Name:	Hiroshi Noguchi		
Affiliation:	Institute for Solid State Physics		
	University of Tokyo		
Email:	noguchi@issp.u-tokyo.ac.jp		
Academic	PhD in philosophy, Nagoya Univ. (2000)		
degree:			
Professional	2000 - 2003	Postdoc (JSPS Fellow),	
Experience:		Institute for Molecular Science	
	2003 - 2006	Postdoc (JSPS Fellow, Jülich),	
		Forschungszentrum Jülich	
	2006 - 2008	Permanent researcher,	
		Forschungszentrum Jülich	
	2008–	Associate Professor, ISSP, Univ. of Tokyo	
Current	Physics of Biomembranes		
Research:	Dynamics of Complex Fluids		

Non-Equilibrium Dynamics of Fluid Membranes

Hiroshi Noguchi

ISSP, Univ. Tokyo

I present simulation studies on the pattern formation of membranes (1) by the coupling of reaction-diffusion dynamics and (2) by the adhesion and flip-flop of curvature-inducing molecules.

(1) The mechanochemical feedback of curvature-inducing proteins stabilizes Turing patterns. Budding and multi-spindle shapes are also induced by Turing patterns. The speed of traveling waves is positively or negatively correlated with the local membrane curvature depending on the spontaneous curvature and bending rigidity. In addition, self-oscillation of the vesicle shape occurs, associated with the reaction-diffusion waves.

(2) In equilibrium conditions, the membrane domains form checkerboard patterns in addition to stripe and spot patterns. In nonequilibrium, characteristic patterns are obtained.