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• QEC is necessary to realize a fault-tolerant quantum computer.

Quantum error correction (QEC)

• A logical qubit is encoded into multiple physical qubits using QEC codes. 

Error correction procedure:

Syndrome measurement: extract information about errors

• High threshold

• Efficient and accurate decoding algorithm

• Low-overhead gate implementation

Decoding: classical computation for estimating the errors given the syndrome

Recovery: apply correcting operations

NP-hard in general

A QEC protocol should have:
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• Efficiently decodable because 1 error flips only 2 syndromes

• Some (even Clifford) gates are costly to implement

Surface codes

One of the most promising QEC codes

Nature 614, 676-681 (2023)

Experiment by Google

e.g., by minimum-weight perfect matching algorithm

Advantages:

Drawback:

A G. Fowler et al, Phys. Rev. A 86, 032324 (2012).

Stabilizer operators

2
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• The threshold is high (~ 1%)



Color codes

4.8.8 color code 6.6.6 color code

Another promising QEC codes

• All Clifford gates can be implemented transversally → low overhead (compared to surface codes)

A J. Landahl et al, arXiv:1108.5738 (2011). C Chamberland et al, New J. Phys. 22, 023019 (2020).

4.8.8 color code: 0.08% - 0.14% 6.6.6 color code: 0.2% - 0.47%

Advantage:

Drawbacks:

• Decoding is difficult because 1 error flips 3 syndromes
To be improved in our study

𝐻 𝐻

𝐻𝐻 𝐻 𝐻

𝐻
𝐻

𝐻 𝐻

𝐻 𝐻

𝐻𝐻
𝐻

𝐻
𝐻 𝐻

Experiment by Google (Dec. 2024)
arXiv: 2412.14256

Stabilizer operators
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• Low thresholds



My two independent studies

• Improving threshold for fault-tolerant color code 

quantum computing by flagged weight optimization

• Ising model formulation for highly accurate 
topological color codes decoding

Yugo Takada, Yusaku Takeuchi, Keisuke Fujii, Phys. Rev. Res. 6, 013092 (2024).

Yugo Takada, Keisuke Fujii, PRX Quantum 5, 030352 (2024).
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Problems with existing decoders in color codes

൞

✓ Binary variables are assigned for each error

Low accuracy

Integer programming decoder

Renormalization group decoder

High accuracy, but requires 

Restriction decoder

Neural-network decoder

J. Landahl et al, arXiv:1108.5738 (2011).

A. Kubica et al., Quantum 7, 929 (2023).H. Bombin et al., New J. Phys, 14, 073048 (2012).

N. Maskara et al., Phys. Rev. A, 99, 5 (2018).

or removed in pairs but also in triples. A lso, we emphasize that no decoder can simply ignore
colors of the excitations since one can only remove either pairs of excitations of the same color
or triples of excitations with three di↵erent colors. The aforementioned difficulties led to a
belief that decoding of the 2D color code is more challenging than decoding of the 2D toric
code [21, 22].

(a)

v

(b)

(c) (d)

Figure 1: (a) Qubits of the 2D color code are placed on the triangular faces of a two-dimensional lattice L

with 3-colorable vertices, whereas X - and Z-type stabilizer generators SX (v) and SZ (v) (shaded in blue)
are associated with every vertex v œ∆ 0 (L ) . A logical Pauli X , Y or Z operator can be implemented by a
string-like operator supported on faces shaded in green. (b) Qubits on a subset of faces ‘ ™ ∆ 2 (L ) (shaded
in grey) are affected by Pauli Z errors, which result in the X -type syndrome ‡ ™ ∆ 0 (L ) (highlighted
vertices). Observe that a single-qubit error (marked by 1) creates a triple of excitations of three different
colors, whereas a two-qubit error (marked by 2) creates a pair of excitations of the same color. (c) The
restricted lattice L R G is obtained from L by removing all B vertices of L , as well as all the edges and faces
incident to the removed vertices. One can always find a subset of edges flR G ™ ∆ 1 (L R G ) (blue) , whose
0-boundary matches the restricted syndrome ‡R G ™ ∆ 0 (L R G ) , i.e. , ˆ 1 flR G = ‡R G . (d) The Restriction
Decoder finds a color code correction Ï ™ ∆ 2 (L ) (hatched in magenta) from flR G fi flR B (thick blue
and green edges) by using a local lifting procedure. Namely, for every R vertex v œ ∆ R

0 ( flR G fi flR B )
one finds a subset of neighboring faces · v ™ St2 (v) , whose 1-boundary locally matches flR G fi flR B , i.e. ,
(ˆ 2· v ) |v = ( flR G fi flR B ) |v . Note that the initial error ‘ and the correction Ï =

t
vœ∆ R

0 ( flR G f i flR B )
· v are

not the same; rather, they form a stabilizer.

Accepted in Quantum 2022-12-19, click title to verify. Published under CC-BY 4.0. 4
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TCC-A TCC-A TCC-B TCC-BKTC1 KTC1 KTC1 KTC1KTC2 KTC2 KTC2 KTC2

FIG . 2: M apping between the Pauli operators of the square-
octagon TCC an two copies of K itaev’s code K TC1, K TC2.
T he fi rst ( last) two columns are for the A (B ) sub-lattice.
Circles (stars) represent σz (σx ) operators. For instance, the
upper left diagram indicates that a σx located at the top
of a diamond of the A sub-lattice gets mapped to a σx on
K TC1 and two σz on K TC2. A ll commutation relations are
preserved by this mapping, so it is unitary and obviously local.

identification, we obtain the mapping shown at F ig. 2. I t
can be directly verified that it maps stabilizer generators
of TCC to stabilizer generators of two K TC, in this case
with no need to add trivial stabilizers.

Subsystem codes— Subsystem stabilizer codes form a
more general class of stabilizer codes [11, 12]. They can
be defined as a pair (S, G) , where G is an arbitrary Pauli
subgroup and S a stabilizer such that S / Z (G) \ G.
Encoding is not done on the whole subspace defined by
S, but rather on the subsystem where the action of G is
trivial. This way, errors caused by operators in G do not
a↵ect encoded states. Because of this, elements of G are
called gauge operators.
W e say that a subsystem code (S, G) is LT I if G admits
a LT I set of generators Gb. Note that some local subsys-
tem codes admit no local stabilizer generators, e.g. [12].
Unlike them, a topological subsystem code should have
a stabilizer with a local description. In addition, local
operators should not recover any encoded information.
Since we do not care about the e↵ect of gauge operators,
this can be formalized as follows in an infinite lattice:

D efi n i t ion 2 A topological stabilizer subsystem code
(TSSC) is a LTI subsystem stabilizer code (S, G) such
that Z (S) / G.

There is a general strategy to understand TSSCs in
terms of TSCs. Namely, to find a TSC S0 that lies in
between the stabilizer group and the gauge group of the
subsystem code, i.e. S ⇢ S0 ⇢ G. W e can then map S0

invoking Theorem 1, which shows that S is locally equiv-
alent to a subset of the generators of several copies of
K TCs. Not all topological charges of these K TCs carry
information: some are associated to gauge operators.
These “gauge charges” do not topologically interact with
charges that describe errors in S, that we call “proper
charges”. Stabilizer of S detect the presence of proper
charges, ignoring any gauge charge. Unlike for TSCs,
proper charges can give rise to a chiral anyon model as
exemplified below.

Let us illustrate this strategy with an important family
of 2D subsystem codes [20] called topological subsystem
color codes (TSCCs). Given the lattice of a TCC, we
can inflate each vertex into a triangle as in Fig. 1 b) .
Qubits are located on the vertices of this inflated lattice,
and there is one gauge group generator associated to each
pair of sites i , j connected by an edge

Gi j = σ
iσj (4)

with σ = σx , σy , or σz for a dashed, dotted, or solid edges
respectively. This code admits a set of local stabilizer
generators, some of which involve a relatively large num-
ber of qubits (up to 24). Errors are described by three
nontrivial topological charges, all fermions (f 1 , f 2 , f 3 ) ,
making it a chiral anyon model. A ll the mutual statis-
tics are semionic and the fusion rules are f ⇥ f ! 0 and
f i ⇥f j ! f k with i , j , k all di↵erent. These charges can be
obtained as a subset of two copies of K TC. For instance,
one can identify f 1 $ [m, f ], f 2 $ [e, f ], and f 3 $ [f , 0]
where the notation [a, b] stands for a composite particle
of charge a on the fi rst K TC and charge b on the second.
This suggests that we should be able to find a TSC S0

with S ⇢ S0 ⇢ G and S0 locally equivalent to n copies
of K TC with n ≥ 2. W e will present two di↵erent ways
of obtaining S0 that are geometry independent (i.e. , not
restricted to the square-octagon lattice).
I n the fi rst construction, S0 is the stabilizer of three

TCC on the corresponding non-inflated lattice. Indeed,
all we need to do is to rearrange the qubits. The three
qubits located at the vertices of each triangle inherit the
color label of the neighboring plaquette. W e construct
a stack of three TCC lattices— one per color— each one
containing the qubits of that color, see Fig. 1 c) . I t can
be easily verified that this maps the generators of S to a
subset of the generators of the three TCCs. W e obtain S0

by including the other generators of these TCCs. In the
second construction, we consider the stabilizer group Sz

generated by the gauge operators of the form σzσz (solid
edges), which clearly is a subgroup of Z (S) . I t follows
from the results in [24] that S0 := SSz is a TSC with
the same topological charges as a TCC. These two con-
structions illustrate that the quantum dimension of the
intermediate code S0 is not uniquely determined, since in
the fi rst case we have = 26 and in the second = 22 .
Because S is a strict subset of S0, the mappings de-

scribe above do not take the system to the ground state
of the resulting K TCs; the stabilizer added to S to arrive
at S0 will generally contain excitations. These can be
eliminated by local transformations, fusing particle pairs
into the vacuum. M oreover, because these excitations
correspond to gauge charges, this local transformation
does not change the encoded information.

Decoding— W hen the system is prepared in the ground
state of the Hamiltonian Eq. (1) , all stabilizers have value
+ 1. But in the presence of errors, this will not be the
case in general. The problem of decoding a quantum code
consists in identifying the most likely recovery to restore

Möbius decoder
K Sahay et al., PRX Quantum 3, 010310 (2022).

exponential time
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Proposed method

The syndrome constraints are imposed on the initial spin configuration

✓ Use OpenJij

① Decompose Pauli error 𝐸 into 𝐸 = 𝑇(𝑆)𝐺𝐿

② Formulate the number of errors as an (many-body) Ising Hamiltonian

③ Solve the energy minimization problem of      by SA

D. Poulin, Physical Review A 74, 052333 (2006).

𝑇 𝑆 ：pure error 𝐺：stabilizer operator 𝐿：logical operator

https://www.openjij.org/

Main idea: formulate the decoding problem as Ising model, then solve it by simulated annealing (SA)

✓ Binary variables are assigned for stabilizer operators 
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𝑡𝑖(𝑆)：Bits representing 

the action of 𝑇(𝑆) 𝑔𝑖：Binary variables 𝑙：A binary variable

𝐵𝑖：Sets of Indices representing stabilizer 

operators acting on the 𝑖-th qubit

① Decompose Pauli error 𝐸 into 𝐸 = 𝑇(𝑆)𝐺𝐿

✓ Mapping binary variables

𝐺𝑋𝑖：Stabilizer generators 𝐿𝑋：A logical operator

𝑙𝑖：Bits defined by

𝑿 errors

Proposed method for bit-flip noise
7
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Convert to Ising spin variables

② Formulate the number of errors as an Ising Hamiltonian

③ Solve the energy minimization problem of       by SA

# of errors Three-body Ising Hamiltonian

Proposed method for bit-flip noise
8
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𝑠𝑖 ∈ 0, 1𝑇(𝑆) = 𝑋1
(𝑠1⨁𝑠2⨁𝑠5⨁𝑠7)

𝑋2
𝑠2𝑋4

𝑠3 𝑋5
(𝑠3⨁𝑠4⨁𝑠6)

𝑋6
(𝑠5⨁𝑠7)

𝑋10
𝑠7𝑋13

𝑠6 𝑋17
𝑠8

𝑇(𝑆)

𝐺 = 𝐺1
𝑔1𝐺2

𝑔2 ⋯ 𝐺8
𝑔8

𝐺

𝐿 = 𝑋1𝑋2𝑋3𝑋4𝑋5
𝑙

𝐿

෍

𝑖

𝑥𝑖 = −(𝑠1𝑠2𝑠5𝑠7𝑔1𝑙+ 𝑠2𝑔1𝑔2𝑙+ 𝑔2𝑔3𝑙+ 𝑠3𝑔3𝑔4𝑙+ 𝑠3𝑠4𝑠6𝑔4𝑙+𝑠5𝑠7𝑔1𝑔5+ 𝑔1𝑔2𝑔5

+ 𝑔2𝑔3𝑔6+ 𝑔3𝑔4𝑔6+ 𝑠7𝑔5𝑔7+ 𝑔2𝑔5𝑔7+𝑔2𝑔6+ 𝑠6𝑔4𝑔6+ 𝑔2𝑔7𝑔8+ 𝑔2𝑔8 + 𝑔7𝑔8+ 𝑠8𝑔8)

Convert to Ising spin variables

# of errors Three-body Ising Hamiltonian (variables: 𝒈𝒊, 𝒍)

e.g.

Example of proposed method for bit-flip noise
9
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✓ Mapping binary variables

𝑡𝑖
𝑋 𝑆 , 𝑡𝑖

𝑍(𝑆)：
Bits representing the action of 

𝑋, 𝑍 of 𝑇(𝑆) 𝑔𝑖
𝑋 , 𝑔𝑗

𝑍：Binary variables 𝑙𝑋 , 𝑙𝑍 ： Binary variables

𝑙𝑖
𝑋, 𝑙𝑖

𝑧：Bits defined by

𝐺𝑋𝑖 , 𝐺𝑍𝑖：Stabilizer generators 𝐿𝑋, 𝐿𝑍：Logical operators

,

𝑿 errors 𝒁 errors

① Decompose Pauli error 𝐸 into 𝐸 = 𝑇(𝑆)𝐺𝐿

Proposed method for depolarizing noise
10
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② Formulate the number of errors as an Ising Hamiltonian

Convert to Ising spin variables

Consider 𝑌 error（𝑌 = 𝑖𝑋𝑍）

# of errors

Six-body Ising Hamiltonian

③ Solve the energy minimization problem of             by SA

Proposed method for depolarizing noise
11
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• Phenomenological noise

For more detailed information:

Eight-body Ising Hamiltonian

Proposed method for other noise models

Physical Review Research 6, 013092 (2024).
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Our thresholds and logical error rates are almost same as those obtained by CPLEX

Bit-flip noise Depolarizing noise Phenomenological noise

10.4% 18.5% 2.90%

10.6% (CPLEX) J. Landahl et al, arXiv:1108.5738 (2011).

Previous studies

A. Kubica et al, Quantum 7, 929 (2023).• 10.2%

• 9.8%

• 8.7% H. Bombin et al, New J. Phys, 14, 073048 (2012).

A. Kubica et al, Quantum 7, 929 (2023).

18.7% (CPLEX)

• 17.5%N. Maskara et al, Phys. Rev. A, 99, 5(2018).

• • 3.05% (CPLEX)

• 2.08%

•

M. Stephens, arXiv:1402.3037(2014).

J. Landahl et al, arXiv:1108.5738 (2011).

Previous studies Previous studies

• Comparing with the integer programming decoder solved by IBM CPLEX

• Monte Carlo simulation

Numerical result ― Logical error rate ―
13
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• Comparing with the integer programming decoder solved by IBM CPLEX

Bit-flip noise Depolarizing noise Phenomenological noise

Faster than CPLEX Faster than CPLEX 

when 𝒅 is small

※We can decode faster 

by

parallelizing the iteration of the SA

using a SA solver that is optimized for the many-body Ising Hamiltonian

• These figures represent the results when using only single core of a CPU

Numerical result ― Decoding time ―
14
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• QEC code

Improve in this research

QEC procedure

Factors that determine QEC thresholds

syndrome 

measurement
decoder recovery

We use an integer programming decoder, but our method can also be applied to many other decoders.

• Noise model

• Syndrome measurement method

• Decoder

or removed in pairs but also in triples. A lso, we emphasize that no decoder can simply ignore
colors of the excitations since one can only remove either pairs of excitations of the same color
or triples of excitations with three di↵erent colors. The aforementioned difficulties led to a
belief that decoding of the 2D color code is more challenging than decoding of the 2D toric
code [21, 22].

(a)

v

(b)

(c) (d)

Figure 1: (a) Qubits of the 2D color code are placed on the triangular faces of a two-dimensional lattice L

with 3-colorable vertices, whereas X - and Z-type stabilizer generators SX (v) and SZ (v) (shaded in blue)
are associated with every vertex v œ∆ 0 (L ) . A logical Pauli X , Y or Z operator can be implemented by a
string-like operator supported on faces shaded in green. (b) Qubits on a subset of faces ‘ ™ ∆ 2 (L ) (shaded
in grey) are affected by Pauli Z errors, which result in the X -type syndrome ‡ ™ ∆ 0 (L ) (highlighted
vertices). Observe that a single-qubit error (marked by 1) creates a triple of excitations of three different
colors, whereas a two-qubit error (marked by 2) creates a pair of excitations of the same color. (c) The
restricted lattice L R G is obtained from L by removing all B vertices of L , as well as all the edges and faces
incident to the removed vertices. One can always find a subset of edges flR G ™ ∆ 1 (L R G ) (blue) , whose
0-boundary matches the restricted syndrome ‡R G ™ ∆ 0 (L R G ) , i.e. , ˆ 1 flR G = ‡R G . (d) The Restriction
Decoder finds a color code correction Ï ™ ∆ 2 (L ) (hatched in magenta) from flR G fi flR B (thick blue
and green edges) by using a local lifting procedure. Namely, for every R vertex v œ ∆ R

0 ( flR G fi flR B )
one finds a subset of neighboring faces · v ™ St2 (v) , whose 1-boundary locally matches flR G fi flR B , i.e. ,
(ˆ 2· v ) |v = ( flR G fi flR B ) |v . Note that the initial error ‘ and the correction Ï =

t
vœ∆ R

0 ( flR G f i flR B )
· v are

not the same; rather, they form a stabilizer.

Accepted in Quantum 2022-12-19, click title to verify. Published under CC-BY 4.0. 4

 
 
 
 

Our focus: syndrome measurement and how to use its information

(already done!)

15
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Phenomenological noise

Data errors + measurement errors

Circuit-level noise

Preparation errors＋ gate errors

Code capacity noise

Only data errors

The circuit for measuring

＋ measurement errors ＋ idle errors

Why thresholds of color codes under circuit-level noise are low?

Surface codes Color codes

• Higher-depth circuit

• Many error locations

• More error propagation

Low-weight stabilizers (weight-4) High-weight stabilizers (weight-6 or 8)

Because of the high-weight stabilizers, color codes are more susceptible to errors

16
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Single ancilla qubit for each face

(6.6.6) color code

CNOT order (6 steps)

CNOT order (8 steps)

Conventional syndrome measurement circuit

Andrew J. Landahl et al, arXiv:1108.5738 (2011).

(4.8.8) color code

This approach requires a large number of CNOT steps.

17
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Repeat syndrome measurement to treat measurement errors

Decoding under phenomenological noise

• Given a syndrome, minimize the total number of data errors and measurement errors

Integer programming decoder

Probabilities of each data and measurement error occurring are i.i.d.

18
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Setting a weight of a decoder for each error leads to improved performance.

weight

Probabilities of each data and measurement error occurring are not independent and not identical.

Conventional weight is not optimal as it fails to account for the impact of correlated errors

Conventional weight

• Based on an error probability distribution

• The way errors occur and propagate differs for each qubit

• There are correlated errors

Decoding under circuit-level noise
19
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Flag gadget for each face → Use flag information for weight optimization to decode more accurately

2-qubit flag gadget

4-qubit flag gadget

cat state

• Providing information about propagated errors.• Reduction in the number of CNOT steps to data qubits 

→Reduction in idle noise.

• Reduction in error propagation.

one ancilla (8 steps)

cat state (3 steps)

Cat state Flag

cat state

Proposed method ー Overview ー

David P. DiVincenzo et al, Phys. Rev. Lett. 98, 020501(2007).

Flag gadget reduces the occurrence and propagation of errors and allows more accurate error correction.

20
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Flag gadget for each face → Use flag information for weight optimization to decode more accurately

2-qubit flag gadget

4-qubit flag gadget

cat state

• Providing information about propagated errors.• Reduction in the number of CNOT steps to data qubits 

→Reduction in idle noise.

• Reduction in error propagation.

one ancilla (8 steps)

cat state (3 steps)

Cat state Flag

cat state

Proposed method ー Overview ー

David P. DiVincenzo et al, Phys. Rev. Lett. 98, 020501(2007).

Flag gadget reduces the occurrence and propagation of errors and allows more accurate error correction.

20
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Flag gadget for each face

CNOT order (3 steps)

CNOT order (3 steps)

Proposed method ー Details of the syndrome measurement scheduleー

(6.6.6) color code

(4.8.8) color code

We reduced the number of CNOT steps from 8 (or 6) to 3

21
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Weights of data errors

Weights of measurement errors

: A set of flag values in the flag gadget used for measuring the                     stabilizers defined on the face 𝑓 at time 𝑡

We set the weights of a decoder using conditional error probabilities conditioned on flag values

• For 𝑋 error correction

conditioned flag qubits

Conventional weight

These weights allow for more accurate decoding than conventional weights

Proposed method ー Flagged weight optimization ー
22
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Tailored quantum circuit (for 𝑋 error correction)

Proposed method ー How to estimate the conditional error probabilities ー

• Repeatedly execute a tailored quantum circuit offline prior to the decoding

Efficient, accurate, and can be used even when the underlying noise is unknown

e.g. 𝑑 = 3

➢ Modified version of a one-cycle syndrome measurement circuit

transversal 𝑍
measurement

Initialize to |0⟩

• Obtain information about errors from the measurement outcomes

23
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The thresholds of previous studies

0.082(3)%

0.143(1)%

Andrew J. Landahl et al, arXiv:1108.5738 (2011).

Ashley M. Stephens, arXiv:1402.3037 (2014).
0.148(5)%

0.268(9)%
Our threshold

✓ We achieved the threshold that surpasses all previous studies.

✓ Compared with the single ancilla method:

• The threshold was improved by about 1.8 times.

• The logical error rates were improved by almost one order of magnitude in the low error rate region.

Threshold of single 

ancilla method

Proposed 

Single ancilla

Numerical result ー (4.8.8) color code ー
24
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Jiaxuan Zhang et al, arXiv:2309.05222 (2023).

C Chamberland et al, New J. Phys. 22, 023019 (2020).0.2%

0.47%

0.37(1)% ME Beverland et al, PRX Quantum 2, 020341 (2021).

Assuming weaker noise compared to our model 

0.363(9)%
0.270(6)%

Threshold of single 

ancilla method

✓ We achieved the threshold that is almost same as the highest value among the previous studies 

that employ the same noise model.

✓ Compared with the single ancilla method:

• The threshold was improved by about 1.3 times.

• The logical error rates were improved by almost one order of magnitude in the low error rate region.

The thresholds of previous studies

Our threshold

Proposed 

Single ancilla

Numerical result ー (6.6.6) color code ー
25
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• We proposed an Ising model formulation for decoding color codes.

• Using simulated annealing as a solver, we achieved almost the same accuracy as the most accurate 

decoder (CPLEX).

• The decoding time was shorter than CPLEX in many cases.

Conclusion

• We proposed the method to improve the circuit-level thresholds of color codes by 

flagged weight optimization.

• This method can be applied to wider classes of QEC codes.

• Our result for the (4.8.8) color code surpassed the thresholds of all previous studies. Our result for 

the (6.6.6) color code is also comparable to the best-known value.

• Another possible future work is to apply our techniques to wider classes of QEC codes, such as 

high-rate quantum LDPC codes.

• This method can also be applied to other weight-based decoders.

26
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