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Context

Some time ago there have been several papers on CMB lensing at second order and
beyond:

1 Pratten and Lewis [arXiv:1605.05662],
2 Marozzi, Di Dio, Fanizza and Durrer [arXiv:1605.08761],
3 Lewis and Pratten [arXiv:1608.01263],
4 Marozzi, Di Dio, Fanizza and Durrer [arXiv:1612.07263],
5 Marozzi, Di Dio, Fanizza and Durrer [arXiv:1612.07650],
6 Lewis, Hall and Challinor [arXiv:1706.02673].
7 Di Dio, Durrer, Fanizza and Marozzi, [arXiv:1905.12573]

Papers 4 & 5 disagree with 3 & 6 in saying that at second order lensing, the parallel
propagation of polarisation leads to rotation. Furthermore they find that this effect is
relatively large and therefore will be observable with future CMB experiments (S4).
Papers 3 & 6 find no rotation and obtain unobservabley small changes from lensing
beyond the Born approximation in both, temperature and polarisation.
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Introduction

(ESA/Planck Collaboration)

The Cosmic Microwave Background (CMB) is our most precious dataset in cosmology.
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The CMB spectrum

The Planck Collaboration, 2018

∆T (n) =
∑
`m

a`mY`m C` = 〈a`ma∗`m〉 D` = `(`+ 1)C`/(2π)
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CMB polarization

Thomson scattering depends on the polarisation direction relative to the outgoing
photon. An incoming intensity quadrupole leads to an outgoing polarisation.

e-
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CMB polarization

Polarisation which forms a gradient field is so called E-mode polarisation while a curl
field is B-mode polarisation.
At first order, only vector and tensor perturbations generate B-modes

A rotation by π/4 turns pure E-modes into pure B-modes and vice versa.

Ruth Durrer (Université de Genève) CMB lensing Kyoto, 14/02/24 7 / 30



The CMB polarization spectrum

In principle polarisation is a helicity-2 tensor on the sphere and has to be expanded in
spin-2 spherical harmonics, ±2Y`m. For simplicity here we discuss it in the flat sky
approximation which is sufficient to describe a small portion of the sky and therefore
lensing which is mainly relevant on small angular scales.

n = n0 + x, (n0 · x) = 0 .

To define the Stokes parameters we introduce a basis e1, e2 in the sky normal to n0.
The corresponding helicity basis is e± = (e1 ± ie2)/

√
2 and

P ≡ Q + iU = P++ P∗ ≡ Q − iU = P−− .

Y`m(n) 7→ 1
2π

exp(i` · x) , ±2Y`m(n) 7→ − `2

2π
exp(i` · x)e∓2iφ`
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The CMB polarization spectra

In the flat sky approximation the polarisation correlation function between two points x
and x′ with r = x′ − x can be written as

ξ+(r) = 〈Pr (x)P∗r (x′)〉 = 〈Qr (x)Qr (x′)〉+ 〈Ur (x)Ur (x′)〉 = 〈P(x)P∗(x′)〉
ξ−(r) = 〈Pr (x)Pr (x′)〉 = 〈Qr (x)Qr (x′)〉 − 〈Ur (x)Ur (x′)〉 = 〈e−4iφrP(x)P(x′)〉 .

Here Pr = exp(−2iφr )P is the polarisation with respect to the direction of e1 ≡ r̂. This
can be expressed in terms of the polarisation power spectra,

ξ+(r) =
1

2π

∫ ∞
0

`d`[CE` + CB` ]J0(`r)

ξ−(r) =
1

2π

∫ ∞
0

`d`[CE` − CB` ]J4(`r)

The inverse relation gives

CE` = π

∫ ∞
0

rdr [ξ+(r)J0(`r) + ξ−(r)J4(`r)]

CB` = π

∫ ∞
0

rdr [ξ+(r)J0(`r)− ξ−(r)J4(`r)]

(see Challinor & Lewis, 2006 or Durrer, 2008 for details)
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The CMB polarization spectra (Planck 2018)

T-E correlation

DTE
` = `(`+1)

2π CTE
`

E-E spectrum
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CMB lensing

The presence of foreground structure deflects photon geodesics from a straight line.

x 7→ x + δx

n = (θ1, θ2) 7→ n +α

The Jacobian of this lens map is given by

Aab = δab +∇bαa

=

(
1− κ− γ1 −γ2 + ω
−γ2 − ω 1− κ+ γ1

)
κ describes magnification, γ is the shear
and ω a rotation.

In a ’quasi Newtonian’ situation with gravitational potential Φ, the deflection angle is the
gradient of the lensing potential,

ψ(n, t∗) = −2
∫ λ∗

0
dλ

λ∗ − λ
λ∗λ

Φ(λn, t0 − λ) Aab = δab +∇b∇aψ ⇒ ω = 0 .
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CMB lensing

Due to the foreground gravitational potential (inhomogeneities in the matter
distribution) the CMB temperature anisotropies and polarisation are lensed:

T̃ (n) = T (n +α), P̃(n) = P(n +α), α = ∇ψ ,

ψ(n) = −2
∫ r∗

0
dr

(r∗ − r)

r∗r
Φ(rn, τ0 − r)

Lensing of the CMB is a second order effect.

Lensing E polarisation induces B polarisation.
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Lensing B modes

Atacama Cosmology Telescope [arXiv:2007.07289]
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Lensing spectrum (Planck 2018 arXiv:1807.06210)

ψ(n) = −2
∫ r∗

0
dr

(r∗ − r)

r∗r
Φ(rn, t0 − r)

Planck 2018
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Cosmological parameters

Even though dark energy was originally postulated by SN observations, at
presence its value is best determined by the CMB.

Thanks to the degeneracy breaking CMB-lensing observations, we do not even
need SN observations any more to infer dark energy.

The CMB data are consistent with a simple, spatially flat cosmological model
containing mainly a cosmological constant Λ and CDM together with a nearly
scale invariant spectrum of purely scalar fluctuations, a 5(6) parameter model.
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Cosmological parameters

Planck Collaboration: Cosmological parameters
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Fig. 25. Power spectra drawn from the Planck TT+lowP posterior for the correlated matter isocurvature model, colour-coded by the
value of the isocurvature amplitude parameter ↵, compared to the Planck data points. The left-hand figure shows how the negatively-
correlated modes lower the large-scale temperature spectrum, slightly improving the fit at low multipoles. Including polarization, the
negatively-correlated modes are ruled out, as illustrated at the first acoustic peak in EE on the right-hand plot. Data points at ` < 30
are not shown for polarization, as they are included with both the default temperature and polarization likelihood combinations.

0.30 0.45 0.60 0.75

�m

0.30

0.45

0.60

0.75

�
�

+TE+EE

+lensing

+lensing+BAO

40

44

48

52

56

60

64

68

H
0

Fig. 26. Constraints in the ⌦m–⌦⇤ plane from the Planck
TT+lowP data (samples; colour-coded by the value of H0) and
Planck TT,TE,EE+lowP (solid contours). The geometric degen-
eracy between ⌦m and ⌦⇤ is partially broken because of the ef-
fect of lensing on the temperature and polarization power spec-
tra. These limits are improved significantly by the inclusion
of the Planck lensing reconstruction (blue contours) and BAO
(solid red contours). The red contours tightly constrain the ge-
ometry of our Universe to be nearly flat.

more speculatively, there has been interest recently in “multi-
verse” models, in which topologically-open “pocket universes”
form by bubble nucleation (e.g., Coleman & De Luccia 1980;
Gott 1982) between di↵erent vacua of a “string landscape” (e.g.,
Freivogel et al. 2006; Bousso et al. 2013). Clearly, the detection
of a significant deviation from ⌦K = 0 would have profound
consequences for inflation theory and fundamental physics.

The Planck power spectra give the constraint

⌦K = �0.052+0.049
�0.055 (95%,Planck TT+lowP). (47)

The “geometric degeneracy” (Bond et al. 1997;
Zaldarriaga et al. 1997) allows for the small-scale linear
CMB spectrum to remain almost unchanged if changes in ⌦K
are compensated by changes in H0 to obtain the same angular
diameter distance to last scattering. The Planck constraint is
therefore mainly determined by the (wide) priors on H0, and the
e↵ect of lensing smoothing on the power spectra. As discussed
in Sect. 5.1, the Planck temperature power spectra show a slight
preference for more lensing than expected in the base ⇤CDM
cosmology, and since positive curvature increases the amplitude
of the lensing signal, this preference also drives ⌦K towards
negative values.

Taken at face value, Eq. (47) represents a detection of posi-
tive curvature at just over 2�, largely via the impact of lensing
on the power spectra. One might wonder whether this is mainly
a parameter volume e↵ect, but that is not the case, since the best
fit closed model has ��2 ⇡ 6 relative to base ⇤CDM, and the
fit is improved over almost all the posterior volume, with the
mean chi-squared improving by h��2i ⇡ 5 (very similar to the
phenomenological case of ⇤CDM+AL). Addition of the Planck
polarization spectra shifts ⌦K towards zero by �⌦K ⇡ 0.015:

⌦K = �0.040+0.038
�0.041 (95%,Planck TT,TE,EE+lowP), (48)

but ⌦K remains negative at just over 2�.
However the lensing reconstruction from Planck measures

the lensing amplitude directly and, as discussed in Sect. 5.1, this
does not prefer more lensing than base ⇤CDM. The combined
constraint shows impressive consistency with a flat universe:

⌦K = �0.005+0.016
�0.017 (95%,Planck TT+lowP+lensing). (49)

The dramatic improvement in the error bar is another illustration
of the power of the lensing reconstruction from Planck.

The constraint can be sharpened further by adding external
data that break the main geometric degeneracy. Combining the
Planck data with BAO, we find

⌦K = 0.000 ± 0.005 (95%, Planck TT+lowP+lensing+BAO).
(50)

38

(Huterer et al., 2017)

(← Planck Collaboration, 2015/18)
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CMB lensing of scalar perturbations
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The effect of lensing is clearly visible, it becomes more than 10% for ` >∼ 1000.
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CMB lensing: Beyond linear

Since lensing is so large > 10%, might it be necessary to include effects beyond the
leading order? In the present calculations in CLASS or Camb, this is already done to
some extent: For r = x− x′, r = |r| the lensed correlation function ξ̃(r) is given by

ξ̃(r) = 〈T̃ (x)T̃ (x′)〉 = 〈T (x +α)T (x′ +α′)〉

=

∫
d2`

2π

∫
d2`′

2π
〈
e−i`·(x+α)ei`′·(x′+α′)〉〈T (`)T (`′)

〉
=

∫
d2`

(2π)2 C`e−i`r〈ei`·(α′−α)〉 .
For the second equal sign we use that temperature anisotropies can be considered
uncorrelated with the deflection angle. Assuming that primordial pertubations are
Gaussian, α is a Gaussian variable. Applying Wick’s theorem for products of α’s we
find

〈ei`·(α′−α)〉 = exp
(
−1

2

〈[
` · (α′ −α)

]2〉)
= `2 [A0(0)− A0(r) + A2(r) cos(2φ`)] .

An(r) =

∫ ∞
0

d` `3

2π
Cψ
` Jn(r`) .

It is well known that this resummation is relevant for present high precision
measurement of CMB temperature anisotropies at high `.
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CMB lensing: Beyond Born approximation

In the above resummation, the deflection angle α is always computed to first order.
What about other non-linearities of the lens map itself? At higher orders we have e.g.

φ(n) = −2
∫ r∗

0
dr

(r∗ − r)

r∗r
Φ(r(n +α(r)), τ0 − r)

= −2
∫ r∗

0
dr
∫ r

0
dr ′

(r∗ − r)

r∗r
(r − r ′)

rr ′
∇aΦ(r ′n, τ0 − r ′)∇aΦ(rn, τ0 − r) ,

a so called post Born term.
At second order, also in a ’quasi-Newtonian’ situation ω no longer vanishes. More
precisely one finds

ω(n) = 2εab
∫ r∗

0
dr

r∗ − r
r∗ r

[
∇a∇cΦ(rn)

∫ r

0
dr ′

r − r ′

r r ′
∇b∇cΦ(r ′n)

]
.

Ruth Durrer (Université de Genève) CMB lensing Kyoto, 14/02/24 19 / 30



CMB lensing: Rotation at second order

ω(2) (`) =
2

(2π)

∫ rs

0
dr

rs − r
rsr

∫ r

0
dr1

r − r1

rr1

∫
d2`1 (` ∧ `1)

(
`1 · `− `2

1

)
×

ΦW (z(r), `1) ΦW (z(r1), `− `1) .
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The controversy: Does polarisation rotate?

For a photon geodesic kµ and an emitter/observer velocity field uµ we define the
photon direction nµ by

kµ = k(uµ + nµ) , u2 = −1 , n2 = 1 , nµuµ = 0 .

On the sphere normal to n and u we define the Sachs basis

eµ1 , eµ2 via ea · eb = δab and ea · n = ea · u = 0 .

If u where parallel transported along k , hence ∇k u = 0, we could request also
∇k ea = 0 for the transport of ea, but since in general ∇k u 6= 0, we can only request that

Πµσ∇k eµa = 0 , Πµσ = δµσ + uσuµ − nσnµ . (?)

where Πµσ denotes the projection into the subspace normal to u and n.
The helicity basis is as before, e± = (e1 ± ie2)/

√
2 and P(n) = P++.

Under a rotation by an angle β of the Sachs basis, the polarisation rotates by
P 7→ e2iβP.
We therefore just have to investigate whether the Sachs basis rotates under its
propagation law (?) .

Ruth Durrer (Université de Genève) CMB lensing Kyoto, 14/02/24 21 / 30



The controversy: Newtonian coordinates (NG)

Lewis and collaborators have done the calculation in Newtonian gauge,

ds2 = −e2Φdt2 + e−2Φδijdx idx j .

They found β(2) = 0.

One can actually show that under parallel transport to all orders eµa only acquires
components along itself, u and k in this gauge, so that no rotation from eµ1 into eµ2 can
occur. This is not surprising since the spatial part of the metric is conformally flat.
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The controversy: Geodesic light cone (GLC) coordinates

We, Marozzi and collaborators used GLC coordinates. These coordinates are the
observer proper time τ , a null coordinate w labelling lightcones and two angular
coordinates labelling incoming photon directions θa (a = 1, 2). The GLC line-element
depends on six arbitrary functions (Υ,Ua, γab = γba), and takes the form

ds2 = Υ2dw2 − 2Υdwdτ +γab(dθa−Uadw)(dθb− Ubdw)

which can be expressed in terms of Φ for purely scalar quasi-Newtonian perturbations
(see Ben Dayen et al. 2012). We have computed the rotation of the Sachs basis in this
gauge and found up to second order

β(2)|GLC = −ω(2)|NG .

What does this mean? Which calculation is correct?
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Resolution

What do we really observe? Rotation wrt what? We must define two physical directions
and determine whether the angle between them changes.
Toy example Consider an ellipse of, say, slightly higher temperature and with fixed
polarisation direction.

α

What happens to these directions under lensing?

α'=α-ωn1 n2e

e

ϵ'

e'
ϵϵ

α α'
ω

-β

α'

Unlensed
Lensed PG

α'=α-β

Lensed GLC

In Newtonian coordinates βNG = 0. In
GCL coordinates ωGCL = 0 by defini-
tion. Furthermore ωNG = −βGCL.
But in general

α− α′ = ω − β

Hence the gauge invariant, physical
angle is ω − β which is the same for
both coordinate systems.
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Resolution

But what about the power spectra, CXY
` which are measureable quantities and can be

computed in any coordinate system?
To address the question we consider only rotation (neglecting other effects from
lensing). In GLC gauge the photon position is then not affected and we obtain for the
lensed polarisation

P̃r = exp(+2iβ)P

purely from the rotation of the polarisation wrt our coordinates.
In NG polarisation is not rotated but P̃(x) = P(R(ω)x), where R(ω) around the flat sky
direction n0. Hence the lensed spectrum relates to the unlensed one via

P̃r = exp(−2iω)Pr

and since ω = −β the lensed polarisation tensor expressed in the basis given by the
connecting vector r is modified in the same way by the rotation induced by second
order lensing.
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Resolution

Since the spectra can be expressed purely in terms of Pr , this implies

C̃E` |NG ≡ C̃E` |GLC

and equivalently with C̃B` .

The modification of the CMB spectra by lensing rotation comes entirely from the
rotation of the image in NG coordinates while it comes entirely from the rotation of the
Sachs basis in GLC coordinates, where the incoming photon directions are
coordinates.
The rotation by ω describes the rotation of infinitesimal images (in the chosen
coordinate system) which are Lie transported.
The rotation by β describes the rotation of the Sachs basis under parallel transport.
Only the relative rotation, ω − β is physical and therefore observable. Both ω and β
depend on the chosen coordinate system.
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Results

∆C̃B
` = 4

∫
d2`′

(2π)2 Cα
|`−`′|C

E
`′

[
cos2(2ϕ`,`′)−

``′

|`− `′|2
sin(4ϕ`,`′) sin(ϕ`,`′)

+
(``′)2

|`− `′|4
sin2(2ϕ`,`′) sin2(ϕ`,`′)

]
.

New approach

Old approach
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(figure from D Dioi et al. [1905.12573]).
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Results

deflection angle
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Why should we care

Not correctly subtracted B-modes from lensing (incorrect ’delensing’) can mimic
primordial B-modes from inflation.

� �� �� ��� ��� ����
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Blue: first order lensing B-modes. Red: B-modes from higher order lensing (rotation).
Grey-tones: primordial B-modes from inflation, r = (10−2, 10−3, 10−4, 10−5, 10−6).

(figure from Marozzi et al. [1612.07263])
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Conclusions

The CMB is the most precise cosmological dataset.

We hope to still increase significantly the precision of CMB polarisation
measurements and to measure primordial B-modes from inflation if r >∼ 10−3, i.e.
the energy scale of inflation is roughly 1016GeV.

For this, we have to correctly subtract the contribution from lensing beyond the
leading order.

We have to develop new delensing techniques since the higher order signal is
non-Gaussian.

But even if r � 10−3, with S4 CMB experiments we shall discover the rotation of
CMB polarisation which is a frame dragging effect in the CMB. This is a formidable
test of GR on cosmological scales.
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We have to develop new delensing techniques since the higher order signal is
non-Gaussian.

But even if r � 10−3, with S4 CMB experiments we shall discover the rotation of
CMB polarisation which is a frame dragging effect in the CMB. This is a formidable
test of GR on cosmological scales.
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