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The most general stationary black hole in Einstein-
Maxwell Theory is Kerr-Newman black hole, which is 
described by three parameters: M, J and Q 

Black hole in sky：Kerr black hole (1963)：M, J

Uniqueness theorem of BH in GR:

1、Introduction:  Black hole is one of predictions of GR



Kerr-Newman Black Holes!

where

1) When a=0, Reissner-Nordstrom black hole solution
2) When Q=0,  Kerr black hole solution
3) When a=Q=0, Schwarzschild black hole solution
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Minimal black hole ?

Black hole horizon

Singularities ?
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Schwarzschild black hole:

spacelike singulality!  



Reissner-Nordstrom Black Hole: 
gravity coupled to a U(1) gauge field

where

horizons:

1
4 F F µn

µn-

2 2 1 2 2 2
2( ) ( )ds f r dt f r dr r d-= - + + W

2

2

2

2( ) 1 QM
r r

Q
tr r

f r

F

= - +

=

2 2r M M Q± = ± -

The singularity at r=0 is timelike! 



Penrose diagram of Kerr black hole 

There is a singularity 
ring at r=0 .

r
±
=M ± M 2 − a2



1)  The observed black holes are the ones predicted by GR?

2)  The singularity inside black holes is a generic feature? 
if yes, spacelike, nulllike, or timelike? 

3)   Cauchy horizon is stable or unstable? its fate?
- mass inflation, A. Ori (1991)
- back reaction of quantum fields

Some questions arise naturally:

This talk will focus on the internal structure of black holes 
with various hairs.



2. No inner horizon theorem for charged black hole with scalar

The model: we consider a (d+2)-dimensional gravity theory
coupled with a Maxwell field and a charged scalar field: 

The black hole solution ansatz:



The equations of motion:



The key observation: the existence of the conserved quantity 

Namely, 

Let us evaluate this quantity both at two horizons



(1) When k=0 or k=1: the lhs <0, while the rhs >=0;

(2) When k=-1, the both sides have the same sign: 
counter partner exists, see later. But  there only exists  
at most one inner horizon with non zero surface gravity.



The proof is as follows:

(i) The horizon z_I must be a single root, otherwise we must 
have f”(z_I) <=0

This is not consistent with Q’(z)=0! Thus z_i should be a
single root  with f’(z_I) >0.

(ii) Suppose there exists a second inner horizon z_II



The lhs is positive, while the rhs is negative, therefore the 
second inner horizon is impossible.



Singularity 

For simplicity, consider Z=1 and the kinetic term of the scalar
field  dominates. In that case, the potential can be neglected.   

In that case,

The charge approaches to a constant at the singularity，
Namely, the spacelike singularity must be charged.



Introduce the proper time 

We have 

The metric has a (generalized) Kasner form!



In the above, the following constraint must be obeyed: 

which allows the potential V to be arbitrary algebraic function,
including  polynomial function,  for example, V= m^2 \phi^2.

Some examples:   we define

Note that for Kasner geometry, they are constants when 





Hyperbolic black hole with inner horizon

Consider a model in four dimensions:

The equations of motion:



Take the parameter and initial conditions:



Further discussions:
Ø No scalar-haired Cauchy horizon theorem in Einstein- Maxwell-Horndeski theories

by D. Devecioglu and Mu-In Park ( arXiv: 2101.10116)
Ø No Cauchy horizon theorem for nonlinear electrodynamics black holes with 

charged scalar hairs by Y. S. An et al, arXiv: 2106.01069【 for the hyperbolic 
horizon case, the Cauchy horizon is ruled out by NED.    

Ø Black hole singularity across phase transitions by Y. Liu et al, 2108.04554
Ø Inside an asymptotically flat hairy black hole  by O. Dias et al, 2110.06225
Ø Kasner geometries inside holographic superconductors by L. Sword and D. 

Vegh,2112.14177
Ø The final kasner regime inside black holes with scalar or vector hairs by M. 

Henneaux, 2202.04155
Ø Interior of helical black holes by Y. Liu and H. Lyu, 2205.14803
Ø AdS black holes with a bouncing interior  by S. Hartnoll, 2209.12999
Ø Insights and guidelines on the Cauchy horizon theorem by X.Y. Chew et al, 

2308.09225
Ø Internal structure of hairy rotating black holes in three dimensions, L. L. Gao et al,
Ø 2310.15781……..
u Vector hair, tensor hair?
u Gravity theories with high curvature terms (e.g., GB theory)?....



3、Inside anisotropic black holes with vector hairs 

The model we are considering:

The ansatz for metric and matter field:

Here  β (r)  can be set to zero as a gauge choice. 

(R. G. Cai et al, arXiv:1309.4877, a holographic p-wave model)



The effective action:

The key observation:  there is a scaling symmetry

There is an associated conserved charge:



No Cauchy horizon:

No solution

No inner horizon



Anisotropic black hole: p-wave superconductor 

Near z=0:



Dynamical epochs inside: Anisotropic Kasner cosmology 

In this coordinate, the AdS boundary is at z=0,while the 
singularity is assumed at z=\infty. Near the singularity,
one has (neglecting the contribution of matter fields)

The solution:





Numeric examples with



Analytic and numeric comparison:



Kanser alternation and flipping of powers

We find that the interior geometry near singularity does not 
experience only one Kasner epoch, but several ones as
z-> \infty, and one has:

Numerical values:

M. Henneaux,
arXiv: 2202.04155



Five more examples:



Never-ending Kasner alternations: 



Collapse of ER bridge and Josephson oscillations:

When T is above  T_c, the solution is the RN-AdS black hole,
when T is slightly less than T_c, the Cauchy horizon will 
disappear.  The geometry near the would-be inner horizon:

The anisotropic factor u(z) also oscillates with a half period of the 
vector condensate. When T decreases, the non-linear dynamics become 
less dramatic.



Further considerations: No Cauchy horizon

(1) The case one:

(2) The case two:



4.  Classifying the interior dynamics of  black holes with scalar 

The setup

The hairy black hole solution takes the form:

denotes the line element of unit sphere (k=1),
planar (k=0) or hyperbolic sphere (k=-1) in d-1 dim



We take theta=0 without loss generality, then  

In this coordinate, the boundary is at z=0, while the singularity would be
at z-> infinity.  And the associated  thermodynamics 

Note that 



Kasner Epoch:

In this case, the contributions from F and V are negligible. At large z limit 

One has the solution:



Introducing the proper time:

The (generalized)
Kasner geometry

These constants are all determined by alpha, called Kasner exponent. It is
easy to check that  the solution makes sense if 

this allows V and F to be arbitrary 
algebraic functions, including 
polynomial functions. Namely once
these conditions are obeyed, the 
neglected terms in EOMs will not
change the solutions.



Kasner Inversion:

Once the above assumption is invalid, the solution will become unstable.
A particularly simple case is triggered by the h’/h term.  Interestingly, 
this alternation caused by the non-integrability of h’ will make itself come
back to be integrable and will enter a new stable Kasner epoch.  This is 
called Kasner Inversion.    

Inside the event horizon, one has h<0, while  

To have a stable Kasner epoch  down to the singularity, the integral 
of h’ should be finite, otherwise the new dynamics will come into play.
The breakdown of the integrability of h’:



In this case, the background becomes unstable and the term h’/h cannot
be dropped.  Then the dynamics is determined by the equations

Here h’ is determined by the kinetic term of the gauge field. 

Take the form:



The two exponent alpha for the Kasner epoch before and after the Kasner
inversion are the roots:

These two roots obey
Here alpha is the one before the inversion,
while alpha_I is the one after the inversion

Suppose there is a Kasner epoch with
There will be a new Kasner epoch with 



Kasner  Transition:

When one considers the coupling function F with an exponential form

The background solution will be destroyed and a new Kasner 
transformation process will appear.

One can see when 

The term with dF/d𝜓 cannot be dropped. In this case, one has 



One has the transformation law for the Kasner transition

Suppose there is a Kasner epoch with
This transformation law shows that the Kasner transition 
process will decrease the amplitude of alpha until  the
condition is destroyed.  

In addition, the transformation not only depends on the 
dimension, but also the parameter kappa. 



Classification of Kasner Alternation:

As we have seen that the Kasner transition causes alpha to decreases 
while the Kasner inversion makes alpha increase. When these two 
processes are triggered alternately, it could lead to an infinite chaotic 
oscillation of Kasner epochs.  





Numerical verification:

Consider a 5-dimensional model:

At the AdS boundary:

Kasner inversion:

Kasner transition: here “+ ”for positive alpha
while“ – ”for negative alpha





1) The case of        （                                   ）

Note that there is an overlapping region:
Outside the overlapping region, the alternation between adjacent 
Kasner epochs  is described by the transformation laws.  Inside the 
overlapping region, however…



Here is the case for T=0.995T_c. After the ER collapse and scalar 
oscillation, one has a Kasner epoch with alpha=1.3078, then after a 
Kasner inversion and a transition, the resulting epoch has alpha=-3.1966
which is within the overlapping region:： .



2） The case of            : （belongs to Case II） 

There will be generically a never-ending chaotic alternation of Kasner 
epochs towards the singularity.  

KI
KT



3) The case of        : （belongs to Case I）
In this case there exists a stable region:
Once a Kasner epoch falls into this region, it will stay at this Kasner 
epoch towards the singularity：After a Kasner transition around z/z_H=
10^5, the system jumps to a Kasner epoch with alpha=3.6147 within the 
stable region.



The case with general coupling F, while  V neglected 

Consider a 5-dimensional model with



The case with general potential V

When the scalar potential dominates



The case with both F and V



5. Constraining the number of horizons with energy condition 

Einstein’s equation in (d + 1)dimensional spacetime

In the classical level the matter should satisfy some constraints 
named “energy conditions” which crudely describe properties 
common to all (or almost all) states of matter that are well-
established in physics but are sufficiently strong to rule out 
many unphysical “solutions” of the Einstein’s equation.

The original singularity theorems of Penrose and Hawking 
were proved for matter obeying the null energy condition 
(NEC) or strong energy condition (SEC), respectively.



5. Constraining the number of horizons with energy condition 

arXiv: 2104.03012 [gr-qc]



Einstein’s equation:

SEC:

Proof of C1:

Assume that behind the event horizon there is an connected spacetime
region  V inside which the Killing vector \xi is timelike

Maximum Principle: the maximum of N^2 must be at the boundaries:  
which is contradictory to the assumption 
that \xi is timelike !



For the stationary case:

In an axisymmetric stationary spacetime, there are two linear
independent Killing vectors,       is timelike outside EH, and 
a spacelike vector field,     , representing the rotating symmetry.

On the EH:



Let us assume that: (A) there are more than two inner Killing
horizons when EH is nongenerated, or (B) there is an inner 
Killing horizon when the EH is degenerated. Then there must 
be a spacetime region V, where the N^2>0 inside V and N=0 at

One can make an ADM decomposition on the spacetime V
by a series of equal-t surface denoted by      The induced metric

Then the Hamiltonian constraint 
and the momentum constraint:



On the other hand,

due to stationary, the evolution equation of extrinsic curvature 
and induced  metric read 

With the equations of motion, we are able to show



Then we see that inside      , with the SED, 



6. Conclusions

Ø We establish a no inner-horizon theorem for black holes with charged scalar hair. 

Ø The hairy black holes approach a spacelike singularity at late interior time, independent of the 
form of scalar potentials and the asymptotic boundary of spacetimes. 

Ø The geometry near the singularity takes a universal Kasner form when the kinetic term of the 
scalar hair dominates, while novel behaviors different from Kasner form are uncovered when 
the scalar potential becomes important to the background. 

Ø All these features are also valid for the Einstein gravity coupled with neutral scalars.

Ø No Cauchy horizon for (charged) black holes with vector hairs, including GB case. Some 
Interesting features appear inside the black holes, for example, never-ending Kasner epochs.

Ø We try a classification of  the interior structure of black holes with scalar hairs, and the 
      transformation laws for Kasner inversion and Kasner transition  are presented.

Ø With quite general conditions, we find that the number of horizons is highly constrained by 
energy conditions of matter.



thanks!




