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Context

Some time ago there have been several papers on CMB lensing at second order and
beyond:

@ Pratten and Lewis [arXiv:1605.05662],

© Marozzi, Di Dio, Fanizza and Durrer [arXiv:1605.08761],
@ Lewis and Pratten [arXiv:1608.01263],

© Marozzi, Di Dio, Fanizza and Durrer [arXiv:1612.07263],
© Marozzi, Di Dio, Fanizza and Durrer [arXiv:1612.07650],
@ Lewis, Hall and Challinor [arXiv:1706.02673].

@ Di Dio, Durrer, Fanizza and Marozzi, [arXiv:1905.12573]

Papers 4 & 5 disagree with 3 & 6 in saying that at second order lensing, the parallel
propagation of polarisation leads to rotation. Furthermore they find that this effect is
relatively large and therefore will be observable with future CMB experiments (S4).
Papers 3 & 6 find no rotation and obtain unobservabley small changes from lensing
beyond the Born approximation in both, temperature and polarisation.
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Introduction

(ESA/Planck Collaboration)

The Cosmic Microwave Background (CMB) is our most precious dataset in cosmology.
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The CMB spectrum
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CMB polarization

Thomson scattering depends on the polarisation direction relative to the outgoing
photon. An incoming intensity quadrupole leads to an outgoing polarisation.
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CMB polarization

Polarisation which forms a gradient field is so called E-mode polarisation while a curl
field is B-mode polarisation.

At first order, only vector and tensor perturbations generate B-modes

NS \/f\ /f\/
JIN N \//\ /\\/

A rotation by 7 /4 turns pure E-modes into pure B-modes and vice versa.
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The CMB polarization spectrum

In principle polarisation is a helicity-2 tensor on the sphere and has to be expanded in
spin-2 spherical harmonics, +2Y:m. For simplicity here we discuss it in the flat sky
approximation which is sufficient to describe a small portion of the sky and therefore
lensing which is mainly relevant on small angular scales.

n=ny+X, (no-x)=0.

To define the Stokes parameters we introduce a basis e+, e; in the sky normal to no.
The corresponding helicity basis is e = (e1 + ie»)/v/2 and
'PEQ+I'U:'P_H_ ’P*EQ*/U:'P__.
2

1 ; ¢ _ .
Yem(n) = or exp(i€ - x), +2Yem(n) — —5- exp(if - x)eT2%e
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The CMB polarization spectra

In the flat sky approximation the polarisation correlation function between two points x
and x’ with r = x’ — x can be written as

&(n = (POPr (X)) = (Q ) (X)) + (U () Ur (X)) = (P(X)P" (X))
E-(r) = (PX)P(X)) = (Q(X)Q (X)) = (Ur(¥) U (X)) = (™" P(x)P(X)).

Here Pr = exp(—2i¢,)P is the polarisation with respect to the direction of e; = ¥. This
can be expressed in terms of the polarisation power spectra,

e(r) = 217 /Ooozdﬁ[Cf + CEluo(er)

e(r) = 217 /Oooedz[cf — CBlua(tr)

The inverse relation gives

c = =x / " rdrE. (F)b(er) + € (r)da(tr)

CE — / " rdr{E. (F)b(er) — € (r)da(tr)

(see Challinor & Lewis, 2006 or Durrer, 2008 for details)
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The CMB polarization spectra (Planck 2018)
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CMB lensing

The presence of foreground structure deflects photon geodesics from a straight line.

0x X — X + 6X
; n=(0",0")»n+a
. J The Jacobian of this lens map is given by
A = dab + Vpaa

N\ _ 1—k-—m -—mtw
;i —Y2 —w 1—kKk+m
/ x describes magnification, ~ is the shear
and w a rotation.

In a ’quasi Newtonian’ situation with gravitational potential , the deflection angle is the
gradient of the lensing potential,
A=A

P(n,t.) = -2 : A

d>(/\n, fo — A) A =0+ VpVay = w=0.
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CMB lensing

Due to the foreground gravitational potential (inhomogeneities in the matter
distribution) the CMB temperature anisotropies and polarisation are lensed:

T(n)=T(n+ a), 75(n):7>(n+a), a=Vy,

¥(n) = / dr d(rny o —r)

@ Lensing of the CMB is a second order effect.
@ Lensing E polarisation induces B polarisation.

Ruth Durrer (Université de Genéve) CMB lensing Kyoto, 14/02/24

12/30



Lensing B modes
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Lensing spectrum (Planck 2018 arXiv:1807.06210)
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Cosmological parameters

@ Even though dark energy was originally postulated by SN observations, at
presence its value is best determined by the CMB.
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Cosmological parameters

@ Even though dark energy was originally postulated by SN observations, at
presence its value is best determined by the CMB.

@ Thanks to the degeneracy breaking CMB-lensing observations, we do not even
need SN observations any more to infer dark energy.

@ The CMB data are consistent with a simple, spatially flat cosmological model
containing mainly a cosmological constant A and CDM together with a nearly
scale invariant spectrum of purely scalar fluctuations, a 5(6) parameter model.
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Cosmological parameters
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CMB lensing of scalar perturbations
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The effect of lensing is clearly visible, it becomes more than 10% for ¢ Z,1000.
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CMB lensing: Beyond linear

Since lensing is so large > 10%, might it be necessary to include effects beyond the
leading order? In the present calculations in CLASS or Camb, this is already done to
some extent: For r = x — X, r = |r| the lensed correlation function £(r) is given by

&(r) (T)T(X)) = (T(x+ a)T(X' +a))
— /%? a2e < _le x+a) ie! (x"+a’) ><T(Z )>
= /%Cle—w%eie»(aua» '

For the second equal sign we use that temperature anisotropies can be considered
uncorrelated with the deflection angle. Assuming that primordial pertubations are
Gaussian, «a is a Gaussian variable. Applying Wick’s theorem for products of a’s we
find

(&' ~)y = exp (f% <[e (o — a)]2>> = (2 [Ao(0) — Ao(r) + Az(r) cos(2¢¢)] .

anfr) = [ d“ o Cldlrt)

It is well known that this resummation is relevant for present high precision
measurement of CMB temperature anisotropies at high ¢.
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CMB lensing: Beyond Born approximation

In the above resummation, the deflection angle « is always computed to first order.
What about other non-linearities of the lens map itself? At higher orders we have e.g.

é(n) = -2 / drMMr(n Fa(r),mo—1)

—2/ dr/ dr/(r*f nir= — (r=r)ga 2(r'n,mo — r'\Vad(rn, 7o — r),

a so called post Born term.

At second order, also in a 'quasi-Newtonian’ situation w no longer vanishes. More
precisely one finds

w(n) —26ab/ ar

{vav ®(rn) / ar' ! VbVCCD(r n)
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CMB lensing: Rotation at second order
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The controversy: Does polarisation rotate?

For a photon geodesic k* and an emitter/observer velocity field u* we define the
photon direction n* by

k#:k(uu+n“)7 U2:—1, n2:17 n‘uu,u-:O.
On the sphere normal to n and u we define the Sachs basis
e, ey via es-ep=0mp andes-n=e,-u=0.

If u where parallel transported along k, hence Vu = 0, we could request also

Vkea = 0 for the transport of e,, but since in general Vu # 0, we can only request that

Nnivyeh =0, nt =6 +u,u* — n.n" . (*)

where % denotes the projection into the subspace normal to v and n.

The helicity basis is as before, e+ = (e £ ie2)/v/2 and P(n) = P,

Under a rotation by an angle  of the Sachs basis, the polarisation rotates by
P 0P,

We therefore just have to investigate whether the Sachs basis rotates under its
propagation law (x) .
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The controversy: Newtonian coordinates (NG)

Lewis and collaborators have done the calculation in Newtonian gauge,
ds® = —e*df* + e **5;dx'dx’ .

They found 8@ = 0.

One can actually show that under parallel transport to all orders €4 only acquires
components along itself, u and k in this gauge, so that no rotation from e{' into e} can
occur. This is not surprising since the spatial part of the metric is conformally flat.
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The controversy: Geodesic light cone (GLC) coordinates

We, Marozzi and collaborators used GLC coordinates. These coordinates are the
observer proper time 7, a null coordinate w labelling lightcones and two angular
coordinates labelling incoming photon directions % (a = 1,2). The GLC line-element
depends on six arbitrary functions (T, U?, ya» = 7sa), and takes the form

ds® = T2dw? — 2T dwdr +~ap(d6? — UPdw)(d6° — UPdw)

which can be expressed in terms of ¢ for purely scalar quasi-Newtonian perturbations
(see Ben Dayen et al. 2012). We have computed the rotation of the Sachs basis in this
gauge and found up to second order

B89 ac = —w®nG

What does this mean? Which calculation is correct?
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Resolution
What do we really observe? Rotation wrt what? We must define two physical directions

and determine whether the angle between them changes.
Toy example Consider an ellipse of, say, slightly higher temperature and with fixed

polarisation direction.

What happens to these directions under lensing?

In Newtonian coordinates Sng = 0. In
GCL coordinates wger = 0 by defini-
______ tion. Furthermore wng = —Bagct-
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Resolution

But what about the power spectra, C}* which are measureable quantities and can be
computed in any coordinate system?
To address the question we consider only rotation (neglecting other effects from
lensing). In GLC gauge the photon position is then not affected and we obtain for the
lensed polarisation

Pr = exp(+2i8)P

purely from the rotation of the polarisation wrt our coordinates.
In NG polarisation is not rotated but P(x) = P(R(w)x), where R(w) around the flat sky
direction ng. Hence the lensed spectrum relates to the unlensed one via

75r = eXp(—ZIw)Pr

and since w = —f3 the lensed polarisation tensor expressed in the basis given by the
connecting vector r is modified in the same way by the rotation induced by second
order lensing.
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Resolution

Since the spectra can be expressed purely in terms of P, this implies
Ci Ine = Cflarc

and equivalently with CF.

The modification of the CMB spectra by lensing rotation comes entirely from the
rotation of the image in NG coordinates while it comes entirely from the rotation of the
Sachs basis in GLC coordinates, where the incoming photon directions are
coordinates.

The rotation by w describes the rotation of infinitesimal images (in the chosen
coordinate system) which are Lie transported.

The rotation by 3 describes the rotation of the Sachs basis under parallel transport.
Only the relative rotation, w — 3 is physical and therefore observable. Both w and 8
depend on the chosen coordinate system.
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Results
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Results
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Why should we care

Not correctly subtracted B-modes from lensing (incorrect ‘delensing’) can mimic
primordial B-modes from inflation.
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Blue: first order lensing B-modes. Red: B-modes from higher order lensing (rotation).
Grey-tones: primordial B-modes from inflation, r = (1072,107%,107*,107%,1075).
(figure from Marozzi et al. [1612.07263])
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Conclusions

@ The CMB is the most precise cosmological dataset.
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Conclusions

@ The CMB is the most precise cosmological dataset.

@ We hope to still increase significantly the precision of CMB polarisation
measurements and to measure primordial B-modes from inflation if r > 1073, i.e.
the energy scale of inflation is roughly 10'6GeV.

@ For this, we have to correctly subtract the contribution from lensing beyond the
leading order.

@ We have to develop new delensing techniques since the higher order signal is
non-Gaussian.

@ But even if r « 1073, with S4 CMB experiments we shall discover the rotation of
CMB polarisation which is a frame dragging effect in the CMB. This is a formidable
test of GR on cosmological scales.
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