Improving threshold and decoding for fault-tolerant color code quantum computing

Yugo Takada First year Ph.D student Fujii lab, Osaka University

1. Background

2. Ising model formulation for highly accurate topological color codes decoding

3. Improving threshold for fault-tolerant color code quantum computing by flagged weight optimization

4. Conclusion

Quantum error correction (QEC)

- QEC is necessary to realize a fault-tolerant quantum computer.
- A logical qubit is encoded into multiple physical qubits using QEC codes.

Error correction procedure:

Syndrome measurement: extract information about errors

Decoding: classical computation for estimating the errors given the syndrome NP-hard in general

Recovery: apply correcting operations

A QEC protocol should have:

- High threshold
- Efficient and accurate decoding algorithm
- Low-overhead gate implementation

Surface codes

One of the most promising QEC codes

A G. Fowler et al, Phys. Rev. A 86, 032324 (2012).

Advantages:

- Efficiently decodable because 1 error flips only 2 syndromes e.g., by minimum-weight perfect matching algorithm
- The threshold is high (~ 1%)

Drawback:

• Some (even Clifford) gates are costly to implement

Experiment by Google

Nature 614, 676-681 (2023)

Color codes

To be improved in our study

Another promising QEC codes $\begin{array}{c} & & & \\ &$

Advantage:

• All Clifford gates can be implemented transversally \rightarrow low overhead (compared to surface codes)

Drawbacks:

- Decoding is difficult because 1 error flips 3 syndromes +
- Low thresholds

4.8.8 color code: 0.08% - 0.14% A J. Landahl et al, arXiv:1108.5738 (2011).

6.6.6 color code: 0.2% - 0.47% C Chamberland et al, New J. Phys. 22, 023019 (2020).

My two independent studies

4/26

 Ising model formulation for highly accurate topological color codes decoding

Yugo Takada, Yusaku Takeuchi, Keisuke Fujii, Phys. Rev. Res. 6, 013092 (2024).

 Improving threshold for fault-tolerant color code quantum computing by flagged weight optimization
 <u>Yugo Takada</u>, Keisuke Fujii, PRX Quantum 5, 030352 (2024).

1. Background

2. Ising model formulation for highly accurate topological color codes decoding

3. Improving threshold for fault-tolerant color code quantum computing by flagged weight optimization

4. Conclusion

Problems with existing decoders in color codes

Integer programming decoder J. Landahl et al, arXiv:1108.5738 (2011).

 $\checkmark\,$ Binary variables are assigned for each error

$$x_v \in \{0,1\}$$

Va O

$$\left\{egin{array}{ccc} \min & \sum_v x_v \ ext{ s. t. } & igoplus_{v\in f} x_v = s_f & orall f \end{array}
ight.$$

Proposed method

Main idea: formulate the decoding problem as Ising model, then solve it by simulated annealing (SA)

② Formulate the number of errors as an (many-body) Ising Hamiltonian

$$H = c + \sum_i h_i \sigma_i + \sum_{i < j} J_{ij} \sigma_i \sigma_j + \sum_{i < j < k} K_{ijk} \sigma_i \sigma_j \sigma_k + \cdots$$

The syndrome constraints are imposed on the initial spin configuration

min H

3 Solve the energy minimization problem of H by SA

✓ Use OpenJij https://www.openjij.org/

Proposed method for bit-flip noise

 $\mathcal{E}(
ho) = (1-p)
ho + pX
ho X$

(1) Decompose Pauli error E into E = T(S)GL

✓ Mapping binary variables

$$T(S) = \prod_{i} X_{i}^{t_{i}(S)} \qquad G = \prod_{i} G_{Xi}^{g_{i}} \qquad L = L_{X}^{l}$$

$$t_{i}(S) : \text{Bits representing the action of } T(S) \qquad g_{i} : \text{Stabilizer generators } I: \text{A logical operators } l: \text{A binary variables}$$

$$x_i = t_i(S) \oplus \left(igoplus_{j\in B_i} g_j
ight) \oplus (l_i\cdot l)$$
 $X \, ext{errors}$

 B_i : Sets of Indices representing stabilizer operators acting on the *i*-th qubit

$$l_i$$
 : Bits defined by $\ L_X = \prod_i X_i^{l_i}$

Proposed method for bit-flip noise

② Formulate the number of errors as an Ising Hamiltonian

 $x_i = t_i(S) \oplus \left(igoplus_{j\in B_i} g_j
ight) \oplus (l_i\cdot l)$

 $H_l = -\sum_i J_i \prod_{j \in B_i} \sigma_j$ Three-body Ising Hamiltonian

(3) Solve the energy minimization problem of H_l by SA

$$\min_l \left(\min \, H_l
ight)$$

Example of proposed method for bit-flip noise

Proposed method for depolarizing noise

$$\mathcal{E}(
ho) = (1-p)
ho + rac{p}{3}(X
ho X + Y
ho Y + Z
ho Z)$$

(1) Decompose Pauli error E into E = T(S)GL

✓ Mapping binary variables

$$T(S) = \prod_{i} X_{i}^{t_{i}^{X}(S)} \prod_{j} Z_{j}^{t_{j}^{Z}(S)} \qquad G = \prod_{i} G_{Xi}^{g_{i}^{X}} \prod_{j} G_{Zj}^{g_{j}^{Z}} \qquad L = L_{X}^{l_{X}} L_{Z}^{l_{Z}}$$

$$t_{i}^{X}(S), t_{i}^{Z}(S) :$$
Bits representing the action of X, Z of $T(S)$

$$G_{Xi}, G_{Zi} : \text{Stabilizer generators}$$

$$g_{i}^{X}, g_{j}^{Z} : \text{Binary variables}$$

$$L_{X}, L_{Z} : \text{Logical operators}$$

$$l_{X}, l_{Z} : \text{Binary variables}$$

$$x_{i} = t_{i}^{X}(S) \oplus \left(\bigoplus_{j \in B_{i}} g_{j}^{X}\right) \oplus (l_{i}^{X} \cdot l_{X})$$

$$X \text{ errors}$$

$$l_{i}^{X}, l_{i}^{Z} : \text{Bits defined by } L_{X} = \prod_{i} X_{i}^{l_{i}^{X}}, L_{Z} = \prod_{i} Z_{i}^{l_{i}^{Z}}$$

10

Proposed method for depolarizing noise

② Formulate the number of errors as an Ising Hamiltonian

(3) Solve the energy minimization problem of H_{l_X,l_Z} by SA

 $\min_{l_X,l_Z} \left(\min \, H_{l_X,l_Z}
ight)$

Proposed method for other noise models

• Phenomenological noise

$$\begin{array}{lll} & \displaystyle \int & H_{l, \mathrm{pheno}} & = & \displaystyle -\sum_{i,t} J_i^{(t)} \prod_{j \in B_i} \sigma_i^{(t)} \bar{\sigma}_i^{(t)} \bar{\sigma}_i^{(t-1)} - \sum_{f,t} \prod_{i \in f} \bar{\sigma}_i^{(t)} \\ & & \displaystyle \mathsf{Eight-body} \, \mathsf{Ising} \, \mathsf{Hamiltonian} \end{array}$$

12,

For more detailed information:

Physical Review Research 6, 013092 (2024).

Numerical result — Logical error rate —

13/26

- Monte Carlo simulation
- Comparing with the integer programming decoder solved by IBM CPLEX

Our thresholds and logical error rates are almost **same** as those obtained by CPLEX

Numerical result — Decoding time —

14/26

- Comparing with the integer programming decoder solved by IBM CPLEX
- These figures represent the results when using only single core of a CPU

Faster than CPLEX

Faster than CPLEX when *d* is small

parallelizing the iteration of the SA

% We can decode faster by

using a SA solver that is optimized for the many-body Ising Hamiltonian

1. Background

2. Ising model formulation for highly accurate topological color codes decoding

3. Improving threshold for fault-tolerant color code quantum computing by flagged weight optimization

4. Conclusion

Our focus: syndrome measurement and how to use its information

We use an integer programming decoder, but our method can also be applied to many other decoders.

Why thresholds of color codes under circuit-level noise are low?

Low-weight stabilizers (weight-4)

High-weight stabilizers (weight-6 or 8)

16/

26

Because of the high-weight stabilizers, color codes are more susceptible to errors

Conventional syndrome measurement circuit

Single ancilla qubit for each face \circ data qubit

• syndrome qubit

This approach requires a large number of CNOT steps.

Decoding under phenomenological noise

Probabilities of each data and measurement error occurring are i.i.d.

Repeat syndrome measurement to treat measurement errors

Integer programming decoder

- Given a syndrome, minimize the total number of data errors and measurement errors $s_f^{(t)} \in \{0,1\}$ $x_v^{(t)} \in \{0,1\}$ $r_f^{(t)} \in \{0,1\}$

$$egin{aligned} \min & \sum_{v,t} x_v^{(t)} + \sum_{f,t} r_f^{(t)} \ \mathrm{s.\,t.} & igoplus_{v\in f} x_v^{(t)} \oplus r_f^{(t)} \oplus r_f^{(t-1)} = s_f^{(t)} \oplus s_f^{(t-1)} \quad orall f. \end{aligned}$$

Decoding under circuit-level noise

Probabilities of each data and measurement error occurring are not independent and not identical.

- There are correlated errors
- The way errors occur and propagate differs for each qubit

→ Setting a weight of a decoder for each error leads to improved performance.

Conventional weight

• Based on an error probability distribution

$$\begin{array}{ll} \text{min} & \sum_{v,t} w_v^{(t)} x_v^{(t)} + \sum_{f,t} w_f^{(t)} r_f^{(t)} & w_v^{(t)} = -\log \frac{p\left(x_v^{(t)} = 1\right)}{1 - p\left(x_v^{(t)} = 1\right)} \\ \text{s. t.} & \bigoplus_{v \in f} x_v^{(t)} \oplus r_f^{(t)} \oplus r_f^{(t-1)} = s_f^{(t)} \oplus s_f^{(t-1)} & \forall f. & w_f^{(t)} = -\log \frac{p(r_f^{(t)} = 1)}{1 - p(r_f^{(t)} = 1)} \end{array}$$

Conventional weight is not optimal as it fails to account for the impact of correlated errors

Proposed method – Overview –

²⁰/₂₆

Flag gadget for each face \rightarrow Use flag information for weight optimization to decode more accurately

Flag gadget reduces the occurrence and propagation of errors and allows more accurate error correction.

Proposed method – Overview –

²⁰/₂₆

Flag gadget for each face \rightarrow Use flag information for weight optimization to decode more accurately

Flag gadget reduces the occurrence and propagation of errors and allows more accurate error correction.

Proposed method — Details of the syndrome measurement schedule $-\frac{21}{26}$

Flag gadget for each face

○ data qubit ●

• syndrome qubit • flag qubit

3

 $X^{\otimes 4}$

 $X^{\otimes 4}$

 $X^{\otimes 4}$

(4.8.8) color code

CNOT order (3 steps)

(6.6.6) color code

CNOT order (**3** steps)

We reduced the number of CNOT steps from 8 (or 6) to 3

 $X^{\otimes 8}$

 $X^{\otimes 6}$

Proposed method — Flagged weight optimization —

We set the weights of a decoder using conditional error probabilities conditioned on flag values

• For *X* error correction

 $\mathcal{F}_{f,\sigma}^{(t)}$: A set of flag values in the flag gadget used for measuring the $\sigma \in \{X, Z\}$ stabilizers defined on the face f at time tThese weights allow for more accurate decoding than conventional weights

Proposed method — How to estimate the conditional error probabilities —

- Repeatedly execute a tailored quantum circuit offline prior to the decoding
- Obtain information about errors from the measurement outcomes
- Tailored quantum circuit (for *X* error correction)
 - Modified version of a one-cycle syndrome measurement circuit

Efficient, accurate, and can be used even when the underlying noise is unknown

Numerical result – (4.8.8) color code –

- \checkmark Compared with the single ancilla method:
- The threshold was improved by about **1.8 times**.
- The logical error rates were improved by almost one order of magnitude in the low error rate region.
- ✓ We achieved the threshold that surpasses all previous studies.

Numerical result – (6.6.6) color code –

Assuming weaker noise compared to our model

- ✓ Compared with the single ancilla method:
- The threshold was improved by about **1.3 times**.
- The logical error rates were improved by almost one order of magnitude in the low error rate region.
- We achieved the threshold that is almost same as the highest value among the previous studies that employ the same noise model.

1. Background

2. Ising model formulation for highly accurate topological color codes decoding

3. Improving threshold for fault-tolerant color code quantum computing by flagged weight optimization

4. Conclusion

Conclusion

- We proposed an Ising model formulation for decoding color codes.
 - Using simulated annealing as a solver, we achieved almost the same accuracy as the most accurate decoder (CPLEX).
 - The decoding time was shorter than CPLEX in many cases.
 - This method can be applied to wider classes of QEC codes.
- We proposed the method to improve the circuit-level thresholds of color codes by flagged weight optimization.
 - Our result for the (4.8.8) color code surpassed the thresholds of all previous studies. Our result for the (6.6.6) color code is also comparable to the best-known value.
 - This method can also be applied to other weight-based decoders.
 - Another possible future work is to apply our techniques to wider classes of QEC codes, such as high-rate quantum LDPC codes.