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1. Introduction: Black hole 1s one of predictions of GR

Uniqueness theorem of BH 1in GR:

The most general stationary black hole in Einstein-

Maxwell Theory is Kerr-Newman black hole, which is
described by three parameters: M, J and Q

Black hole in sky: Kerr black hole (1963): M, J
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Kerr-Newman Black Holes:

ds® = —(1— 229 gr* + 2~ dr? + p*d6?

pe

-I-[(I”z L az) N (2Mr—0Q 2)a Sin 9] sin2 (961’(02 _9 (2Mr—Q2)aSin 0 dtd(p
p p

where
p2 P +atcostd A=r+a -2Mr+Q’

Horizons: A — () e r=M+M*—a* - O

1) When a=0, Reissner-Nordstrom black hole solution
2) When Q=0, Kerr black hole solution
3) When a=Q=0, Schwarzschild black hole solution
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Schwarzschild black hole: Singularity

ds® =—(1-22L)dt* +(1-220)" gy +r2dQ2

Hor 1 zon

Black hole horizon

r.=2GM

Minimal black hole ?
ro>> A =1/ M o M >>1/\G =M,

Singularities? R=R =0 R, R"" = L

UVIO -

ITP spacelike singulality!
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Reissner-Nordstrom Black Hole: A

gravity coupled to a U(1) gaﬁge field

ds’ =—f(r)dt’ + {7 (r)dr’ +r’dQ;

where

S(r)=1-25+5
F,. =%

r 7

horizons: . _ ;74 \/ M~

r7p The singularity at r=0 1s timelike!



Penrose diagram of Kerr black hole

I”i=Mi\/M2—CZ2

There 1s a singularity
ring at r=0 .
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Some questions arise naturally:

1) The observed black holes are the ones predicted by GR?

2) The singularity inside black holes 1s a generic feature?
if yes, spacelike, nulllike, or timelike?

3) Cauchy horizon 1s stable or unstable? its fate?
— mass inflation, A. Or1 (1991)
— back reaction of quantum fields

This talk will focus on the internal structure of black holes
with various hairs.
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2. No 1nner horizon theorem for charged black hole with scalar

The model: we consider a (d+2)-dimensional gravity theory
coupled with a Maxwell field and a charged scalar field:

1
S = d2z\/—g[R + L] ,
2h,N

2
e =-Z00 g, pr — (D, w) DRw -V (|UP)

The black hole solution ansatz:

d82 = i —f( ) X(2 )dt2 2 'd?j—l-sin?@dﬂg_l, k=1,
22 f( ) a5 = deg, R
i=1
U=1(z) A=A2)dt, S
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1 = — L1 Z(x)z%ex A2
The equations of motion: Vert(z) = V() —5Z(x)z"eX A}

2.2 2
zd+2eX/2(e_X/2z_df¢")' — [Veﬁ(¢2) g = ;XAt:l W
2.1,2_.x/2
2z (p?)ex/22 Ay =22 ¢fex e ‘
) g | |Aden) = Ae) =0
§XI :zwl2 + f2 ,
df' z ., dd+1) Veg(¥?) kd(d—1)z
2 f 2¥ 22  2zf 2f
zeXq?A? , Z(Y?)z3eXAP?
T3 f2 vt 2f ’

>
— ,"/\ =
z = Event .~ Cauchy ™.,

Black hole horizon  “***seeennnees® horizon s.i;;;ularity f’(ZH) < 0, f,(ZI) 2 0.
boundary




The key observation: the existence of the conserved quantity

Q(z) = 227%eX/? [272(fe™X) — ZAA]]

A
+ 2k(d — 1)/ y e XW)/2qy

Namely, [Q'(z) = 0.

Let us evaluate this quantity both at two horizons

Zj
O(z;) = F (~J) e—Xx(z3)/2 4 2k (d — 1)/ y~deXW)/2qy

fzn) H) —x(za)/2_ S (~I) —x(21)/2
H

E f'(
) |

o —2A(d—1)/

—de=X(W)/2 gy




LZI{) —x(zm)/2 _ ("'I) —X(x.l)/Q
“H

=2k (d — 1)/ —de=X(¥)/2 gy

(1) When k=0 or k=1: the lhs <0, while the rhs >=0;
(2) When k=-1, the both sides have the same sign:

counter partner exists, see later. But there only exists
at most one 1nner horizon with non zero surface gravity.
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The proof 1s as follows:

(1) The horizon z I must be a single root, otherwise we must
have £7(z 1) <=0

"( ‘
Q'(z1) = / E;I)e—x(zz)/Q _ Zz?_deX(”')/QA;(z,)z
“I

—2(d—1)z;%xED/2 < 0.

This 1s not consistent with Q’(z)=0! Thus z 1 should be a
single root with £’(z I) >0.

(1) Suppose there exists a second 1nner horizon z 11
FG1) x@np_ £z e

2y 217
4 ()2
ITP :—Q(d—l)/ y~Ye XWisdy
Z]



@1 xenp_ L1 —xene

d d
21 2I1

ZI11
=—2(d—1) / y~ e XW)/2qy
Z]

The lhs 1s positive, while the rhs 1s negative, therefore the
second 1nner horizon is impossible.
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Singularity

For simplicity, consider Z=1 and the kinetic term of the scalar
field dominates. In that case, the potential can be neglected.

=Vdalnz +--- : Angszd_2_02+---,

eX :X3z20~+... : f:—fsz1+d+a~+...,

In that case,

_ 1 * W) , 2— d x/2
Q(~)_2R}?V EZ F 2h,NZ~ Ata

The charge approaches to a constant at the singularity,

Namely, the spacelike singularity must be charged.
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Introduce the proper time 7 ~ »—(1+d+e®)/2

where

Pt

ds® = —dr? + ¢, 7Pt dt® + c 1 2Pe dEg,k ,
¥(z) = —pylnT,
1—d+ a? 2 2/ da

(18)

T lt+d+2 PP T I rd+r 2 Y T 1xrd+ a2

(19)

We have
pe+dps =1, p;+dp;+p; =1,

I1P
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The metric has a (generalized) Kasner form!




In the above, the following constraint must be obeyed:

V(12
lim AC)

z—00 zd+1+a?

<1,

which allows the potential V to be arbitrary algebraic function,
including polynomial function, for example, V=m"2 \phi"2.

Some examples: we define

"2

Ry =2¢', Ro=In (% — ) Ry = 42279eX/24!  with h = e X/2f /2144,

Note that for Kasner geometry, they are constants when -

11 r




10

N~ = —6+ ¥*
-5t -
V=—6+v¢ — 12y — Iy
12, — Iy
R I
-10 ’ ’
o 5 10 15 10 15
In(z/zxg) In(=/z4)
(a) (b)
10 . . 15
10} —— =
5
st |
o . o ﬂ
=St -
-5 | E— 1
V = —6 + 0.99¢? 4+ sinh(0.01%?) s _10} - —E-
— . = 24 —
. V = —6 — 4¢” + sinh(5¢%] | R,
-lo A A _15 A A A
50 100 150 o 5 10 15 20
In(z/zg) In(z/zg)
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Hyperbolic black hole with inner horizon

Consider a model in four dimensions:
V(v?) =—-6+m*y?, Z=1,

The equations of motion:

, 2 [¢?A%4°
d

2
X =3 | n252d+1 +2¢ ] ;

zd d 2
- 2A.aq2 -
Q = d;d+:]qz ) A= Qe_X/de_Qa

h

. —x/2 [ NH2,d—2 2
o @=Dk oy X (Q~ L V@)

/ T(ah2Yo—X/2 2 2
ﬁﬂz_(z+§)W+<vw>ex A2g

Sd+3p  p2,2d+2
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Take the parameter and 1nitial conditions:

m? = —0.18388 and ¢ = 1.5. At the event horizon zp = 1.193936,

U(zp) ~ 1.10683410, ¢/ (zy) ~ 0.115816263, Q(z) ~ 0.650999015, y(zg) = h(zg) = As(z) =0.

: d < T | |
I —X/2
1 1 f
bY! ]
: : “l—A/70 -
1 | | y
zH: ZI:
I I 1t [ 1
l 1
—_—
0
: :
: R
1t |
e NS .
I I I
| I —A‘
-2 . . l 2 : : —
0 2 4 6 -30 -20 -10 0
z In(z/zg)

FIG. 3. Numerical solution for hyperbolic case (k = —1) with the boundary conditions (30). The hairy black hole has the
event horizon at zy = 1.193936. There is a Cauchy horizon at z; =~ 4.15699837 and all functions are smooth at two horizons.
From the right panel, we see that f(0) = 1,%(0) = 0, x(0) and A:(0) are both finite, which implies that this solution is indeed
an asymptotically AdS black hole. We have considered the four dimensional model with V(z,bz) = —6—0.18388¢%, Z = 1 and
g = 1.5.



Further discussions:

» No scalar-haired Cauchy horizon theorem in Einstein- Maxwell-Horndeski theories
by D. Devecioglu and Mu-In Park ( arXiv: 2101.10116)

» No Cauchy horizon theorem for nonlinear electrodynamics black holes with
charged scalar hairs by Y. S. An et al, arXiv: 2106.01069 [ for the hyperbolic
horizon case, the Cauchy horizon is ruled out by NED.

» Black hole singularity across phase transitions by Y. Liu et al, 2108.04554

» Inside an asymptotically flat hairy black hole by O. Dias et al, 2110.06225

» Kasner geometries inside holographic superconductors by L. Sword and D.

Vegh,2112.14177
» The final kasner regime inside black holes with scalar or vector hairs by M.
Henneaux, 2202.04155

» Interior of helical black holes by Y. Liu and H. Lyu, 2205.14803

» AdS black holes with a bouncing interior by S. Hartnoll, 2209.12999

» Insights and guidelines on the Cauchy horizon theorem by X.Y. Chew et al,

2308.09225
Internal structure of hairy rotating black holes in three dimensions, L. L. Gao et al,
2310.15781........

>

>

€ Vector hair, tensor hair?

€  Gravity theories with high curvature terms (e.g., GB theory)?....



3. Inside anisotropic black holes with vector hairs

The model we are considering:
5 — LQ /dd+2x\/_—g(R T N T o
2K’N
1 w1t t t puv
Lm = _ZF[JJ/F o 5.0“1/)0# —m pupﬂ + 1qYpupy F
where F,,, = V, A, — V, A, and pyy = Dypy — Dypy with Dy =V, — igA,.

(R. G. Cai et al, arX1v:1309.4877, a holographic p-wave model)

The ansatz for metric and matter field:

2
ds? — eQa(r)[_h(.,.)dtf? 1+ e2n(r) g2 4 d:&}%_l] 4 625(?‘):(_7;1) ’

pvdz” = pz(r)dz, Aypdx” = A¢(r)dt,

r Here 3 (r) can be set to zero as a gauge choice.

The Chinese Academy of Science



The effective action:

)%
S = 21-;1 /drﬁeﬁ(a, a,7 a”; 775 77,! 77”; h) h’, h”; ,8, ‘18’, At, 2; pI) pi,l,‘) ;
N

The key observation: there is a scaling symmetry

a(r) = a(r) —log(A), B(r) = B(r) + (d+1)log(A), h(r) = A *Vh(r),
Ag(r) = A Aq(r), pe(r) = A pa(r), n(r) = n(r),

There 1s an associated conserved charge:

OL o dFy [ OL.g d [ OL.g
Q= ) F(a;')_ dra<6;”)+Fadr(8;”)’
az{aaneheBaAtepl‘} “ “

_ de(d—l)a+n(820h' A A — oheld—1)a— '7(62(0+77) "+ pepl),
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No Cauchy horizon:

h(rg) = h(r;) =0, r7<TH.

............. ..h'(r,) <0 h/(ry
At(TH)ZAt(T[)ZO, R Tli Iy r;oo

L
......
llllllllll

Black hole
boundary

e(d+1)a(7'y)+'l("y)h’(rH) (d+1)a(r1)+n(r1)hl(r

‘ No solution
‘ No inner horizon

h'(rg) >0, h(r;)<O0.

I1P
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Anisotropic black hole: p-wave superconductor

@) g2,
ds? 2[ f(2)e dt® + —— @)

pvdx’ = p(2)dz, Aydx” = Ag(z)dt

- u(z)d:r + dyd_l]

Near z=0:
Ar=p+..., Pz = Pzy?

d+1++/(d—1)%2+4m?

. A=
’ 2 ’

055} : -—
050}
045}

ty; 040 F

R
~

—
[V Lo

M 035}
030}

0.25}

ITP 020}
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Dynamical epochs inside: Anisotropic Kasner cosmology

ds® = i[— f(z)e X®)gt? 4 g2
Z f(2)
pvdx’ = pg(2)dz, Aydx’ = Ag(2)dt,

+ u(z)dz? + di>_{].

In this coordinate, the AdS boundary 1s at z=0,while the
singularity 1s assumed at z=\infty. Near the singularity,
one has (neglecting the contribution of matter fields)

’U,"\-’Znu, f"‘"znfa XNnXan+X07 P:cNZn"-l—POa AtNZnA'*_AOa

. d—

The solution: np=ny—2, ng=d—1- (@~ 1)nu :
2d(d + 1) — 2n, (2d — 2)ny

irpo T T T X T T g,



Changing the 2 coordinate to the proper time T via 7 ~ 2~ ™//2 we obtain

d—1
ds® = —dr? + e ?Ptdt® + c;7?P=dx’ + Z cy,.'eryi dy? .
i=1
_ ny —nj+2 _2—my _ 2
Pt = nf ) Pz = nf ) pya- - nf .
d—1 d—1
pe+pe+ Y Py =1, pi+pi+) py =1,
i=1 i=1

I1P
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Numeric examples with ¢d=2 m =0, ¢ =3/2.

6|
4 '
2t
........................................ - .n..* 0 '
-2 -
'4." . . . .S S T T T T T T T T T T
10 1000 10° 107 100 1000  10% 10° 10° 107 108
z/zh z2/zy
(a) Ty /T =0.995 (b) T,/T. = 0.168
40 ';
! --------- ‘:\’
30F
20}! — =/
10_;‘ --- zu'fu
0 — = gl
—-10tL - = zAY/A;
10 1000 10° 107
ITP zfzy
The Chinese Academy of Science (C) T‘/Tc — 0.684



Analytic and numeric comparison:

Numerical Values

Analytic Values

Relative Errors

ng 2.2674538998442 2.2674538998526 3.7 x 10712
Ty/T. = 0.995 ny | -0.3423181057185 -0.3423181057293 3.1x 1071
n, = 1.1227740945654 | n, | -0.8772259054207 -0.8772259054345 1.6 x 10711
na | 0.6097720055765 0.6097720055819 8.8 x 10712

ng 15.16872553 15.16860713 7.8 x 107°

Ta/T. = 0.684 Ny 28.10121840 28.10098041 8.5 x 1076
ny = 3.76376613 n, 1.76377015 1.76376613 2.3 x 107
nA -14.93249248 -14.93237327 8.0 x 1075
ng | 2.999999999998551 | 2.999999999999507 3.2 x 1077

T./T. = 0.168 ny, | —3.28521349 x 1013 | —3.28529790 x 10~13 0.000026
ny =6.57x 1071 | n, -1.99998716 -1.99999999 6.4 x 107°
n4 0.999997794 0.999999999 2.2 x 1076

I1P

The Chinese Academy of Science:



M. Henneaux,
arX1v: 2202.04155

Kanser alternation and flipping of powers

We find that the interior geometry near singularity does not
experience only one Kasner epoch, but several ones as
z-> \infty, and one has: d=2m=0,q=3/2and T/T, = 0.983.

~ 15:-: — ;r
For n, < 2, Ny + Ny =4, ! =’ fu
10 |— = =p%/p! —
|
For 2 < n, <4, na=-na. 5|
e —— o L
Numerical values: toootem e “’3/”, 10T e 10T
</ <H
Kasner epochs (z/zg) | 10° ~ 10" | 10'® ~ 10°* | 10°* ~ 10°' | 10°' ~ 10%
n4 0.474604 | -0.908835 0.908599 -9.903578
Ny 1.375555 2.624619 0.336036 3.663967
Sum 4.000168 4.000002




-~

Five more examples: Ny + iy = 4, ng = —fia.

Kasner epochs (z/zp) Ty, na Sum
10° ~ 1046 1.173335 | 0.584905
T/T. = 0.998 106 ~ 1070 5.826665 | -1.400087 | +-000000
10%70 ~ 10738 -2.769187 | 1.409087
2 10127
1?27 10 o 1.240325 0.559554 o
T/T. = 0.997 10727 ~ 10 2.759675 | -1.224960
10%°Y ~ 10%%Y -1.160680 | 1.224893
10° ~ 10%® 1.218098 | 0.562135
T/T. = 0.994 10%% ~ 10% 5781902 | -1.283808 | 000000
10%° ~ 10™0 -1.585010 | 1.283793
10° ~ 1032 1.122742 | 0.609818
T/T, = 0.991 10%% ~ 1052 5877226 | -1.562605 | 000968
10%% ~ 1099 -5.145021 | 1.562602
2 16
1016 1032 1.014178 0.669504 1000208
T/T. = 0.985 10 ~ 10 2.986028 | -1.944810
10%% ~ 10% -68.574549 | 1.944884

Table 4: The values n, and n4 at three Kasner epochs for five different temperatures. The
sum of n,, of the first and second Kasner epochs are, within numerical error, equal to 4 (blue),

while the values of n4 at the second and third Kasner epochs are opposite values (red). Here
d=2,m?=0and qg=3/2.



Never-ending Kasner alternations:

e Y z°R
15_| Yor. ] ol \ — V [ ]
= #/ ~
I|--- zu/u
| "oyt -1
10p | = 20/t
-2}
5k
_________ p— T
-
fooo g S R
O s e Ll
1 100 100 100 100 100  10% 10 10" 102" 10 10" 10°T 10
z/zn 2z
(a) (b)

Figure 4: Kasner epochs at T'/T. = 0.983. Four Kasner epochs in the interior are shown
in (a). The contribution from the right terms of the last equation of (8), denoted as R, is
plotted in (b). While R is negligible in each Kasner region, it does become important in the
transition region between adjacent Kasner epochs. Here d = 2, m? = 0 and ¢ = 3/2.

I1P

The Chinese Academy of Science



Collapse of ER bridge and Josephson oscillations:

When T 1s above T c, the solution 1s the RN-AdS black hole,

when T 1s slightly less than T c, the Cauchy horizon will
disappear. The geometry near the would-be mner horizon:

=

OF

60

200,
20/log(w) + 1)

40}

20t
-20}

OFf
-40}

_20 .
1 2 5 10 20 1 2 5 10 20
z/zy z/zy

(a) Ty /T. = 0.991 (b) Ta/T. = 0.966

The anisotropic factor u(z) also oscillates with a half period of the
vector condensate. When T decreases, the non-linear dynamics become
less dramatic.



Further considerations: No Cauchy horizon

(1) The case one:

et __ Z(0hp" lpup )
e 4

1 |
F, FHv — §pLup’“’ —V(pLp", | pup"?) + iqypupl F*,

0= e(d—l)a+‘r)(620hl . ZAtAg) . %e(d—l)a—r)(eQ(CH-ﬂ)nl n pxp;) :

(2) The case two:

1
SeB = 5 / d2x\/—g [R + agB(R? — AR WR™ + Ry s RMT) — 2A + cm]
N

0= de(d—l)a+n(82czhl . AtA;) . 2he(d—l)a—n(62(a+'n)nl n pzp;)_'_
2(d — 1)(d — 2)agpe'* Y Mha! [2ha’y’ — B (dd’ + 21)] ,

The Chinese Academy of Science



4. Classifying the interior dynamics of black holes with scalar

The setup

2 / &z /GR+ L],

£ = ~5(0b)* - F )@~ aAn)? ~V(¥) -

Z(l,,"‘) v

The hairy black hole solution takes the form:

2

1)

dsQ:%[—f( Je XZ)dt? +

v=19(2), A= A(z)dt,

Here d¥7_; ; denotes the line element of unit sphere (k=1),
planar (k=0) or hyperbolic sphere (k=-1) in d-1 dim

ITP




We take theta=0 without loss generality, then

ex/2 dZ

o 1 h' ' q2At2 dF e X/? dV
V== \ZT% )Y — 22ap2 dyp = 29+2h dvp 24 2h dyp”

~
s

2ZA,\" _ 24A: .
~d—3 T Y
2¢> A7
(d — l)X’ = Z'l,bl? + de——l}tIZI”
V ex 2
d+1 + de—BZAi ) ’ h p—

y gV

0

e X/2 k(d—1)(d — 2)
= d—1 <— zd—1 T

In this coordinate, the boundary 1s at z=0, while the singularity would be
at z-> infinity. And the associated thermodynamics

T _ _e—X(ZH)/Qf, (ZH)
dm | K2

one has A¢(zy) =0 once ¢ # 0
R

ITPNote that
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Kasner Epoch:

In this case, the contributions from F and V are negligible. At large z limit

One has the solution:
Q

d-1
O R o e )

l 4’ _
‘ ds’ = 3 [_szde)c/? + 0 XA +d23_1,k , v~alz,

ITP

=ahz+Cy, x=

Inz+Cy,

The Chinese Academy of Science:



Introducing the proper time: -~

ds? = —dr? + er?Pedt® + CSTQPSdZZ_Lk, P~ —V2pyInT, —
where
by — a? —2(d —1)(d - 2) p = Ad=1) oy — 2v2(d — 1)e The (generalized)
‘ 2+dd-1) ° T a2+dd-1) Y al+dd-1)’

— Kasner geometry

with ¢; and ¢s constants. One immediately finds that

pt(d-1ps=1, pi+(d-1)p+p5=1,

—

These constants are all determined by alpha, called Kasner exponent. It 1s
casy to check that the solution makes sense 1f

22 4 1 Ay 1 this allows V and F to be arbitrary
A - : : : :
o (z'Zdh.? I) <0 (zi’d—1> 0 (~d+'-’hd_u") <0 (;dﬂ) ‘| algebraic functions, including
2 2 42 1 1
o (LA I> . 0( 1 ) 0( 24%4; I) o( ) polynomial functions. Namely once
2d-1}, 242 2d-1};2 .,
y o these conditions are obeyed, the
e e 1 e X 1 . .
O ( = ) <0 (d_—1> , 0 (d—+1) <0 <—d) . | neglected terms in EOMs will not
change the solutions.




Kasner Inversion:

Once the above assumption 1s invalid, the solution will become unstable.
A particularly simple case 1s triggered by the h’/h term. Interestingly,

this alternation caused by the non-integrability of h’ will make 1tself come
back to be integrable and will enter a new stable Kasner epoch. This 1s
called Kasner Inversion.

l)

Inside the event horizon, one has h<0, while ;) . .43

To have a stable Kasner epoch down to the singularity, the integral

of h’ should be finite, otherwise the new dynamics will come 1nto play.
The breakdown of the integrability of h’:

2

d=3— —— > 1= o < 2d-1)d-2).

2d-1)

ITP



In this case, the background becomes unstable and the term h’/h cannot
be dropped. Then the dynamics 1s determined by the equations

2
1 k! 1 eX/2A! e
;@) =3V K=gg ( 3) =362

Here h’ 1s determined by the kinetic term of the gauge field.

Take the form: ;)= / "9y,

‘ god— 1 — efd - )32 + @ - 2(d- 1(d-3) =0
%e1v/d—1 t h[ ei(d—1) q]

Hd~-2)h l ]+\/(d D2 _2d+4 | VI-/d-1)@—2d+4
c%(d—l)Q—Q(d—l)(d—z)
Gl - 2(d— Deal] 1 2(d - D)(d—2)

alz]

er(d—1)

+21In

l+2]n

ITP |:°’



The two exponent alpha for the Kasner epoch before and after the Kasner
inversion are the roots:

a* —2y(d-1)a+2(d-1)(d-2) =0.

These two roots obey

Here alpha 1s the one before the inversion,

1=2(d-1)(d-2),
aay =2(d-1)(d-2). while alpha I 1s the one after the inversion

‘ Suppose there is a Kasner epoch with |o| < \/2(d-1)(d-2)
There will be a new Kasner epoch with

| =2d-1)d-9)o| > VEE-DE-D)

ITP



Kasner Transition:

When one considers the coupling function F with an exponential form
F() ~ e

The background solution will be destroyed and a new Kasner
transformation process will appear.

One can see when

A2 dF yha ,L'.')/
0<T;2?E) :0(22d> 20(?) ‘ ka > (2-2),

The term with dF/dy cannot be dropped. In this case, one has

ITP



_2d—2— ¢y tanh [y In(z/2r)]

20" +(2d —1)a’ — kaa' =0. a(z) ,

K

One has the transformation law for the Kasner transition

2

‘ Suppose there is a Kasner epoch with > (34 -9)

ITP

This transformation law shows that the Kasner transition
process will decrease the amplitude of alpha until the
condition 1s destroyed.

In addition, the transformation not only depends on the
dimension, but also the parameter kappa.



Classification of Kasner Alternation:

As we have seen that the Kasner transition causes alpha to decreases
while the Kasner inversion makes alpha increase. When these two
processes are triggered alternately, it could lead to an infinite chaotic
oscillation of Kasner epochs.

Case I: /2(d —1)(d —2) < 2(d — 1)/|&| (left panel of Fig. 1).

The Kasner transition occurs when |a| > 2(d — 1) /|| and the Kasner inversion occurs
when |a| < 1/2(d —1)(d —2). Once /2(d —1)(d —2) < |a| < 2(d — 1)/|x|, both the
Kasner transformations will not be triggered, thus the system settles down to a stable
Kasner epoch.

Case II: +/2(d —1)(d —2) =2(d — 1)/|x| (middle panel of Fig. 1).

In this critical case, |a| = /2(d — 1)(d —2) = 2(d — 1)/|x| is the only fixed point.
Therefore, for the initial value of @ # /2(d — 1)(d — 2) = 2(d — 1)/|x|, there will be an
infinite Kasner alternations towards the singularity.

Case III: /2(d —1)(d —2) > 2(d — 1) /|&| (right panel of Fig. 1).

When |a| > /2(d — 1)(d — 2), the Kasner transition develops, and when |a| < 2(d —
1)/k, the Kasner inversion appears.

Nevertheless, for 2(d — 1)/|&| < |a| < v/2(d — 1)(d — 2) (the overlapping region in the
right panel of Fig. 1), both the contributions from h’/h and F to (2.3) play important roles.
The complex competition between the Kasner inversion and the transition could occur. So

far, we have not been able to give an analytical description of this overlapping regime.
D

IT
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Figure 1: Classification for the possible alternation of Kasner epochs for a theory with an
exponential coupling F (1)) ~ e¥. Give a Kasner eopch with the exponent a = 27 and
denote o = 1/2(d — 1)(d — 2) and o5 = 2(d —1)/|k|. A Kasner transition triggers when «
falls into the blue region (|a| > of.), and a Kanser inversion appears when « is in the red

region (|a| < af). The Kasner alternation can be divided into three classes depending on
the spatial dimension d and the coupling constant k. Left panel: af < of. There exist
a stable region with af < |a| < of.. Middle panel: af = af = /2(d — 1)(d — 2). There
will be an infinite sequence of Kasner alternations towards the singularity, except for the
fine-tuning with @ = 1/2(d — 1)(d — 2). Right panel: af > af. In the overlap of red
and blue regions (of. < |a| < af), either Kasner transition or inversion description breaks

down.



Numerical verification:

Consider a 5-dimensional model:

2
. 1. sinh?(k1/2) [ . V3
L£05) — —5(0,415’)2— 5 Oy — —A,

L
3 ) 'l,b - 1 v
- 7 cosh 5(0 —cosh ) — ZF,,,,F" ,
At the AdS boundary:
'd’:'d’sz+"'+‘¢’1v23+"' . Ay :“4...._%22.}...
Kasner inversion: aayp = 12.
12 h (19 29 4
. — 4= ere “+ “for positive alpha
Kasner transition: ator==o, . P cap
while® — ”for negative alpha
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a-K phase diagram

I1P
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Figure 2: The k-a phase diagram for the benchmark model (3.26). The two vertical
dashed lines at kK = ++/3 divide the phase diagram into three parts. The middle part with
—V3<k<V3 corresponds to Case I, and the outer parts || > V3 correspond to Case
III. In addition, Case II is precisely given by the two vertical lines.



1) The case of k=2 ( Thismodel (r=2> /3) belongs to Case III,)

30 T T T T 30

e I i —
0 R I T ar(z) ] 20f S
o ] [ = fonaey | Y |  =—=- aplz
2of . o W
C 20.3474 ] :
1sf 1 or
10 3 of
s 1|
: ] - l =14.3704
0 - ] [
-5""" aa 2 aaaaal a2 2 2 222al s a2 asassl s 3 a2 s aassl _2g' A3 3 s aaaal A3 3 s aaaal A3 3 s aaaal A3 3 s aaaal - v vawl
10° 10" 10" 102 10 10M 10% 10" 10™ 10% 10™
z/zg zfzy

Figure 3: A direct comparison of the analytical description (3.30) (blue dashed curve)
and the numerical one (solid orange curve) for Kasner inversion (left panel) and Kasner
transition (right panel). Note from (3.11) that a(z) = 2¢’(z). Each platform corresponds
to a Kasner epoch with the number denoting the value of @. We consider the hairy black
hole at T' = 0.9671,.. The approximation (3.30) is in excellent agreement to the profile from
the full equations of motion (2.3)-(2.6). We have considered the model (3.26) with k = 2,
i.e. a top-down theory from supergravity [32].

Note that there is an overlapping region: 3 < |a| < 2/3,

Outside the overlapping region, the alternation between adjacent
Kasner epochs is described by the transformation laws. Inside the
overlapping region, however...
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Here 1s the case for T=0.995T c. After the ER collapse and scalar
oscillation, one has a Kasner epoch with alpha=1.3078, then after a
Kasner inversion and a transition, the resulting epoch has alpha=-3.1966
which 1s within the overlapping region: (-2v3,-3).

3.162x 1072 1.000 x 102° 3.162 x 1037

z/zg

Figure 4: The configuration of 2% inside the hairy black hole at T — 0.9957. for the
model (3.26) with « — 2. The dashed red and blue curves mark |2¢/| = 3 and |2¢'| =
24/3, respectively. The value of a for each Kanser epoch is given explicitly. When =z’ —
—3.1966 € (—2+/3, —3), it goes through a competitive process that can’t be described by
our inversion or transition law. The inset zooms in on this transformation. After this
process, the system arrivals at a Kanser epoch with a = —3.8095. The present model can
be embedded into supergravity [32].
S
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2) The case of ~=v3 (belongs to Case II)

There will be generically a never-ending chaotic alternation of Kasner
epochs towards the singularity.

aar =12, |a| <2V3,
a+ ar = +4/3, |a|>2\/§.

:

' 1 'y 'l ' 1 'y 'l 1 1 'y 'l ' 1 'y 'l 1 1 'y 'l ' 1 'y
100 10° 101'° 104 1078 1022

z/ zZpr

Figure 5: The interior configuration of z at T = 0.927_. for the model (3.26) with « = /3.
Both the boundaries of the Kasner inversion and transition are at |a| = 2+/3, so it will be
an infinite Kasner alternation process. The value of & for each Kasner epoch is given by
solving the full equations of motion. The validity of the transformation rule (3.32) for the
alternation of Kasner epochs is manifest.

e
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3) The case of =32 (belongs to Case 1)

In this case there exists a stable region: 93 < |a| < 4

Once a Kasner epoch falls into this region, 1t will stay at this Kasner
epoch towards the singularity: After a Kasner transition around z/z H=
1075, the system jumps to a Kasner epoch with alpha=3.6147 within the
stable region.

20 T

T
ok o847.) - e — 4 ]
(z61a7) - - |z¥'| = 2v3
[ | -
o
- -
v B ‘ 24 ]
—10f | a2f h
L e s ] R et et ettt
38
i 36F i .
—20l 34fF"" "‘(" Stoomrmipemrmrmemem o=y ]
K az2fF E
3ok L 3
1 1 " " 1 1 1 1 ' 1 e .104 1 1.05 e 1 1061 1 .‘07. 1 108
104 10% 1072 107 102° 1024
z/zm

Figure 6: The interior profile for 2z’ for the model (3.26) with K = 3/2 and T = 0.847..
There is a stable region with 2v/3 < |a| < 4. One finds a stable Kasner epoch with
o = 3.6147 for =z/zyxg > 10°. The inset zooms in on the transition.
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The case with general coupling £, while V neglected

Consider a 5-dimensional model with  F=suh(sinb(y)), V= —12—51})2, 7=13.

J

342 dF

hl
QI o ———E— e =
‘ h 27h? d¢’

1 ’ | |
(J" = sinh(sinh®(¢)), V = -12 - ;%‘32] —
° —
ﬂ -
(ijSAERAY
-5 [ ]
2[zn

Figure 7: Evolution of 21/’ as a function of z behind the event horizon ;. We consider the
planar hairy solution at T' = 0.997T, for the model (4.3) with a super-exponential coupling
F. Each platform corresponds to a Kasner epoch with a constant Kasner exponent . The

value of a is labelled in some Kanser epochs. There develops a sequence of Kasner epochs
as well as non-Kasner epochs.
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Figure 8: Zoom in on the evolution of 21 in Fig. 7. The interior behavior is dominated
by the two terms in the right hand of (4.4), for which the first term Hierm = —%'a is
denoted by the red dashed curve and the second term Fier = —%% is denoted by the
blue dashed curve. The left panel shows two Kasner transformations dominated by Fierm.

When 10° < 2/zy < 10%, in the right panel non-Kasner epochs are manifest where both
terms come into play.



The case with general potential V

When the scalar potential dominates
R X\ g ey e (dl/)2 .

‘([)”:——'l,[)'-i- - Q= 2 ===
. 24+2h dofy K] dd’ dd’ HItlp dd’
T T T —rrr Trrr —rrr —rrr T 020F 13
°'3’W [v =—-12—e— %w’ + uxp(c")) — zy 1 oasl [v = 13— Sut 4 e*"] I
0.2} So.wmz (0-1587) ool
04}
o.0s}
0.0
0.00
S - -0.05¢ (T7v. — 269
o2 2159 1 o0 e ) e
i PR PR A s 3 3 PR 1 s a3 PR Y L PR A s 3 3 PR 1 -0'15- 1 1 1
1 10™ 10%° 10*° 10% 10%® 1 102 10%° 107
Z/Z’; Z/Z}[

Figure 9: Kasner structure and transformation triggered by super-exponential potentials
for the Einstein-scalar theory. The left panel is dominated by an even super-exponential
potential V ~ exp(e"l’s) and the right one is dominated by V ~ e¥’. To highlight the role
of scalar potential, we turn off the U (1) gauge field. The scalar potentials are chosen to
have the asymptotic behavior as ¥» — 0 near the AdS boundary V = —12 — %1/}2 + ---, for
which the boundary expansion is given by (3.27). To obtain the hairy black holes in such
charged neutral case, we fix the boundary source for the scalar ¥»; — 1. We consider the
planar horizon case in five dimensional spacetime.
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The case with both F and V'

V() =-13- 24)2 +e¢4, F =sinh?(¥)), q=+3.

"M —_Gr7————— 10 oy T T
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_ : 11 e _ (Goses)
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| nonn iy i

° UHUUUUHU ".HKLJ](; |
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Figure 11: Interior dynamics of the planar hairy black holes at T' = 0.817, (left) and
T = 0.87T¢ (right) for the model (4.7). There develop complicated behaviors, including
the presence of non-Kasner epochs and the random change of the amplitude of the Kasner
exponent.
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5. Constraining the number of horizons with energy condition

Einstein’s equation in (d + 1)dimensional spacetime G,, =T,

In the classical level the matter should satisfy some constraints
named “energy conditions” which crudely describe properties
common to all (or almost all) states of matter that are well-
established 1n physics but are sufficiently strong to rule out
many unphysical “solutions™ of the Einstein’s equation.

The original singularity theorems of Penrose and Hawking
were proved for matter obeying the null energy condition
(NEC) or strong energy condition (SEC), respectively. _

[T/w - Tgw/ (d—1)]v"v” >0 for every timelike vector field v#

11 .r



5. Constraining the number of horizons with energy condition

Denote I' to be the cross-section of black hole event horizon and & to be the Killing
vector which presents the static symmetry. We prove the following theorem for a static
(d 4+ 1)-dimensional black hole.

Theorem 1 If the Einstein’s equation and one of the following three conditions are satisfied

(C1) T is compact and SEC is satisfied inside black hole;

(C2) T is noncompact but the system has hyperbolical or planar symmetry, and NEC is
satisfied inside black hole;

(C8) T is noncompact 2-dimensional surface with nonpositive area-averaged scalar curva-
ture, and NEC is satisfied inside black hole,

then there is at most one non-degenerated inner Killing horizon associated with £* inside

every connected branch of black hole event horizon. In addition, if a connected branch of
black hole event horizon is degenerated, then there is no inner Killing horizon associated

with &M.

Here we define the “area-averaged scalar curvature” of a surface S to be A~! | ¢ RAS with
A and fR the area and scalar curvature of S, respectively.

TP arXiv: 2104.03012 [gr-qc]
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Proof of C1:

Assume that behind the event horizon there 1s an connected spacetime
region V inside which the Killing vector \xi 1s timelike

ds? = —N?dt* + hapdz®dz’  2_§ - 2o

Einstein’s equation:

@R =925 A:N—2TV_MM
k P P 88 £2<0 £2>0 £2<0

. hap . s
@DRap = N"1D,DyN + |Top + y bl =T )] /E\l Event
| | - t horizon

D?N? = 2N?[p+T/(d — 1)] + 2h%(8,N)(8,N)

SEC: p+T/d—-1)>0 » D?*N? >0

Maximum Principle: the maximum of N*2 must be at the boundaries:

which is contradictory to the assumption

max N2|s. = max N?|qy. = 0 e :
= o that \xi is timelike !
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For the stationary case:

In an axisymmetric stationary spacetime, there are two linear
independent Killing vectors, . ¢+ 1s timelike outside EH, and
a spacelike vector field, v#, representing the rotating symmetry.

ds® = —N2dt* + ’}'Q(dgb — wdl‘.)2 + gagdz?dz?

On the EH:
gtt9eed — 9t2¢
9o¢

—N2|H= = 0.

H
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Let us assume that: (A) there are more than two mner Killing
horizons when EH is nongenerated, or (B) there 1s an inner
Killing horizon when the EH 1s degenerated. Then there must
be a spacetime region V, where the N*2>0 inside V and N=0 at
oV.

One can make an ADM decomposition on the spacetime V
by a series of equal-t surface denoted by ¥:. The induced metric

dsZ, , = hapdz?dz? = 42d¢? + qupdz?dzB

. . . d 2 - rab __ o~
Then the Hamiltonian constraint | " B+ EK* — KaK* =2p,

and the momentum constraint: DK, — Dy K = —J;




On the other hand,

due to stationary, the evolution equation of extrinsic curvature
and induced metric read

0, K, = O4hgy = 0 ‘

1 — ha . s
(d)Rab — 2I{acl{cb — WLBKab + N—lDanN + [7:1b + d _bl (P T 7—)]

QNKab + ‘Cﬂhab =0.

Here g% = —wW¥*? is the shift vector field.

With the equations of motion, we are able to show
ITP
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D2N2 = 2N2[5+ T/(d — 1)] + 2h%®(8,N)(8,N) + 2N2K ,, K .

Then we see that inside ¥,  with the SED, p+7/(d—-1) >0

D2N?2 > 0.

As the cross-section of horizons is compact, the domain ¥; is bounded. The maximum principle shows
that the maximum of N2 must be at the boundaries of ¥, so we have

ma.xNglzt = ma.xN2|ay_3t =0,

which is contradictory to fact that N2 > 0 inside ¥;. This shows that the assumption (A) and (B)

are wrong.

I1P
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6. Conclusions

We establish a no inner-horizon theorem for black holes with charged scalar hair.

The hairy black holes approach a spacelike singularity at late interior time, independent of the
form of scalar potentials and the asymptotic boundary of spacetimes.

The geometry near the singularity takes a universal Kasner form when the kinetic term of the
scalar hair dominates, while novel behaviors different from Kasner form are uncovered when
the scalar potential becomes important to the background.

All these features are also valid for the Einstein gravity coupled with neutral scalars.

No Cauchy horizon for (charged) black holes with vector hairs, including GB case. Some
Interesting features appear inside the black holes, for example, never-ending Kasner epochs.

We try a classification of the interior structure of black holes with scalar hairs, and the
transformation laws for Kasner inversion and Kasner transition are presented.

With quite general conditions, we find that the number of horizons is highly constrained by
energy conditions of matter.
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