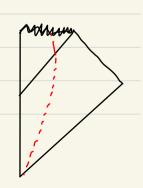
アイランド公式トラいて

関面地域 $t = 1 - 10^{1/3}$ / 202

宇冥神 知知 (YITP, Hakubi, Kyoto)

In this talk,

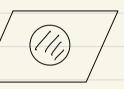
- . I will continue the discussion on BH information loss problem.
- · A recent progress: the island formula for S(PR)
- (1) How it works (Page curve, replica worm-Role)


 (2) Micro scopic origin of the formula.
- - (3) Application to the information recovery. (Petz map)

情報喪失問題とは?

コブラックホールのホーキング放射についてのパラドックス

$$. ds^{2} = -\left(1 - \frac{2GM}{r}\right) dt + \frac{dv^{2}}{\left(1 - \frac{2GM}{r}\right)} + v^{2}\left(d\theta^{2} + \sin\theta d\theta^{2}\right)$$


・星の重力崩壊によってうまれる。

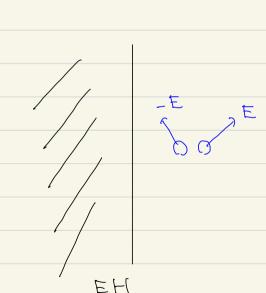
ブラックホールと熱力学

プラックホールは事象の地平面の面積に比例する 熱力学的エントロピーを持っている。

$$S_{BH} = \frac{A}{4G_N}$$

: もしBHがエントロピーを持っていないとおとう第二法則の破れ

BH、 木キンロ"飲針


・BHは温度をもつう熱的な放射を出している。 (ホーキング放射)

> 量子調的 ·事家,地平面近槽で的粒子村生成

- · 質。エネルギーをもった手工子はEHA内側に
- 入る2とで、安定になる
- ·無限虚にいる観測者はBHが 放射を出して、るの質量を失った、と思う。

ブラルクキールのホーキンの、放射による蒸発は 報惠失問

量子高角。コニカリー性上于值する?

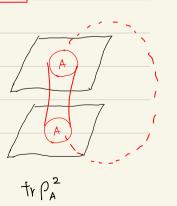
量子相関について

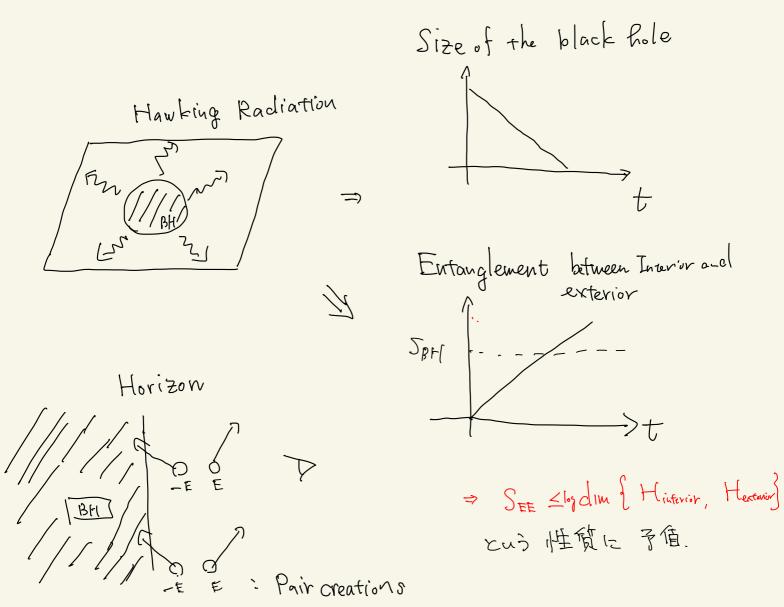
2つのスピン 1 の料子 A, Bか、シングレット洗帳

$$\cdot |\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A |\downarrow\rangle_B - |\downarrow\rangle_A |\uparrow\rangle_B$$

・相関の度合いを測3量 コエンタンロッルメントエントロピー

$$P_{A} = tr_{B} |\Psi\rangle\langle\Psi|, \qquad S_{FE} = -tr P_{A} \log P_{A}$$


QFT 12 to that 3 EE



時間一定面を領域Aとる間集合に向ける

 $H_{tot} = H_A \otimes H_{\overline{A}} \Rightarrow S(\rho_A)$

· trpa it path integral l=t, Z 言十於で生る

ここまで、まとめ

- ・ ブラックホルは熱力学エントロピー、温度を持つ。
- 。BHは熱的な放射を出している。(ホーキンロ、放射)
- ・ホーキングの計算によると、BHの内側と外側のエントンがルメントエントロピーは増え続ける。
 - ⇒ 量子言角。 ユニカリー性に子盾 (精報楽失問是頁)
- ・最近の進展: Stete 正しく計算する公式の発見 ラアイランド公式 (Pennigron, Alcheivi et al, ---)

The Set up

1 = C (1) An evaporating BH , due to Hawking radiation.
(4 = 0	-) Semi-classical: (gmv, 14)
K=1,0,1) Compute
	the entropy of Hawking radiation S(PR)
	1 (
R: rc <r< 00<="" th=""><td>The entanglement entropy of 147arr on R</td></r<>	The entanglement entropy of 147arr on R
= a Bath collecting	in the presence of dynamical gravity.
d. Hawking Quanta	

The island formula (Pennigran, Almbeiri etal, --)

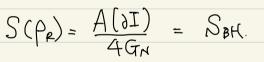
$$S(\rho_{R}) = min ext \left[\frac{A(\partial I)}{4G} + S_{aft}(IUR) \right]$$
 $I = Some region in the BH.$

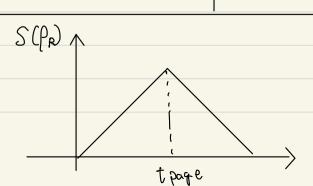
Here:

 $S_{aft}(IUR) : EE of the State | \psi \rangle$ in QFT

The island: the region which extremize the entropy functional

How it works

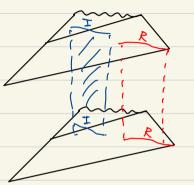

(1)
$$t < t_{Page} = S_{BH}/2$$


$$S(P_R) = S_{QFT}(R)$$

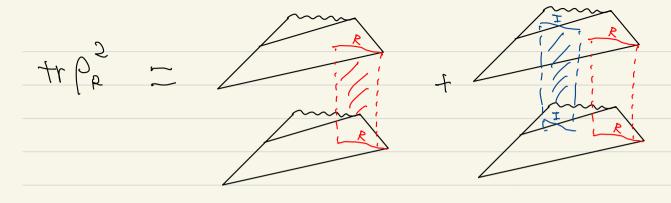
: the Hawking's result

This entropy curve is Consistent with Unitarity

Path integral and its saddle


190}

In QM: $\langle x_{\alpha} | e^{iHt} | x_{b} \rangle = \int Dx e^{tciS_{partible}} [x(t)]/t$ th→0 piSparticle [Xœlt]/h where $\frac{SS}{SX}$ = 0 (f_0M) Dgnv Do e SEH [gnv] - Smotter [4] · In gravity = Z e Selgal Zaft [gae] $\frac{SS_{\text{tot}}}{Sg} = 0$


A derivation of the island formula

(1) Use the replica trick, $\frac{S(P_R)}{-4r} = \lim_{n \to 1} \frac{1}{|-n|} \log + r P_R = \int_{R} \frac{-S[g_m]}{g_m e^{-S[g_m]}}$ $= \sum_{k=1}^{\infty} \frac{1}{2k} e^{-\frac{k}{2}}$ (2) tr PR has a path integral expression on Ex: trpp: Two copies are glued along R

(3) In the presence of dynamical gravity, we also need to include the contribution of the replica wormhole,

tr PR = The Sum of these two contributions.

· A similar computation for trpe => the Island formula

an Interpretation of the island

- (1) The region in the BH reconstructable from Hawking radiation

 \$\Rightarrow{\text{T}} \rightarrow{\text{P}} A geometric manifestation of Hayden Preskill

 Actual recovery involves Petz map
 - (2) Microscopically, it captures random fluctuations in the DM.f HR
 - ⇒ In gravity, such random fluctuations
 - > (Endidean) Wormholes (in our case, replica WH)

A microscopic model (1)

· In a microscopic theory (Quantum gravity): HBH & HR $| \Psi \rangle = \sum_{\alpha=1}^{d_{BH}} \sum_{i=1}^{d_{R}} C_{\alpha i} | \psi_{\alpha} \rangle_{BH} \otimes | i \rangle_{Rad}$ · Cai is unknown but drn KdR >> } @ Dynamics is chaotic => Cai = (ett)ai is random a Integrating out short distance physics => averaging over C

A microscopic model (1)

. The DM of Hawking radiation

$$P_{R} = \frac{1}{d_{R} d_{RH}} \sum_{i,j=1}^{d_{R}} \sum_{\alpha,\beta=1}^{d_{BH}} C_{\alpha,i} C_{\alpha,j} |i\rangle_{R} |j\rangle$$

0 So the average of N=2 Rényi entropy is,

$$\frac{1}{\text{tr} \, \rho_{R}^{2}} = \frac{1}{\text{d}_{R}^{2} \, \text{d}_{BH}^{2}} \frac{\text{d}_{R} \, \text{d}_{BH}}{\text{c}_{i,j=1}} \frac{\text{d}_$$

Averaging the entropy (1)

· Since Cai is Gaussian Random $Cai C_{\beta j}^{+} = S_{\alpha \beta} S_{\alpha j}^{-},$ $Cai C_{\beta j}^{+} C_{\delta R} C_{\delta m}^{+} = Cai C_{\beta j}^{+} C_{\delta R} C_{\delta m}^{+} + Cai C_{\beta j}^{+} C_{\delta R} C_{\delta m}^{+}$

a non perturbative correction e SBH

HIR & HBHG

$$\frac{1}{dR} = \frac{1}{dR} + \frac{1}{dR} = \begin{cases} \frac{1}{dR} & : d_R \ll d_{BH} \\ \frac{1}{dR} & : d_R \ll d_{BH} \end{cases}$$

• Similary:
$$S(P_R) = - tr P_R log P_R = \begin{cases} log d_R : d_R \ll d_{BH} \\ log d_{BH} : d_R \gg d_{BH} \end{cases}$$

Averaging the entropy (2)

· Why the behavior of the entropy changes after the Page time?

$$\frac{\overline{S(\rho_{P})} + S(\overline{\rho_{R}})}{}$$

$$\overline{\rho_R} = \frac{1}{d_R} \frac{d_R}{i=1} |i\rangle \langle i| \implies S(\overline{\rho_R}) = \log c|_R.$$

$$\rho_{R} = \frac{1}{d_{R} d_{BH}} \sum_{i=1}^{d_{R}} \sum_{\alpha=1}^{d_{BH}} C_{\alpha,i} C_{\beta,j} |i\rangle_{R} |i\rangle$$

Averaging the entropy (2)

· Why the behavior of the entropy changes after the Page time?

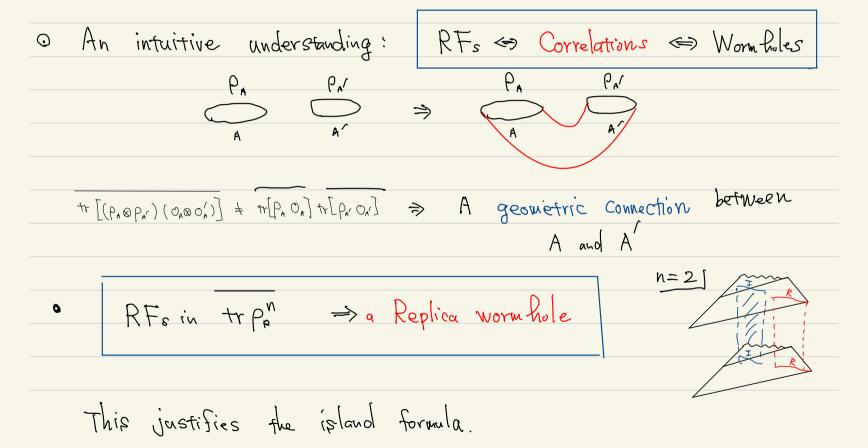
$$\overline{S(\rho_{P})} \neq S(\overline{\rho}_{R})$$

$$\frac{1}{\rho_R} = \frac{1}{d_R} \sum_{i=1}^{d_R} |i\rangle \langle i| \implies S(\bar{\rho}_R) = \log c|_{R}.$$

$$\rho_{R} = \frac{1}{d_{R} d_{BH}} \sum_{i=1}^{d_{R}} \sum_{\alpha=1}^{d_{BH}} C_{\alpha,i} C_{\beta,j} |i\rangle_{R} |i\rangle$$

the Accumulation of random fluctuations changes the entropy t > tpage

Going back to gravity (1)


. In a theory of gravity,

The random fluctuations = Wormholes (coleman, Hawking GS, MM ... SSS)

What is a worm-hole?
 A geometric Connection between
 two systems

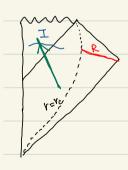
Going back to gravity (2)

$$\frac{1}{dr} \frac{d\rho}{dr} = \frac{1}{dr} \frac{d\rho}{dr} \frac{d\rho$$

in gravity (Trivial Saddle)

Information recovery through the island.

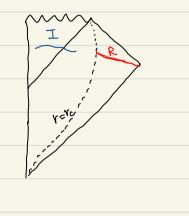
An interpretation of the island



on Island: a region in the BH

reconstructable from Hawking radiation

when t>tpage.


HR

- · A gedanken experiment: Sending a diary into the BH
 - ⇒ It will enter to the island ⇒ belongs to HR
 - => Geometric understanding of Hayden Prestill

time delay between I and R => The scrambling time

Information recovery

HOFT

- · How does the reconstruction works!
 - . Take a QFT on the fix BH back ground

Any operator Cart in the island region must be reconstructable from HR

This is archived by Petz map.

Petz map (1)

Hart (I) Embed Hart to the larger space $H_{\alpha\alpha} = H_{\alpha} \otimes H_{\alpha}$ $V : H_{\alpha} = H_{\alpha} \otimes H_{\alpha}$ $V : H_$

$$\frac{d_{BH}}{dz} = \frac{d_{R}}{\sum_{i=1}^{l} \left(\frac{1}{|Y_{i}|^{2}}\right)} = \frac{d_$$

(1) the QFT state is a slightly excited state on the BH

Petz map (2)

(I) Under the embedding, a QFT operator is mapped to
$$V: H_{QFT} \longrightarrow H_{BH} \otimes H_{Q}$$

$$O_{0FT} = \sum_{a,b=1}^{d_{code}} \langle a|O_{0FT}|b \rangle |a \times b| \longrightarrow O = \sum_{a,b}^{d_{code}} \langle a|O_{0FT}|b \rangle |\Phi_{a} \times \Phi_{b}|$$

acts on both Hp and HB

The goal: Construct
$$\mathcal{O}_{R}$$
 acting only on \mathcal{H}_{R} , st $\langle \mathcal{I}_{a} | \mathcal{O}_{R} | \mathcal{I}_{b} \rangle = \langle a | \mathcal{O}_{aft} | b \rangle$

A Comment

	· This is just a usual quantu	un error correction procedure,
with the	Quantum channel: Hode -	-> HBH & HR -> HR
	Hattab	
	• Information recovery (=) of the BH interior from Hawking radiation HR	Quantum error correction against the erasure (tracing out the BH dof)

Petz map

Such Or can be constructed,

HRXHBH -> HR D OR HBFT OAFT

OR - OR TrBM O] 6R

$$\begin{array}{c}
\frac{d_{code}}{d_{ab}} = \frac{d_{code}}{d_{ab}} \langle a | O_{ab} | b \rangle \langle \underline{I}_{a} \rangle \langle \underline{I}_{b} | \\
O_{R} = tr_{ph} [VV^{+}] = tr_{ph} [T_{proj}] :
\end{array}$$

=> { . Acting only on HR . Satisfy <\Ial Opl\Pb> = <alOp+1b>

·
$$\langle \psi_{ia} | \psi_{jb} \rangle_{BH} = \sum_{\alpha=1}^{dBH} C_{\alpha} (ia) C_{\alpha} (jb) \Rightarrow \text{We need a Worm Role}$$

$$= \frac{1}{d_{R}} \sum_{\substack{1 \text{ i.e.} \\ \text{ i.e.}}} \frac{1}{d_{R}, \text{ i.e.}} \left\{ \frac{1}{d_{R}, \text{ i.e.}} \left\{ \frac{1}{d_{R}, \text{ i.e.}} \right\} \left\{ \frac{1}{d_{R}, \text{ i.e.}} \left\{ \frac{1}{d_{R}, \text{ i.e.}} \right\} \left\{ \frac{1}{d_{R}, \text{ i.e.}}$$

Summary

- (1) Random fluctuation of ρ_R is important to obtain a Page curve.
- (2) In a theory of gravity, averaging over random fluctuation is captured by including worm holes to the gravitational path integral
 - => Island Formula
 - (3) Information recovery = Petzmap

Fature prospects

(1) Can we see unitary time evolution
from Other quantites?? (Ex: Smatrix?)

(2) How the geometry of the BH interior is encoded in He? => We need a detailed Study of Petz map

(3)