Name:	Shunsuke Yabunaka	
Affiliation:	Advanced Science Research Center, Japan Atomic Energy Agency	
Email:	yabunaka123@gmail.com	
Academic degree:	PhD in Physics, Kyoto University (2014)	
Professional	2014 - 2016	Postdoc (JSPS), Yukawa Institute for Theoretical Physics, Kyoto
Experience:		University
	2016 - 2018	Fukui Fellow, Fukui Institute for Fundamental Chemistry, Kyoto
		University
	2019 - 2021	Assistant Professor, Kyoto University
	2022-	Researcher, Advanced Science Research Center, Japan Atomic
		Energy Agency
Current	Phase transition, Hydrodynamics, Active matter	
Research:		

Drag coefficient of a rigid spherical particle in a near-critical binary fluid mixture, beyond the regime of the Gaussian model

Shunsuke Yabunaka¹, Youhei Fujitani²

¹ Advanced Science Research Center, Japan Atomic Energy Agency

² School of Fundamental Science and Technology, Keio University

The drag coefficient of a rigid spherical particle deviates from Stokes law when it is put into a near-critical fluid mixture in the homogeneous phase with the critical composition. The deviation $(\Delta \gamma_d)$ is experimentally shown to depend approximately linearly on the correlation length of the composition fluctuation far from the particle (ξ_{∞}) , and is suggested to be caused by the preferential adsorption between one component and the particle surface. We employ a local renormalized functional theory that can describe cases where the correlation length is not spatially uniform, due to the preferential adsorption near the critical point. We show that, as ξ_{∞} becomes larger, the dependence of $\Delta \gamma_d$ on ξ_{∞} becomes close to the linear dependence.