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STAR PRODUCT FORMULA OF THETA FUNCTIONS

HIROSHIGE KAJIURA

ABSTRACT. As a noncommutative generalization of the addition formula of theta functions, we
construct a class of theta functions which are closed with respect to the Moyal star product of a
fixed noncommutative parameter. These theta functions can be regarded as bases of the space of

holomorphic homomorphisms between holomorphic line bundles over noncommutative complex tori.
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1. INTRODUCTION

Theta functions are associated with various algebraic relations. One of them is the addition formula,
which also appears in the context of the homological mirror symmetry [14] for elliptic curves [14, 20],
abelian varieties [4] and noncommutative real two tori with complex structures [9, 19, 12, 10]. It
is known that the bases of the space of sections of a holomorphic line bundle on an abelian variety
are described by theta functions. However, in the context of homological mirror symmetry, theta
functions are regarded rather as the bases of the space of holomorphic homomorphisms between two
holomorphic line bundles. The composition of two holomorphic homomorphisms is just the product
of two theta functions, which by the addition formula turns out to be a linear combination of theta
functions. Homological mirror symmetry then asserts that such formulas can be reproduced in a
geometric way by the mirror dual symplectic torus (see subsection 3.3).

A noncommutative extension of these stories is given in the case of elliptic curves [9, 19, 12, 10]
based on A. Schwarz’s framework of noncommutative complex tori [21, 3]. However, the conclusion

is that the structure constants of the product are independent of the noncommutative parameter 6,
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which implies that the derived category of holomorphic vector bundles on a noncommutative real
two-torus is independent of 6 [19].

Thus, in order to obtain noncommutative deformations of the structure constants, one should
discuss higher dimensional complex tori. In this case, again, an extension of the framework of
A. Schwarz’s noncommutative complex tori gives various explicit noncommutative deformations [11],
which include the deformations described in more familiar terminologies by the Moyal star product of
theta functions. In this paper, we present the noncommutative deformation of the addition formula
of theta functions for higher dimensional tori (Theorem 4.1). For a more categorical set-up describing
these phenomena, see [11]. To explore geometric interpretations of this theorem from the mirror
dual side should be especially interesting. We hope to discuss on it elsewhere.

In section 2, we start from the commutative case; we present explicitly the addition formula
of theta functions corresponding to the composition of holomorphic homomorphisms between holo-
morphic line bundles on the n-dimensional complex torus T%" := C"/(Z" @ /—1Z"). In section 3,
we explain various aspects of the addition formula. Though the readers can move ahead to section
4 directly, this section provides us with interesting and pedagogical backgrounds on the product of
these theta functions, together with an introduction to the approach by noncommutative complex
tori. In subsection 3.1, we explain the relation of these theta functions with the theta vectors in-
troduced by A. Schwarz [21, 3] (see also [2]) in the framework of (non)commutative complex tori.
The framework of the theta vectors provides us with an underlying key structure in the addition
formula in the commutative case and its noncommutative generalization in section 4. In subsection
3.2, these theta functions or the theta vectors are interpreted in terms of holomorphic line bundles
on complex tori. In subsection 3.3, we give explicitly a geometric realization of the addition for-
mula in the commutative case by the mirror dual symplectic torus based on the homological mirror
symmetry [14]. This result can be regarded as a consequence of [4], but still it should be valuable
enough to give such a correspondence in our situation together with the addition formula explicitly
as we do. In section 4, we give a noncommutative generalization of this addition formula, the main
theorem of this paper (Theorem 4.1). Of course, we can replace the product of the addition formula
in the commutative case by the Moyal star product. However, the result is no longer described by
any linear combination of the theta functions. The important point is that we should and in fact
can find a class of theta functions which are closed with respect to the Moyal star product. Finally,
an example of these noncommutative theta functions in the case of complex two-tori is presented in
section 5.

Throughout this paper, any (graded) vector space stands for the one over the field k£ = C.
Acknowledgments: I would like to thank A, Kato, T. Kawai and K. Saito for valuable discussions

and useful comments. The author is supported by JSPS Research Fellowships for Young Scientists.

2. COMMUTATIVE THETA FUNCTIONS
The theta function ¥ : (R"/Z™ x R"/Z") x $ x C" — C is defined by
Der, e2)(Q,2) i= Y exp(mv/=1(m+ 1)'Qm + c1) + 20V =1(m + ¢1)" - (2 + c2)) (2.1)

mezmn
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where c1,co € R"/Z™ and $) is the Siegel upper half plane, that is, the space of C valued n by n
symmetric matrices whose imaginary parts are positive definite. Here, for two symmetric matrices
Ag, Ay € Mat,(Z) such that Ay, := Ap — A, is positive definite, we define
1 _ _
el (2) = ——=0(0, — A ul(vV-14,,2) , weZABL™ (2.2)

\/ det(Aab)

where §(Z" /ApZ"™) = det(Aq). One obtains the following addition formula:

Theorem 2.1. Given three symmetric matrices Aq, Ap, Ac € Mat, (Z) such that Agp, Ape are positive
definite, the following product formula holds:

(ehyehe) (2) = > Cly ebul)

PEL™ [Agc L
where the structure constant C’(%jqp € C is given by
Cclj{;/c,p = Z 5[Aab]iu+p5[Abc}Z €xp (—7‘((1}, - AbcA;clp)t(A;bl + Ab_cl)(u - AbcA;clp)) . (23)

uezZm

As explained in the next section, in particular, in subsection 3.2, the collection of these theta
functions {e’, } pezZn A,z can be interpreted as the basis of holomorphic homomorphisms between a
holomorphic line bundle specified by A, and the one specified by A; on the n-dimensional complex
torus T?" = C"/(Z™ + /—1Z"). The addition formula above is then interpreted as the composition
of the holomorphic homomorphisms.

Let Ob := {a,b,---} be a finite collection of labels, where any a € Ob is associated with a
nondegenerate symmetric matrix A, € Mat,,(Z) such that, for any a,b € Ob, A, is nondegenerate

if a # b. For any a,b € Ob, define a vector space H(a,b) over C as follows:
o If Ay is positive definite, H%(a, b) is the det(Ayp)-dimensional vector space spanned by the

theta functions {e’)}.

e If a = b, then H%a,b) :=C.

e If otherwise, then we set H%(a,b) = 0.
For any a,b € Ob, Hom(a, a) and Hom(b, b) act on Hom(a, b) from the left and the right, respectively,
as the trivial multiplication by complex numbers. Then, the product formula in Theorem 2.1 defines
an algebraic structure on ®, pcond 9(a,b). This can be in fact described by the zero-th cohomology
of an appropriate differential graded category (see [11]).

The main result of this paper is a noncommutative generalization of Theorem 2.1 by the Moyal
star product (Theorem 4.1).

For the proof of Theorem 2.1, it is convenient to prepare the following notion.

Definition 2.2. Given two symmetric matrices A,, Ay € Mat,(Z) such that A, is nondegenerate,
let 1 be an element in Z"/AqZ" and we define a linear map quab :S(R™) — C°(T™) by
(Th @)=Y &r+w—Ayu), zeR".
wWEL™
Here, S(R™) is the Schwartz space, that is, the space of smooth functions on R"™ whose derivatives

tend to zero faster than any polynomial on R™ (see [8], p.40).
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Lemma 2.3. Let Ay, Ay, Ac € Mat,(Z) be symmetric matrices such that Agp, Ape and Age are
nondegenerate. For ., & € S(R™), the following formula holds:
(Tgabfab) : (szcgbc) = Z (Tzac gc) s
PELN Ao
where £5. € S(R™) is defined by
gc(m) = Z 5[Aab}liu+p5[z4bc}z€ab(m + A; ( Abc ac 10)) gbc( - ( AbcAac p)) (24)

ueL”
Here, 4, }“ is the Kronecker’s delta mod 7" [ApZ", that is,

m ]' p - /’L € AabZn )
5[Aab}p = .
0 otherwise .

Proof. By direct calculation, the left hand side is

(Txabfab) (TAb fbc Z (5[Aab]” fab T + A Z (5[Abc]'iv,£bc(x -+ Ab_clvl) .

vEL™ v’ eZn

vy [ 1, Ay U 0
v’ -1, A w 0,/
the equation above is rewritten as

(Th ) (Th, 8@ = D > Slay) ., Slanliba(@+wt Ay (w—p))&e(z+w—A, ).

PEL™ [Auc L™ uwEL™

By the transformation

On the other hand, the right hand side can be computed directly as
(Th. )@ = > > S
PEL™ [Aac ™ u,wEL™
Eap(@ +w — Al p+ Ag(u — Ay ALl p)) - nelr +w — Al p — Ay (u — Ay ALl p))

- Z OAue) "y pO1Ase]  Sab (T + W + A = p)) - Gyl + w — Ap )
uczZm

Thus, the left hand side coincides with the right hand side. O
For A,, Ay such that Ay, € Mat,,(Z) is positive definite, define a function ey, € S(R™) by
eap(z) = exp (—mz’Agpz) . (2.5)
Then, by the Poisson resummation formula (see [17], p.195-197), one can rewrite the theta functions
{el'} as
eh) (2) = Tjab(eab)(z) , weZJApZ"™ (2.6)
where, for Tﬁab(eab) e S(R™), Aab(eab)(z) stands for the holomorphic extension.

Thus, for symmetric matrices A,, Ay, A. € Mat,,(Z) such that A, and Ay are positive definite,

apply Lemma 2.3 with £, = eqp, Epe = €pe, and the holomorphic extension leads to Theorem 2.1.
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3. VARIOUS INTERPRETATIONS OF THE PRODUCT FORMULA
In this section, we give various interpretations of Theorem 2.1.

3.1. The tensor product of Heisenberg modules. Theorem 2.1 can be understood directly in

A. Schwarz’s framework of noncommutative complex tori [21, 3]. A noncommutative torus A% is an

algebra defined by unitary generators Uy, --- , Uy with relations
Uin = 6_27“/__10” UjUZ' s Gij = —9]'@' eR (3.1)
fori,j =1,---,d. Now, we shall consider 2n-dimensional commutative torus A?" := Ag’;o. Namely,

A% is thought of as the space of functions on a 2n-dimensional commutative torus 7%". Thus, the
generators Uy, - - - , Uy, now commute with each other.

A pair E, := (E4,,V,) of a finitely generated projective module E4,, called a Heisenberg
module (see [13]), with a constant curvature connection V, is constructed as follows. The Heisenberg
module is defined by

Ep, = SR" x (Z" [AZ"))
for a fixed nondegenerate symmetric matrix A, € Mat,,(Z). The left action of A?" on E,, is defined
by specifying the left action of each generator; for &, € E4,, it is given by

(Uia) (s ) = 2™V 1ot Aaig, (3

(3.2)
(Unsila)(wip) = €l + AT s p— 1), i=1,---,n,
where x := (z1---x,)" € R" (* indicates the transpose), u € Z"/A,Z" and t; € R™ is defined by
(t1---tn) = 1,. A constant curvature connection Vg ; : Eq, — Ea,, i =1,---,2n, is given by

t - .
where 0, 1= (% %) , whose curvature F, := {Q[VW,va,j]}mzl,...,% is

The generators of the endomorphism algebra is the same as U;, i =1,--- ,2n:
(faZZ)(.Z” ILL) = é‘a(x7 N) 62W\/j1(x1+(A;1u)z)) ,
((aZn+i)(x; ) Zfa(az—i-A;lti;,u—ti) , i=1,,n.

Namely, the endomorphism algebra also forms a commutative torus A2".

Given E, and Ej such that A, is nondegenerate, the space Hom(E,, E}) is defined again as
the Schwartz space Hom(FE,, Ep) := S(R"™ x (Z"/ApZ™)). For &4 € Hom(E,, Ep), the left action of
A?", generated by U;, i = 1,--- ,2n, and the right action of A%", generated by Z;, i =1,--- ,2n, are
defined by

— —1 5. _

(szab)(l'; M) =" —Hat (g 1:) gab(x; M) ) (Un—i-zfab)(m; :u) = gab(x + Aablti; w—= ti) )
S (AL ). _

(EanZi) (3 1) = Eqp(a; ) 27V 1@t Ay ) (EapZnsi) (s p) = Eap( + A i — 1)
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where p € Z"/AuZ"™. In fact, all these generators U; and Z;, i = 1,--- ,2n, commute with each
other. The constant curvature connection V; : Hom(E,, E,) — Hom(E,, Ey), i = 1,--- ,2n, is given
by

For & € Hom(E,, Ep) and &,. € Hom(Ey, E.), the tensor product m : Hom(E,, Ey)@Hom (Ey, E.) —
Hom(E,, E.) is defined by
m(apy Epe) (T, p) = Z Eap(z + A;bl (u— AbcAgcl,o), —u+p) - Epe(T — Ab_cl(u — AbcA;CIp), u) . (3.4)
u€eEZ"
One can see that this tensor product formula is just the definition of 4. in eq.(2.4). This tensor
product is in fact associative and the connection V; : Hom(E,, E}) — Hom(E,, E}) satisfies the
Leibniz rule with respect to this product (see [11]). !
Now suppose we consider a n-dimensional complex torus T?" := C"/(Z" @& +/—1Z"). For
E, = (Fa,,V,) a Heisenberg module with the constant curvature connection, the holomorphic

structure ?a,i cBa, = Ea,,i=1,--- ,n, is defined by
?a,i = Va,i + v _]-Va,n—i-i .

Also, for given E,, Ejy, the holomorphic structure V; : Hom(E,, E,) — Hom(E,, Ey), i =1,--- ,n, is

defined in the same way:
Vi =Vi+ V-1V, , i=1,---,n.
When Ay is positive definite, the space H(E,, Ey) := ﬂ?leer(?i : Hom(E,, Ey) — Hom(E,, Ey))

forms a det(Agp)-dimensional vector space. The bases egb, w € Z"ApZ", are called A. Schwarz’s
theta vectors [21] (see also [2]), which are just the function ey, € S(R™) defined in eq.(2.5):

et (z,p) = 04,4} €XP (—mat Ay . (3.5)

The Leibniz rule of V then guarantees that the tensor product m(e,, ey.) turns out to be the linear
combination of efh, p € Z"/AuZ".

This approach by Heisenberg modules allows us various noncommutative deformations of these
structures (see [11]), but some of such deformations can be lifted to theta functions as the Moyal

star product; the consequence is the one presented in section 4.

3.2. Holomorphic line bundles on tori. In this subsection, the theta functions {e/;} in eq.(2.6),
or equivalently, the theta vectors {e/,} in eq.(3.5), are interpreted in terms of holomorphic line
bundles on complex tori.

ln [11], left modules in this paper is flipped to be right modules. The relation of the conventions between this

paper and [11] is as follows. First, consider a bimodule Hom(E,, E}) in this paper. Replace A, by —A, and A by
—Aq. Then, one gets a bimodule in [11]. In both cases, a left/right module E 4, is obtained by setting A, = 0.
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Given a d-dimensional-torus 7% = R%/Z4, let 7 : R? — R?/Z? be the projection. The space E
of sections of a vector bundle of rank g € Z~q is described by the space of ¢ copies of functions on
the covering space Ry equipped with a Z? 3 X action
Ex+2)=an(@)(z), E€EC(CO®RN), o €U(gCPRY) (3.6)
satisfying the following condition:

Cy/ (a: + )\)C)\(x) = C x4+ )\ (IL’) .

Thus, c, is regarded as a transition function of the vector bundle. A connection V; : E — E,

i=1,---,d, is defined so that the following compatibility conditions hold:
(Vi)(z +A) = ex(@)(Vi) (@)ey () (3.7)

where the curvature is defined by

V-1

F={Fj}ij=1ma,  Fj=—5—[ViVj].
Now, consider a complex torus 72" := C"/(Z™ & /—1Z"), where the coordinates of the covering
space C" is denoted z := (21 - -+ 2,,)?, 2; := x; ++/—1y;, i = 1,--- ,n. For a nondegenerate symmetric

matrix A, € Mat,(Z), the space of sections E4, of a line bundle (¢ = 1 case) on T%" is constructed
by setting
o0 (@y) =1, coplay) =e PV TIAN T
where z = (z1---2,),, y == (y1---yn)t and Az, A, € Z" such that A = (A\;, \,) € Z¥=?". The
general form of sections in EAa is given by
Calwyy) =D Y exp(@rV-Ty' (—Au(z+w)+p) & (e +w—AJ'p), & € SR,
WEL™ peln AL

as a natural extension of the two dimensional case ([5, 7, 15] and see [13], the vector bundles
constructed there are called twisted bundles). For &5(x) =: Eu(x, ), & € S(R" Q@ (Z™JALZ")) = Ea,,
we regard ~ in the formula above as the isomorphism from E4, to EAa which sends &, to éa.
This line bundle can be equipped with the following constant curvature connection {V,; : E A, —

E4, }i=1,.. 2n with its curvature Fy:

0, Aa
(va,la"' 7va,n)t:8z+27r\/_1-’4y ) (Va,n-l—la"' 7va,2n)t:ay ; Fa: ( > ’

_Aa On
where 0, = (8%1 e %)t, Oy = (8%1 e %)t. Let us define the generators of the space C>(T?")
of functions by
Uy=e™1o U,y =™V i=1,--,n.

Then, the relationship of E, := (E4,,V,) with E, = (E4,,V,) in the previous subsection can be

summarized as follows: for ¢, € E4,,

iéa = /U?iga ) ﬁn-ﬁ-iéa = Un-i—i{a ) Va,iéa = Va,i{ ) Va,n-i—iéa = Va,n-i—ifa ’ 1= 17 PR (2
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In a similar way, for given Ea and E‘b such that A, is nondegenerate, the space Hom(Ea,Eb) of

homomorphisms from E, from Ej, is the space whose elements are described of the form:

Cnlmy) =D Y exp@rV-1y (—Aw (z+w)+p) &y (e +w—Aylp),  (3.8)

WEL™ PEL™ [Agp L™

for £¥, € S(R™), where the compatible constant curvature connection V; : Hom(E,, E,) — Hom(E,, E}),

i=1,---,n, is given by

0, A,
(Vla tee ’Vn)t = am + 27y _1Aaby ) (vn—l—ly' o 7v2n)t =0 ) Fab = ’ .
Y —Aw O

Again, for & (z) =: &up(x, 1), €ap € SR™ ® (Z"/ApZ™)) = Hom(E,, Ep), ~ in eq.(3.8) is regarded
as the isomorphism from Hom(E,, Ej) to Hom(Ea, E‘b) which sends &4 to Egp.

Actually, for E,, Ey, E., £uy € Hom(E,, Ey), & € Hom(Ey, E.) and the corresponding elements
éab € Hom(Ea, Eb), 5,,6 € Hom(Eb, EC), the pointwise product éab . 5,,6 turns out to be

Eab * Ebe = M(Eaby Epe)

where m is the tensor product of the Heisenberg modules defined in eq.(3.4). The proof is essentially

the same as that of Lemma 2.3.

Now, for T2" as a complex torus, the holomorphic structure {?aﬂ- : Ea — Ea}i=1,~~~,n is
defined by ?aﬂ- = Vg + \/—_1Va7n+i. Similarly, given E‘a and E‘b, the holomorphic structure
{V; : Hom(Ea,Eb) — Hom(Ea,Eb)}n:L...m is defined by V; := V; + v/—=1V,4;. The space of
holomorphic sections in Hom(FE,, Ej) is then defined by HO(E,, E,) := N?_,Ker(V; : Hom(E,, Ey) —
Hom(E,, E})). This space H(E,, E}) forms a det(Ag)-dimensional vector space spanned by {et 1,
the extension of the theta vectors {e}}},czn /4,20 in (3.5) by eq.(3.8). Also, the explicit relation of

these €4, with the theta functions e/, (2.6) is given by

e (z) = exp (my' Awy) - €4 (z,y) .

3.3. Lagrangian submanifolds and triangles. The homological mirror symmetry [14] asserts
that the product m(egb,egc) can also be derived from geometry of the mirror dual torus T2", a

symplectic 2n-dimensional torus with the symplectic structure

0, —1,
W= <1n On) ) (3.9)

For the covering space R?" of TQ", let 7 : R2" — 72" he the natural projection. The coordinates for
R?" is denoted (x1,- -+ ,Zpn, 1, »Jn)-
The affine lagrangian submanifold mirror dual to E, = (E4,,V,) over A?", the space of

functions on 72", is defined by the image of the affine subspace in R?"
Ly :9=Aux
by the projection 7 : R?" — 72", Thus, we have

7 (Le) = {) = Aaz + co, ca €LY} .
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Let us define the space of morphisms Hom(L,, Lp) which is isomorphic to the det(Ag)-dimensional
vector space HY(E,, E}) in subsection 3.1. Denote the basis of Hom(L,, L;) by CANNTRSW AV WY/
to which is associated the image of the intersection point of § = Ayz + p with § = A,z in C" by
7 :C" — 72" One can see that actually the number of the intersection points of 7(Lg) and (L)
in 72" is det(Agp). For a base vy, of Hom(Lg, L), we denote the corresponding point in 72" also by
Vab, Which defines the set ‘N/ab = w‘l(vab) of points in the covering space R?".

The structure constant C%c, ,€C (2.3) can be identified with the sum of the exponentials of
the symplectic areas of the triangles U,,0pc0qc for any vqp € Vip, Ope € Vie and Uq. € V. with respect
to the symplectic structure w in eq.(3.9), where the triangles related by parallel transformations on
the covering space R?" are identified with each other.

It is calculated as follows. Consider three affine subspaces L}, Lj, L in R? as follows:
L :g=Ax+c,, Ly:9=Azx+c, L.:j=Ax+c.

If A, is nondegenerate, the intersection of L/ and L;) is a point vgp; the coordinates (:yc) are:

Vap = _(Aab)_l(cb - Ca)
¢ —A A e, + ApAT e,
Now, assume that A, and Ap. are positive definite. Then, A, is also positive definite. The three

intersection points vgp, Upe, Ve form a triangle, where the edges (vapvpe)s (VpeVac)s (Vacvap) belong to

L;, L, and L}, respectively. The symplectic area of the triangle is given by

Al Al Cp — Ce
(Vab — Vae) w(Vpe — Vae) = (ce —ca)t (cp—ca)t ( e ae ) ( )
( ) AablAacAb Cl A abl Cq — Ce

Let us put ¢, =0, ¢, = v and ¢, = —p so that 7(vee) = vh.. Then, consider
Al Azl ’
K v ’ c ac +
> O " OlAscl 4, P (( —pt u't) <A;b1AI;CAb—Cl A;;) (“ p)) ;
ul

where dj4,,)" , and correspond to the condition of m(vey) = v, and 7(vye) = v}, respec-

14
Abc]u’+p
tively. One can see that, by the replacement u’' + p =: u, this coincides with the structure constant

Cc’jé;p of the product of the theta functions in eq.(2.3).

4. NONCOMMUTATIVE THETA FUNCTIONS

The Moyal star product [16] is an associative noncommutative product on the space of functions
on a flat space. It gives the first example of deformation quantization [1] and is also used as a
building block of deformation quantization on arbitrary symplectic manifolds (see [18, 6]). A Moyal

star product for functions on C" is defined by

=150,

(fx9)(z) = f(z)e” 7

— — = 3
where 0,00, :== >, azi 0" %. Note that this skewsymmetric matrix § € Mat,(R) can be thought

of as the restriction of 6 = {6;;}; j—1,... 2n in €q.(3.1) to 0 = {0;;}i j=1,..- m- 2

9(2) ,

2This skewsymmetric matrix 6 € Mat,, (R) corresponds to 6; in [11].
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Now, for two symmetric matrices Ay, Ay € Mat,(Z) such that A, is nondegenerate, the

following matrix Mg, € Mat,,(C),

ab ‘T

— -1
Mgy, = <1n+ T_lA;w) Aw, AL =A,+ 4,
is symmetric if and only if the the following condition holds:
AbA, = ApbAy . (4.1)

For two symmetric matrices A, A, € Mat,(Z) satisfying the condition (4.1), the real part of My,
is positive definite if and only if A, is positive definite (see [8], p.5). For two symmetric matrices
Aq, Ay € Maty,(Z) such that Ay, is positive definite, define theta functions e, u € Z" /Ay, Z", by

det(1, + V=TA,0)4 det(1, + V/—TA0)4
det(Aqp)?
It is clear that these theta functions actually coincide with those in eq.(2.2) if 6 = 0.

e (2) 9]0, — Ayt (V=IM ', 2) . (4.2)

Then, we get the x product formula of these noncommutative theta functions.

Theorem 4.1. For a fized skewsymmetric matriz 6 € Mat, (R), consider a set of symmetric matrices
Ag, Ap, Ae € Mat,(Z) such that Ag0A, = AydAy, = A0A. and Agy, Ape € Maty,(Z) are positive
definite. Then, the following product formula holds:

(ehpxer) (2) = > Ch ehe(z)

PEL™ [Agc L
Cliep = D Oau) s Sl exp (=7 (u = Ape Azl p)' (g + A1) (L + V=140) 1) (u — Ay Ayl p))
uezZn
Note that the matrix (4! +A; ') (1++v/—14,0) "1 € Mat,(C) is symmetric due to the condition
(4.1).

Proof. Again, by the Poisson resummation formula, the theta functions {¢%,} in eq.(4.2) can be

rewritten as el (z) = T (ew)(2), where

1
. z det(1,, + v—1A4,0)7 det(1,, + v/—1A,0
eab(gj) = Oab .e tMab , Cab = ( ) \/__l( . b )
det(ln + TAZI)Q)E

As in the commutative case in subsection 3.1, one can consider the corresponding Heisenberg modules

1
1
eC.

with a constant curvature connection V, where the tensor product is given just by replacing the
product - in the right hand side of eq.(2.4) by the star product, the constant curvature connection V
satisfies the Leibniz rule with respect to the tensor product, and the the theta vectors are obtained
just as the function e, above [11]. The Leibniz rule of V then guarantees that the tensor product
m(efjb, ey.) is a linear combination of eh.. The appropriate coefficients Cyp, € C and the structure

constant C%’ , € C are obtained by direct calculations. O

In the same way as in the commutative (§ = 0) case, the product formula above leads to the
following. Let Ob := {a,b,-- -} be a finite collection of labels, where any a € Ob is associated with
a nondegenerate symmetric matrix A, € Mat,(Z) such that for any a,b € Ob the condition (4.1)
holds and A, is nondegenerate if a # b. For any a,b € Ob, define a vector space H"(a,b) as follows:
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o If A,y is positive definite, H%(a, b) is the det(Ayp)-dimensional vector space spanned by the
theta functions {e’)}.
e If a = b, then H%a,b) :=C.
e If otherwise, then we set H%(a,b) = 0.
Then, the product formula in Theorem 4.1 defines an algebraic structure on @ conf Y(a,b). The

condition (4.1) has an interpretation in a categorical setting of these structures (see [11]).

5. AN EXAMPLE

We end with showing an example for the case of noncommutative complex two-torus (n = 2).

In this case, for any fixed nonzero 6, the condition A,0A4, = Apf A, reduces to
det(A,) = det(A4y) .

In general there exist infinitely many symmetric matrices A € Maty(Z) for a fixed det(A). For
instance, let us consider symmetric matrices A € Maty(Z) with det(A) = —4. If we concentrate on

diagonal matrices A € Maty(Z) with det(A) = —4, all such matrices are given by

1 0 2 0 4 0
A = ; A - ) A - )

and Ay = —Ay, Ag := —Ag, Az := —Ag. Since H'(4,5') = H°(i,j) = 0 for any i,j = 1,2,3, let
us concentrate on the one side {1,2,3}. Then, one obtains H°(i, ) # 0 if and only if i < j and in
particular

dim(H°(1,2)) =2, dim(H°(2,3))=2, dim(H°(1,3))=9.

Thus, one obtains the following quiver:

~ T

2

However, if we allow symmetric matrices with nonzero off-diagonal elements, there exist infinitely
many symmetric matrices A € Mat,,(Z) with det(A) = —4, since the matrix g’ Ag has det(A4) = —4
for any SL(2,Z) element g. For instance, for go = (§¢) € SL(2,Z), a € Z, one has A o :=
gt A190 = (i aza_4). Clearly, A1 # A1, if @ # /. Similarly, ¢}, 429, and g, A3g, define new
symmetric matrices for each o« € Z. Then, these infinitely many symmetric matrices together with
the vector space H(*,*) in fact define a connected quiver.

The fact that one can still consider a connected quiver of infinite type, as in the commuta-
tive case (6 = 0), might imply that our approach gives an interesting model of noncommutative

deformations in particular from a viewpoint of homological mirror symmetry.
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