Name:	Hisao Hayakawa	
Affiliation:	Yukawa Institu	nte for Theoretical Physics, Kyoto University
Email:	hisao@yukawa.kyoto-u.ac.jp	
Academic	PhD in Physics, Kyushu University (1991)	
degree:		
Professional	1991 – 1996	Assistant Professor, Department of Physics, Tohoku University
Experience:	1996 - 2003	Associate Professor, Graduate School of Human and
		Environmental Studies, Kyoto University
	2003 – 2006	Associate Professor, Department of Physics, Kyoto University
	2006 –	Professor, Yukawa Institute for Theoretical Physics, Kyoto
		University
Current	Nonequilibrium statistical mechanics,	
Research:	Granular physics	

Demon driven by geometrical phase

<u>Hisao Hayakawa</u>¹, Ryosuke Yoshii²

We theoretically study the entropy production and work extracted from a system connected to two reservoirs by periodic modulations of their electrochemical potentials of the reservoirs and one parameter in the system Hamiltonian under isothermal conditions. We find that the modulation of parameters can drive a geometrical state, which is away from a nonequilibrium steady state. With the aid of this property, we construct a demon in which the relative entropy increases with time such that we can extract the work if we begin with the nonequilibrium steady state without parameter modulations. We employ the Anderson model to demonstrate that the relative entropy can increase with time. [1,2]

- [1] R. Yoshii and H. Hayakawa, arXiv:2205.15193,
- [2] H. Hayakawa et al. arXiv:2112.12370.

¹ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502

² Center for Liberal Arts and Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884