Comments on the Atiyah-Patodi-Singer index theorem, domain wall, and Berry phase

> Takuya Yoda Department of Physics, Kyoto University [arXiv:2109.08274 [hep-th]]

Collaboration with Tetsuya Onogi (Osaka Univ.)

Oct./30/2021 関西地域セミナー@YITP Panasonic Hall

APS index theorem

[M.F.Atiyah, V.K. Patodi, I.M.Singer, 75] See also [M.F.Atiyah, I.M.Singer, 68]

Statement

Dirac operator on an even-dimensional manifold with the boundary:

$$D = \bar{\gamma} D = \bar{\gamma} \gamma^{\mu} (\partial_{\mu} + iA_{\mu})$$

where the APS boundary condition is imposed

Def. APS index:

$$\operatorname{ind}_{\operatorname{APS}} D = \dim \ker D_+ - \dim \ker D_-$$

APS index theorem:

ind _{APS}
$$D = \int_{\mathcal{M}} \operatorname{ch}(F) + \frac{1}{2}\eta(i\nabla)$$

 $\eta(i\nabla) = \sum_{n} \operatorname{sign} \lambda_{n}$

Recent topics

Non-perturbative generalization of anomaly inflow etc.

e.g. [E. Witten, 00, 16] [E. Witten, K. Yonekura, 19]

Domain wall APS index theorem

Reformulation of the APS index theorem

[H.Fukaya et al., 17,19,20]

APS boundary condition Gapless bulk

Localized fermion by domain wall mass

Domain wall APS index

ind _{DW}
$$D = \frac{\eta (D + \bar{\gamma}m_{\rm DW}) - \eta (D + \bar{\gamma}m_{\rm PV})}{2}$$

Equivalence to the original APS index

ind _{DW}
$$D = \operatorname{ind}_{APS}D$$

= $\int_{|x_d| \le L_2/2} \operatorname{ch}(F) + \frac{\eta_{\rm L} - \eta_{\rm R}}{2}$

Brief summary

Re-derivation of the domain wall APS index theorem

[T. Onogi, TY, 21] [T. Onogi, TY, to appear]

The original proof was mathematically rigorous by technically complicated...

- Domain wall APS index = Berry phase
 (Domain wall APS index = Witten index)

Contents

\checkmark	Introduction	(3)
•	Conjecture: APS index = Berry phase	(5)
•	Berry phase and bulk/boundary	(6)
•	Berry phase and level crossings	(2)
•	Conclusion and future works	(1)
		Total (17)

Motivations

APS index as the phase of the part. func.

$$Z = |Z| e^{i\pi \cdot \operatorname{ind}_{\operatorname{APS}} D}$$

It is expected that...

[E. Witten, 16]

Conjecture

What to show:

$$\pi \cdot \operatorname{ind}_{\operatorname{APS}} D = \vartheta$$

The trace is over the Dirac sea states

$$|\Psi^{-}\rangle \propto \sum_{\sigma \in \text{perm.}} (-1)^{\sigma} \prod_{i} \Psi_{\sigma(i)}^{-} |0\rangle$$

There are contributions from Domain wall fermion and ghost

$$\vartheta = \vartheta_{\rm DW} - \vartheta_{\rm PV}$$

[T. Onogi, TY, 21]

Snapshot Hamiltonian in two-dimensions

Dirac equation

$$D\Psi = 0, \quad D = \bar{\gamma} \left(D + m \right)$$

For simplicity $A_{\mu} = A_{\mu}(x_2)$

which is equivalent to

$$-\frac{\partial}{\partial x_2}\Psi_{p_1}(x_2) = h(x_2)\Psi_{p_1}(x_2) \qquad h(x_2) = h'(x_2) + iA_2(x_2) h'(x_2) = (p_1 + A_1(x_2))\sigma_1 + m(x_2)\sigma_2$$

Eigenstates

$$h'(x_2)\Psi_{p_1}^{\pm}(x_2) = \pm \varepsilon_{p_1}(x_2)\Psi_{p_1}^{\pm}(x_2) \qquad \Psi_{p_1}^{+}(x_2) = e^{i\alpha^+} \begin{pmatrix} \cos\theta/2\\ e^{i\phi}\sin\theta/2 \end{pmatrix},$$
$$\varepsilon_{p_1}(x_2) = \sqrt{\tilde{p}_1(x_2)^2 + m(x_2)^2} \qquad \Psi_{p_1}^{-}(x_2) = e^{i\alpha^-} \begin{pmatrix} \sin\theta/2\\ e^{i(\pi+\phi)}\cos\theta/2 \end{pmatrix},$$

Adiabatic approximation

Adiabatic approx. is valid as long as $\frac{|m|}{\epsilon} \ll L_1^{-2} \ll |m|^2 \qquad a \neq \mathbb{Z}$

Berry phase

Euclidean time development

$$\Psi_{p_1}^{-}(0) \to \exp\left[-\int_0^{x_2} \mathrm{d}x_2 \left(-\varepsilon_{p_1} + i\left\langle\Psi_{p_1}^{-}\right|(-i\partial_2 + A_2)\right|\Psi_{p_1}^{-}\right\rangle\right)\right]\Psi_{p_1}^{-}(0)$$

With normalization so that $\vartheta_{\rm DW} = 0$ for A = 0

$$\vartheta_{\rm DW} \simeq \frac{1}{2} \sum_{p_1} \oint \mathrm{d}x_2 \,\partial_2 \phi (1 + \cos\theta) = \frac{1}{2} \sum_{p_1} \oint \mathrm{d}x_2 \,\partial_2 \phi$$
$$= \frac{1}{2} \sum_{p_1} \oint \mathrm{d}x_2 \,\frac{\tilde{p}_1 m}{\tilde{p}_1^2 + m^2} \left(-\frac{\partial_2 \tilde{p}_1}{\tilde{p}_1} + \frac{\partial_2 m}{m} \right).$$

Contents

✓ Introduction	(3)
Conjecture: APS index = Berry phase	(5)
 Berry phase and bulk/boundary 	(6)
 Berry phase and level crossings 	(2)
 Conclusion and future works 	(1)
	Total (17)

Decomposition of the Berry phase

Bulk contribution

Since the bulk mass is large, the momentum sum is approximated by an integral

$$\begin{split} \vartheta_{\rm blk} &= \frac{1}{2} \int_{\rm blk} {\rm d}^2 x \int_{-\infty}^{\infty} \frac{{\rm d}p_1}{2\pi} \frac{1/|m|}{1 + (\tilde{p}_1(x_2)/|m|)^2} (-\partial_2 A_1(x_2)) \\ &= \frac{1}{2} \int_{\rm blk} {\rm d}^2 x \int_{-\infty}^{\infty} \frac{{\rm d}(\tilde{p}_1/|m|)}{2\pi} \frac{1}{1 + (\tilde{p}_1/|m|)^2} (-\partial_2 A_1(x_2)) \\ &= \frac{1}{4} \int_{\rm blk} {\rm d}^2 x \left(-\partial_2 A_1(x_2)\right). \\ &= \frac{\pi}{2} \cdot \frac{1}{2\pi} \int {\rm d}^2 x \, F_{12} \end{split}$$

Boundary contribution

Since the mass is small, the momentum sum is NOT approximated by an integral

$$\begin{split} \vartheta_{\text{L-bdy}} &= \frac{1}{2} \sum_{p_1} \int_{\text{L-bdy}} \mathrm{d}x_2 \, \frac{\tilde{p}_1(-L_2/2)}{\tilde{p}_1(-L_2/2)^2 + m(x_2)^2} \partial_2 m(x_2) \\ &= \frac{1}{2} \sum_{p_1} \int_{\text{L-bdy}} \mathrm{d}m \, \frac{\tilde{p}_1(-L_2/2)}{\tilde{p}_1(-L_2/2)^2 + m^2}. \\ &= \frac{1}{2} \lim_{|b| \to \infty} \sum_n \int_0^{|b|} \mathrm{d}b \, \frac{n + a_{\text{L}}}{(n + a_{\text{L}})^2 + b^2} \end{split}$$

Rough evaluation

$$\begin{split} \vartheta_{\text{L-bdy}} &= \frac{1}{2} \lim_{|b| \to \infty} \sum_{n} \int_{0}^{|b|} db \, \frac{n + a_{\text{L}}}{(n + a_{\text{L}})^{2} + b^{2}} \\ &= \frac{1}{2} \sum_{n} \left[\tan^{-1} \frac{b}{n + a_{\text{L}}} \right]_{0}^{\infty} \\ &= \frac{\pi}{2} \cdot \frac{1}{2} \left[\sum_{n + a_{\text{L}} > 0} 1 + \sum_{n + a_{\text{L}} < 0} (-1) \right] \\ &= \frac{\pi}{2} \cdot \frac{\eta_{\text{L}}}{2}. \end{split}$$

Evaluation of the boundary contribution

1 - 1

$$\begin{split} \vartheta_{\text{L-bdy}} &= \frac{1}{2} \lim_{|b| \to \infty} \sum_{n} \int_{0}^{|b|} db \, \frac{n + a_{\text{L}}}{(n + a_{\text{L}})^{2} + b^{2}} \\ &= \lim_{|b| \to \infty} \frac{1}{4} \sum_{n} \int_{0}^{|b|} db \left[\frac{1}{n + a_{\text{L}} - ib} + \frac{1}{n + a_{\text{L}} + ib} \right] \\ &= \lim_{|b| \to \infty} \frac{i}{4} \sum_{n} \ln \frac{n + a_{\text{L}} - [a_{\text{L}}] - i|b|}{n + a_{\text{L}} - [a_{\text{L}}] + i|b|} \\ &= \lim_{|b| \to \infty} \frac{i}{4} \ln \frac{\sin \pi (a_{\text{L}} - [a_{\text{L}}] - i|b|)}{\sin \pi (a_{\text{L}} - [a_{\text{L}}] + i|b|)} \\ &= \frac{i}{4} \ln e^{2\pi i (a_{\text{L}} - [a_{\text{L}}] - 1/2)} = \frac{\pi}{2} \left(\frac{1}{2} - a_{\text{L}} + [a_{\text{L}}] \right) \\ &= \frac{\pi}{2} \cdot \frac{\eta_{\text{L}}}{2} \end{split}$$

Combining all contributions

Other contributions are computed in a similar way

$$\begin{split} \vartheta &= \vartheta_{\rm DW} - \vartheta_{\rm PV} \\ &= \left[\vartheta_{\rm DW}^{\rm inside} + \vartheta_{\rm DW}^{\rm outside}\right] - \left[\vartheta_{\rm PV}^{\rm inside} + \vartheta_{\rm PV}^{\rm outside}\right] \\ &= \frac{\pi}{2} \left[\left(+\frac{1}{2\pi} \int_{\rm inside} d^2 x \, F_{12} + \frac{\eta_{\rm L} - \eta_{\rm R}}{2} \right) + \left(-\frac{1}{2\pi} \int_{\rm outside} d^2 x \, F_{12} + \frac{\eta_{\rm L} - \eta_{\rm R}}{2} \right) \right] \\ &\quad - \frac{\pi}{2} \left[\left(-\frac{1}{2\pi} \int_{\rm inside} d^2 x \, F_{12} + 0 \right) + \left(-\frac{1}{2\pi} \int_{\rm outside} d^2 x \, F_{12} + 0 \right) \right] \\ &= \pi \left[\frac{1}{2\pi} \int_{\rm inside} d^2 x \, F_{12} + \frac{\eta_{\rm L} - \eta_{\rm R}}{2} \right] = \pi \cdot \operatorname{ind}_{\rm APS} D. \end{split}$$

The conjecture is confirmed in a two-dimensional case!

Contents

✓ Introduction	(3)
Conjecture: APS index = Berry phase	(5)
 Berry phase and bulk/boundary 	(6)
 Berry phase and level crossings 	(2)
 Conclusion and future works 	(1)
	Total (17)

Homotopy of the wave func.

Recall the wave func.

$$\Psi_{p_1}^{-}(x_2) = e^{i\alpha^{-}} \begin{pmatrix} \sin\theta/2\\ e^{i(\pi+\phi)}\cos\theta/2 \end{pmatrix}$$

$$\cos\phi = \frac{\tilde{p}_1(x_2)}{\sqrt{\tilde{p}_1(x_2)^2 + m(x_2)^2}}, \quad \sin\phi = \frac{m(x_2)}{\sqrt{\tilde{p}_1(x_2)^2 + m(x_2)^2}}$$

Evaluation of the Berry phase

Berry phase = the number of homotopically non-trivial states

$$\vartheta_{\rm DW} = \frac{1}{2} \sum_{p_1} \oint dx_2 \,\partial_2 \phi$$
$$= \pi \left([a_{\rm L}] - [a_{\rm R}] \right)$$
$$= \pi \cdot \text{ind}_{\rm APS} D.$$

$$\vartheta_{\rm PV} = 0.$$

The conjecture is confirmed in a two-dimensional case!

Contents

✓ Introduction	(3)
✓ Conjecture: APS index = Berry phase	(5)
✓ Berry phase and bulk/boundary	(6)
 Berry phase and level crossings 	(2)
 Conclusion and future works 	(1)
	Total (17)

Conclusion and future works

• Conjecture:

APS index = Berry phase associated with domain wall Dirac op.

- The conjecture is confirmed in a two-dimensional case
- The simplicity of the derivation allows generalization to other exotic systems?