Name:	Syun E	chigoya(越後谷 駿)
Affiliation:	Graduate Scho	ool of Life Science, Hokkaido University
Email:	e235813sayruan1729s@eis.hokudai.ac.jp	
Academic	Master of Soft Matter Science, Hokkaido University (2021)	
degree:	Bachelor in Physics, Hokkaido University (2019)	
Professional	2019 – 2021	Master Course Student, Graduate School of Life Science,
Experience:		Hokkaido University
	2021 –	Doctor Course Student, Graduate School of Life Science,
		Hokkaido University
Current	Analysis of the Microorganism Behaviors	
Research:	Hydrodynamic Link between Behaviors and the Environment	

Switching Behavior in Narrow Spaces, in *Stentor coeruleus*

Syun Echigoya¹, Katsuhiko Sato^{1,2}, Osamu Kishida³, Toshiyuki Nakagaki^{1,2}, Yukinori Nishigami^{1,2}

Stentor coeruleus is 1 mm long, single cellular microorganisms which mainly swim in aquatic environment by moving their cilia that cover their cell surface. And part of the time in order to feed, the cell attaches itself to a structure and produces a vortex in the water surrounding it. It is important for *Stentor* where it adheres because there are numbers of structures influencing the flow, as well as predators to avoid and a complex food distribution in their habitats.

In this presentation, I talk about our experimental results on the effects of geometrical features on *Stentor* adhering. We discovered that the cell tends to adhere to narrow areas and the adhering cell directs its mouth toward wider regions for feeding. From these results, I want to discuss what are the advantages of adhering in narrow spaces for *Stentor*.

¹ Graduate School of Life Science, Hokkaido Univ. ² RIES, Hokkaido Univ.

³ FSC for Northern Biosphere, Tomakomai Experimental Forest, Hokkaido Univ.