Primordial Black Holes

 from Inflation

 from Inflation}

Misao Sasaki

Kavli IPMU, University of Tokyo
YITP, Kyoto University
LeCosPA, Taiwan National University

PBH formation

 - conventional scenario -${ }^{\log \mathrm{L}} \uparrow \quad$ cosmological spacetime diagram

Conventional PBH formation in a nutshell

- Primordial Black Holes (PBHs) are those formed in the very early universe, conventionally when the universe was radiation-dominated.
- Presumably they originate from a large positive curvature perturbation produced during inflation (which hence should be a rare event).
- For a BH to form during radiation dominance, the perturbation must be O(1) on the Hubble horizon scale.

$$
M_{\mathrm{PBH}} \sim M_{\text {horizon }}
$$

$$
\sim\left(\frac{100 \mathrm{MeV}}{T}\right)^{2} M_{\odot} \sim\left(\frac{\ell}{1 \mathrm{pc}}\right)^{2} M_{\odot}
$$

fraction β that turns into PBHs

for Gaussian probability distribution

- When $\sigma м \ll \Delta c, \beta$ can be approximated by exponential:

$$
\beta \approx \sqrt{2 / \pi} \frac{\sigma_{M}}{\Delta_{c}} \exp \left(-\frac{\Delta_{c}^{2}}{2 \sigma_{M}^{2}}\right) \quad \Delta_{c} \equiv\left(\frac{\delta \rho_{c}}{\rho}\right)_{\mathrm{crit}} \sim 0.4
$$

Carr, ApJ 201, 1 (1975), ...

- Recent studies,indicates enhanced production: $\Delta_{c} \sim 0.2$
using peak theory Yoo, Harada, Garriga \& Kohri, 1805.03946
- Non-Gaussianity may significantly affect β

observational constraints

big window at $M_{\text {PBH }} \approx 10^{17}-10^{22} \mathrm{~g} \leftrightarrow T_{\text {re-entry }} \sim 10^{4}-10^{8} \mathrm{GeV}$

induced GWs

GWs can capture PBHs!

PBHs = CDM with MPBH $^{\sim} 10^{21} \mathrm{~g}$ generates GWs with $\mathrm{f} \sim 10^{-3} \mathrm{~Hz}$

PBHs =LV BHs with Mрвн $\sim 10 \mathrm{M}_{\odot}$ generates GWs with $\mathrm{f} \sim 10^{-8} \mathrm{~Hz}$

Background GWs at LISA band

Background GWs at PTA band

GWs can test PBH scenario!

\triangle PBHs $=$ LV BHs scenario is already constrained by PTA data

Cai, Pi, Wang \& Yang 1907.06372

Recent News from NANOGrav + CPTA + EPTA

 Evidence for Stochastic GW Background!?NANOGrav: 2306.16213, EPTA: 2306.16214, CPTA: 2306.16216

CPTA
$S=4.6$
$\gamma=13 / 3$

CPTA 3 yr data frequency dependence

NANOGrav 15 yr data $\gamma=13 / 3$: expected index if SMBH mergers

induced GWs?

NANOGrav: 2306.16219
If NANOGrav Data $=$ iGWs, with curvature perturbation spectrum,

$$
\mathcal{P}_{R}(k)=\frac{A}{\sqrt{2 \pi} \Delta} \exp \left[-\frac{1}{2}\left(\frac{\ln k-\ln k_{*}}{\Delta}\right)^{2}\right]
$$

$A \sim 10^{-0.4 \pm 0.6}$
$\Delta \sim 1.6_{-1.0}^{+0.4}$$\underbrace{\frac{A}{\sqrt{2 \pi} \Delta} \sim 0.1}_{\text {too large!? }}$

Inflation models

constraints on single-field case

- slow-roll case Kohri, Lyth \& Melchiorri, 0711.5006

$$
\begin{aligned}
& P_{\mathcal{R}}(k)=P_{\mathcal{R}}\left(k_{*}\right) \exp \left[\left(n_{s}-1\right) \ln \left(k / k_{*}\right)+n_{s}^{\prime} \ln ^{2}\left(k / k_{*}\right)\right] \\
& n_{s} \approx 0.9649, n_{s}^{\prime} \lesssim 0.013 \text { Planck } 2018 \mathrm{X}, 1807.06211
\end{aligned}
$$

- a feature in the potential leads to the spectrum $\propto k^{4}$

Two-field model 1: 2-stage inflation

$$
\begin{gathered}
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{p l}^{2}}{2} f(R)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \chi \partial_{\nu} \chi-V(\chi)\right] \begin{array}{l}
\text { Pi, Zhang, Huang \& MS, 1712.09896 } \\
\text { Wang, Zhang \& MS, 2302.xxxx }
\end{array} \\
f(R)=R+\frac{R^{2}}{6 M^{2}}-\frac{\xi R}{M_{p l}^{2}}\left(\chi-\chi_{0}\right)^{2} \quad \sim \text { Starobinsky (scalaron) + curvaton }
\end{gathered}
$$

- scalaron ϕ becomes massive at the end of Stage 1
- many 2-stage models can lead to PBH formation eg, Kawasaki et al., 1606.07631

Superhorizon enhancement of curvature perturbation

 curvature perturbation on comoving slices- \mathcal{R} is enhanced due to contribution from decaying $\delta \chi$ during $1^{\text {st }}$ stage

$$
\mathcal{R}=H \frac{\dot{\phi} \delta \phi+F^{-1} \dot{\chi} \delta \chi}{\dot{\phi}^{2}+F^{-1} \dot{\chi}^{2}} \quad F \equiv e^{\sqrt{2 / 3} \phi / M_{p l}}
$$

sharp peak

- non-Gaussianity seems small
common in 2-stage models?

PBH mass function

with criterion based on Press-Schechter formalism

can our model explain PTA result?

seems possible...
but this is NOT based on statistical analysis

Two-field model 2: non-minimal curvaton

Pi \& MS, 2112.12680

$$
\mathscr{L}=-\frac{1}{2}(\partial \varphi)^{2}-V(\varphi)-\frac{1}{2} \frac{f(\varphi)^{2}}{\lambda}(\partial \chi)^{2}-\frac{1}{2} m_{\chi}^{2} \chi^{2} \quad\left(m_{x}^{2} \ll H^{2}\right)
$$

- assume $f \ll 1$ when $\varphi \sim \varphi$ *
- vacuum fluctuation: $f(\varphi) \delta x=\frac{H}{2 \pi}$
$\Rightarrow \delta x=\frac{H}{2 \pi f}$

Highly non-Gaussian curvature perturbation

$$
e^{4 \zeta}-\left[\frac{4 r}{3+r}\left(1+\frac{\delta \chi}{\chi}\right)^{2}\right] e^{\zeta}+\left[\frac{3 r-3}{3+r}\right]=0
$$

MS, Valiviita \& Wands, astro-ph/0607627
$\zeta=$ curvature perturbation on uniform density slices $r=\rho_{\chi} / \rho_{\text {tot }}$ at epoch of curvaton decay

- Criterion $\zeta>\zeta_{\mathrm{cr}} \sim 0.5$ gives a highly nonlinear expression in $\delta \equiv \delta \chi / \chi$
- For $\delta \equiv \delta \chi / \chi \gg 1, r \ll 1$,

$$
e^{3 \zeta} \approx \frac{4 r}{3} \delta^{2} \mapsto P(\zeta) \approx \frac{1}{r^{1 / 2} \sigma} \exp \left[-\frac{3 e^{3 \zeta}}{8 r \sigma^{2}}+\frac{3}{2} \zeta\right] ; \quad \sigma^{2}=\left\langle\delta^{2}\right\rangle
$$

PDF tail is highly non-Gaussian for $\sigma^{2} r \gg 1$
important for induced GWs
Power spectrum is still perturbative for $\quad r \ll 1$

$$
P_{\delta \chi}\left(k_{\star}\right) \longrightarrow \zeta=\frac{\delta \chi}{\chi}+\frac{3}{4 r}\left(\frac{\delta \chi}{\chi}\right)^{2} \text { for } \mathrm{r} \ll 1 \longrightarrow P_{\zeta}\left(k_{\star}\right)
$$

single-field with featured potential

Single-field model 1: potential w/ inflection point

Pattison, Vennin, Wands \& Assadullahi, 2101.05741, ...

$$
\mathcal{R}=\delta N=-\frac{H}{\dot{\phi}} \delta \phi \sim 0(1)
$$

vacuum
fluctuations $\overline{2 \pi}$

tail is exponentially enhanced: $\exp (-c \mathcal{R})$ instead of $\exp \left(-c \mathcal{R}^{2}\right)$
\Rightarrow fully non-Gaussian PBH formation
exponential tail is actually quite common in potential with a feature

$$
\begin{aligned}
& \wedge \sim \log (a \phi+b)
\end{aligned} \quad \text { Pi \& MS, 2211.13932 }
$$

Single-field model 2: Upward step

- One Small Step for an Inflaton, One Giant Leap for Inflation -

Cai, Ma, MS, Wang \& Zhou, 2112.13836

- energy conservation at the step:

$$
\begin{aligned}
\pi_{d}=- & -\sqrt{\pi_{c}^{2}-6 \Delta V / V} \\
& \text { (in } M_{\text {Planck }}=1 \text { units) } \\
\pi_{c}= & -\sqrt{2 \varepsilon_{c}} \\
\varepsilon_{c}: & \text { SR parameter at } \phi=\phi_{c}
\end{aligned}
$$

even for a tiny step, $\Delta V \ll V$, $P_{R}(k)$ is enhanced by $1 / g^{2}$ if

$$
g \equiv \frac{\pi_{d}}{\pi_{c}} \ll 1
$$

$$
1-\Delta V /\left(V \varepsilon_{c}\right) \ll 1
$$

non-perturbative non-Gaussian tail

- perturbative non-Gaussian parameters are small if $-h \equiv \frac{6 \sqrt{2 \varepsilon_{V}}}{\left|\pi_{d}\right|} \ll 1$

$$
\mathcal{R}=\mathcal{R}_{G}+\frac{|h|}{4} \mathcal{R}_{G}^{2}+\frac{|h|^{2}}{8} \mathcal{R}_{G}^{3}+\cdots \quad \mathcal{P}(k) \approx \mathcal{P}_{G}(k)
$$

- tail of distribution is extremely non-Gaussian given by Gaussian part

Finite-width upward step

Kawaguchi, Fujita \& MS, 2305.18140
$\omega_{\mathrm{s} 2} \simeq \frac{\sqrt{2}\left|\pi_{1}\right|}{\Delta \varphi} \quad$ width parameter
zero width limit: $\omega_{\mathrm{s} 2} \rightarrow \infty$
$\pi \equiv \frac{d \phi}{H d t}$
$>$ finite width gives rise to exponential tail

$$
\begin{aligned}
& \mathcal{R}=-\frac{\delta \varphi}{\pi}+\frac{\kappa g}{3}\left(1-\sqrt{1+\frac{2 \gamma}{g^{2}} \delta \varphi+\frac{\gamma^{2}}{g^{2}} \delta \varphi^{2}}\right) \quad\left|\frac{d \delta \varphi}{d \mathcal{R}}\right| \propto \exp \left[-2 \omega_{s 2} \mathcal{R}\right] \\
& \kappa \equiv \sqrt{\frac{\epsilon_{V 1}}{\epsilon_{V 2}}} \quad-\frac{1}{2 \omega_{\mathrm{s} 2}} \log \left(1+\frac{2 \gamma}{g^{2}} \delta \varphi+\frac{\gamma^{2}}{g^{2}} \delta \varphi^{2}\right) \\
& g \equiv \frac{\pi_{2}}{\pi_{1}}<1 \quad \gamma \propto-V^{\prime \prime} \quad \mathrm{PDF}: \quad \boldsymbol{P}(\mathcal{R})=\boldsymbol{P}(\boldsymbol{\delta} \boldsymbol{\phi})\left|\frac{\boldsymbol{d} \boldsymbol{\delta} \boldsymbol{\phi}}{\boldsymbol{d} \mathcal{R}}\right|
\end{aligned}
$$

unusual type of field space trajectories

unusual type

PBH formation during inflation

$$
\mathcal{R} \simeq \frac{2}{|h|}\left(1-\sqrt{1-|h| \mathcal{R}_{G}}\right) \text { PDF cutoff at } \mathcal{R}=\mathcal{R}_{\mathrm{cut}} \equiv \frac{2}{|h|}
$$

\Rightarrow trajectories that can't climb the step

region stuck at $\phi=\phi_{c}$ will become PBH!

\# of e-folds region A expands

$$
\operatorname{Prob} \sim \exp \left[-\left(2 \sigma_{R}^{2} h^{2}\right)^{-1}\right]
$$

region A expands until $V(\phi)$ surrounding it becomes smaller than $V\left(\phi_{\mathrm{A}}\right)=V_{0}$

$$
M_{\mathrm{BH}} \simeq\left(M_{p l} / H\right) e^{\alpha \Delta n}
$$

$\alpha=2 \sim 3$
depending on EOS

Isocurvature

PBHs from Isocurvature Perturbation

eg, E. Cotner, A. Kusenko, MS \& V. Takhistov,1907.10613 non-grav formation of compact objects/Q-balls/etc inside horizon.

rad-dom again if objects eventually decay

What if formed objects are PBHs?

Papanikolaou, Vennin \& Langlois, 2010.11573
Domenech, Lin \& MS, 2012.08151

- PBHs may be formed from curvature perturbation or by alternative strong force
radiation density

Flores \& Kusenko, 2008.12456

inhomogeneous PBH distribution may induce GWs when the universe is reheated by PBH evaporation

GWs

Constraints on early PBH dominated universe

Domenech, Lin \& MS, 2012.08151

- Assumptions

Domenech, Takhistov \& MS, 2105.06816

- Monochromatic mass function for PBHs.
- Poisson distribution for $\delta n_{\mathrm{PBH}} / n_{\text {PBH }}$:

$$
\mathcal{P}_{S}(k)=\frac{2}{3 \pi}\left(k / k_{\mathrm{UV}}\right)^{3} ; k<k_{\mathrm{UV}}=n_{\mathrm{PBH}}^{-1 / 3}
$$

- Resulting spectrum
. sharp rise $\sim k^{5}$ near the peak.
- Peak value:
$\left(\frac{\Omega_{G W, \max }}{\Omega_{r, 0}}\right) \approx 5 \times 10^{34} \beta^{16 / 3}\left(\frac{M}{10^{4} \mathrm{~g}}\right)^{14 / 3}$
$\beta: \mathrm{PBH}$ fraction at formation
constraints on β

$$
k_{\mathrm{br}} \approx 0.04 k_{\mathrm{UV}}\left(M_{\mathrm{PBH}} / 10^{4} \mathrm{~g}\right)^{-1 / 6}
$$

Constraints on β and frequencies

summary

- various inflation models can lead to PBH formation
- late stage of inflation can be probed by PBHs and the associated secondary/induced GWs
- (nonlinear) isocurvature perturbations may play important roles in PBH cosmology
- PBHs may play central roles in GW cosmology

> PBH-GW Cosmology!

