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APS index theorem

Statement
Dirac operator on an even-dimensional manifold with the boundary:
D=7 = IV (O + 1AL
where the APS boundary condition is imposed
Def. APS index:
ind aopsD = dimker D, —dimker D _

APS index theorem: |
ind ApsD — / Ch(F) + 577(7’W)
M . .
n(iV) = Z sign A,

n

[M.F.Atiyah, V.K. Patodi, |.M.Singer, 75]
See also [M.F.Atiyah, |.M.Singer, 68]

Recent topics
e.g. [E. Witten, 00, 16]

Non-perturbative generalization of anomaly inflow etc. [E. Witten, K. Yonekura, 19]



Domain wall APS index theorem

Reformulation of the APS index theorem

[H.Fukaya et al., 17,19,20]

APS boundary condition

Gapless bulk Localized fermion by domain wall mass

Domain wall APS index
(D +ympw) — n(D + ympv)

ind pw D =
DW 5

Equivalence to the original APS index

ind DVVD — ind APSD

|z gq|<La/2
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Brief summary

[T. Onogi, TY, 21]

Re-derivation of the domain wall APS index theorem i onogi . to appear

The original proof was mathematically rigorous by technically complicated...

‘  Domain wall APS index = Berry phase
 (Domain wall APS index = Witten index)
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Motivations
APS index as the phase of the

part. func.

7 — ‘Z|e’£’n‘-ind Aps D

It is expected that...
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[E. Witten, 16]

Motivated by
[E. Witten, 16]

Motivated by
[H.Fukaya et al., 17,19,20]

— In Tr[(—l)FPe— fdmzfl(wz)]



Conjecture
What to show: [T. Onogi, TV, 21)

7 -indapsD =V

The trace is over the Dirac sea states

LIED DIV || R e

oEperm. )

There are contributions from Domain wall fermion and ghost

v = Ypw — Upvy



Snapshot Hamiltonian in two-dimensions

Dirac equation

For simplicity
DU =0, D=%(D+m) Ay = Ap(x2)
which is equivalent to
0

_a—mq’:ﬂl (22) = h(z2)Vy, (72) h(za) = B (22) + iAs(22)
W (z2) = (p1 + A1(z2))o1 + m(z2)02

Eigenstates

n ot cosf/2
B (2)UE (22) = ey, (w2) U (05)  Tm(@2) =€ (ei¢sin9/2)’

ep, (2) = \/P1(32)2 + m(z2)? U (2g) = el ( - sin 0/2 )

e (mt9) cos0/2)’



Adiabatic approximation

Spec h'(x3) Spec h'(xy)
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Adiabatic approx. is valid as long as
m|

— < L7? < |m|? a # 7.



Berry phase

Euclidean time development

W (0) = exp [— /0:E2 dws (—ep, +i (U, |(—ida + A2)|\IJP1>)} v (0)

With normalization so that J9pw = 0 for A =0

Ypw =~ ngd.’liz 82Q5 1 -+ C089 ngd.fb‘z 82Q5
1 p1m O2p1 dom

P1
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Decomposition of the Berry phase

Ipw = Iparc + Ipde L_bdy@R_bdy
2911131de ~ 7-9b1k -+ 19L-bdy + ?9R-bdy blk
|m| 5
Ublk = / o)
Z blk )2+ |m|* (70 (2)
1 p1(—L2/2)
UL-bdy = = d 7 |
Loby 5 ;/Lbdy T2 = P (— L2/2) + m(x2)? om(x2)

D —I—L 2
UR-bdy = Z/Rbd dzy - pi(+1a/2) 5 Oom(z2).
y



Bulk contribution

Since the bulk mass is large,
the momentum sum is approximated by an integral

Uplk = = /blkd2/ o1 Lm 5(—02A1(22))

27 1+ (p1(x2)/|m])?

/blk do / Pl/\m\ ~1 5 (—02A1(22))

L+ (p1/[m])

_ 1 / 023 (—By Ay (22)).
blk

T
=5 o d*z F
9 /9312



Boundary contribution

Since the mass is small,
the momentum sum is NOT approximated by an integral

p1(—L2/2)
PL-bay = Z/Lbdy Aoz 5 L2/2) -I-m(a?z)zan(mQ)

Pl( Ly/2)
Z/Lbdy (—L2/2)%2 +m?

= = 1 db
2 bl oo ;/0 (n+ap)? +b?




Rough evaluation

o] n-—+a
It b = = 1 db L
vy = g lim 3 [

- b o0
= — tan !
QZ ! ?’L-I-GL]




Evaluation of the boundary contribution
o n+ ar
Vr-bdy = _|bl|11>n002/ db (n + ar)? + b

|b] 1
— lim -
|b|1—I>noo4Z/ [n—l—aL—zb_I_n—l—aL-l—ib}

n+ ar, — [ar] — i|b|
= lim - In
b|—o00 4 Z n + ay, — |ar| + |b|

.1, sin7m(ay — |ar]| — 7|b])
= lim —1n— _
b|—woo 4 sin ?T((IL — [GL] + l‘b‘)

) : 1
— E In 62ﬁz(aL—[aL]—l/2) — E ( — ay, + [GL])

4 2 \ 2
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Combining all contributions

Other contributions are computed in a similar way

Y = Jpw — Upv

L inside outside inside outside
_[ﬁDW + Ipw }—[ py T Upy ]

m 1 L — "R 1 / 2 ML — MR
=< || t5 d*z F S— A%z F
2 l:(+ 2m \/inside vrz T 2 ) i ( 2m outside rhiT 2

1 1
_ —/ d*z F12+0 ) + —/ d*z Fi2 + 0
2 2m inside 2 outside

1 _
=T [/ d2$F12-|- it nR] = 7 -ind aApsD.
2T inside 2

The conjecture is confirmed in a two-dimensional case!
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Homotopy of the wave func.

Recall the wave func.

_ - sin 6 /2
Uy, (22) = e (e‘i(ﬂ+¢') COS 9/2)

p1(w2) m(ifz)

cos @ = sin ¢ =

V1 (22)2 + m(x2)? VD1 (22)? + m(xe)?

19/**



Evaluation of the Berry phase

Berry phase = the number of homotopically non-trivial states
1
Upw = 5 ;%dfﬂsz %0 vpy = 0.

= 7 ([ar] — [ar])

— 7 -ind APSD-

jl> U = Jpw — Upv

= 7 - ind ApsD.

The conjecture is confirmed in a two-dimensional case!
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Conclusion and future works

» Conjecture:
APS index = Berry phase associated with domain wall Dirac op.
* The conjecture is confirmed in a two-dimensional case

« The simplicity of the derivation allows generalization to other
exotic systems?



