the horizon crossing time for a scale of interest k.

→ ∞zero width limit:

𝑑𝛿𝜑
𝑑ℛ

∝ exp[−2𝜔𝑠2ℛ]ℛ = −
𝛿𝜑
𝜋
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Note that the velocity perturbation �⇡ at the starting point is assumed to be negligibly small. In what follows, we
start from ' on the first SR attractor (' > '1), and compute �N generated in all stages 2.

In the first SR stage, the initial perturbation �' induces �N as well as the velocity perturbation at the end of the
first stage �⇡1. We obtain them by comparing Eq. (3.1) at i = 1 to its perturbed expression with ' ! ' + �' and
⇡1 ! ⇡1 + �⇡1 as (see Appendix.C 1 for derivation)

�N
(1)

' �
�'

⇡
, �⇡1 ' �

⌘1

2

✓
⇡

⇡1

◆ 6
⌘1

�' , (4.2)

where �N
(1) denotes the contribution to total �N from the first SR stage. This approximation is valid for |�N (1)

| ⌧

1/3. One can apparently choose ' from any values within the first SR stage. However, since 6/⌘1 is large, if we choose
' far from the step, �⇡1 would be substantially suppressed by the factor (⇡/⇡1)6/⌘1 . This is a consequence of the
fact that the background trajectory is an attractor in the first SR stage. If �⇡1 is strongly suppressed, there would
be no significant contribution to total �N from the subsequent evolution in the step stage. In this paper, therefore,
we consider ' close to '1 and investigate the e↵ect of the upward step on the curvature perturbations, that exit the
horizon slightly before entering the step stage.

In the second SR stage, �N is produced by �⇡2, contrary to �N
(1) induced by �'. Perturbing Eq. (3.2), we find

that �⇡2 is given by

�⇡2 = ⇡2

0

@
s

1 +
2

g2

�⇡1

⇡1
+

1

g2

✓
�⇡1

⇡1

◆2

� 1

1

A , (4.3)

where the Hubble friction in the step stage was ignored. Using Eq. (3.1) at i = 2 in a similar way to Eq. (4.2) but
only with ⇡2 ! ⇡2 + �⇡2, we obtain the contribution to �N from the second SR stage as (see Appendix.C 2)

�N
(2)

' �
g

3

�⇡2

⇡2
'

g

3

0

@1�

s

1 +
2

g2

�⇡1

⇡1
+

1

g2

✓
�⇡1

⇡1

◆2
1

A . (4.4)

Note that the first approximate equality in Eq. (4.4) relies only on |1/⌘2| � 1 and we do not assume that �⇡2/⇡2 is
small. Indeed, we will consider the case with |�⇡2/⇡2| = O(1) soon below.

The contribution to �N from the step stage is divided into two: one from the S1 region �N
(s1) and the other from

the S2 region �N
(s2). The former is highly suppressed by �' and (⇡/⇡1)6/⌘1 , and negligible compared to �N

(1) (see
Appendix.C 3). In contrast, �N (s2) can be significant. As discussed below Eq. (3.4), the background e-folds of the S2
region is given by

N
(s2)

'
1

!s2
sinh�1

✓
�'

2|⇡2|
!s2

◆
'

1

!s2
log

✓
�'

|⇡2|
!s2

◆
. (4.5)

Perturbing it, we obtain

�N
(s2)

' �
1

!s2
log

✓
1 +

�⇡2

⇡2

◆
. (4.6)

It is important to note that when �⇡2 is comparable to �⇡2, �N (s2) may diverge to infinity. This corresponds to
the perturbed cases in which the inflaton exhausts the most of the kinetic energy to climb up the step and takes an
enormous amount of time to pass through it. As we will see below, �N (s2) makes a significant impact on the curvature
perturbation.

Summing up the contributions to �N from the three stages, Eqs. (4.2),(4.4) and (4.6), we obtain

R = ��'+
g

3

 
1�

s

1 +
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g2
�'+

�2

g2
�'2

!
�

1

2!s2
log

✓
1 +

2�

g2
�'+

�
2

g2
�'

2

◆
, (4.7)

2
The e-folding number taken for the inflaton to pass through the step stage is only about �N ⇠ 1/!s1 ⌧ 1 and the corresponding band

of wavenumbers that exit the Hubble horizon during the step stage, is very narrow. Thus, we do not consider curvature perturbations

on such scales in this paper. The scales crossing the Hubble horizon after the step stage are not studied in this paper either, as they

are similar to the normal SR case, although the evolution of �' well inside the horizon is a↵ected by the step.

𝜋 ≡
𝑑𝜙
𝐻𝑑𝑡

𝑷 ℛ = 𝑷(𝜹𝝓)
𝒅𝜹𝝓
𝒅ℛPDF:

𝛾 ∝ −𝑉′′
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unusual type of field space trajectories

dead end!

normal type unusual type



27

trajectories that can’t climb the step

PDF cutoff at 

region stuck at f=fc will become PBH!

V(f)

fDV

region A expands until V(f) surrounding it 
becomes smaller than V(fA)=V0

A

Dn

# of e-folds region A expands

PBH formation during inflation

A
B

B

Prob~exp[−(2𝜎90ℎ0)&:]

depending on EOS 
after inflationDeng & Vilenkin,1710.02865



Isocurvature
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PBHs from Isocurvature Perturbation
eg, E. Cotner, A. Kusenko, MS & V. Takhistov,1907.10613 

𝜌𝑎A

𝑎

𝜌@ ∝ 𝑎 F?

matter-dom

𝜌

𝑥
matter-dom stage

𝜌

𝑥initial rad-dom stage

𝜌Y ∝ 𝑎FA

𝐻F!

adiabatic
BH

non-grav formation of compact objects/Q-balls/etc inside horizon.

distribution may be inhomogeneous = isocurvature

PBH may form if clustered

rad-dom again if objects eventually decay

𝐻F!

can be nonlinear from the beginning
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What if formed objects are PBHs?
Papanikolaou, Vennin & Langlois, 2010.11573
Domenech, Lin & MS, 2012.08151

PBHs

𝜌

𝑥
RD universe

PBH distribution

radiation density

𝜌

𝑥
MD universe

adiabatic perturbation

𝜌

𝑥
RD universe

oscillating adiabatic perturbation

GWs

Flores & Kusenko, 2008.12456

• PBHs may be formed from curvature perturbation or by 
alternative strong force

inhomogeneous PBH distribution 
may induce GWs when the 
universe is reheated by PBH 
evaporation
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Constraints on early PBH dominated universe

Monochromatic mass function for PBHs.
Poisson distribution for

𝒫.(𝑘) =
2
3𝜋

⁄𝑘 𝑘/0 1; 𝑘 < 𝑘/0 = 𝑛234
56/1

𝛿𝑛2;</𝑛2;<:

• Assumptions

• Resulting spectrum

Ω=>,@AB
ΩC,'

≈ 5×10D)𝛽 ⁄:+ D 𝑀
10)g

⁄:) D

𝛽: PBH fraction at formation

𝑘F# ≈ 0.04𝑘GH 𝑀2;</10)g &:/+

𝑘2.

∝ 𝑘

∝ 𝑘
#sharp rise ~ k 5 near the peak.

Peak value:

constraints on 𝛽

Domenech, Lin & MS, 2012.08151
Domenech, Takhistov & MS, 2105.06816
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allowable range of β𝛽J$5 ≈ 6×10&:'
𝑀2;<
10)g

&:

𝛽J4K ≈ 1×10&+
𝑀2;<
10)g

&:L/0)

𝑓!"

103 Hz

GW detectors sensitivity curves

Constraints on β and frequencies 

frequency range vs MPBH
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summary

PBH-GW Cosmology!

• various inflation models can lead to PBH formation

• late stage of inflation can be probed by PBHs and the 
associated secondary/induced GWs

• (nonlinear) isocurvature perturbations may play 
important roles in PBH cosmology

• PBHs may play central roles in GW cosmology
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