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Relativistic heavy-ion collisions

Key achievements
I Formation of Quark-Gluon Plasma
I Nearly perfect fluid η/s ∼ 1/4π → Strongly coupled plasma

Quark-gluon plasma

Hydrodynamics Kinetic theory

Hadron gas Observed

Free streaming

CGC

Thermalization

Challenges
I Thermalization and hydrodynamization
I Hydrodynamics with Nparticle ∼ 103−4 → Fluctuating hydrodynamics?
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How to measure hydrodynamic properties?

Response to initial transverse geometry
I Almond shape on average → elliptic flow “v2”

I Elliptic flow data fitted well by η/s ∼ 1/4π

x

y

Hydrodynamic expansion
“elliptic flow”

px

py Final particle 
distributionInitial geometry

I Event-by-event shape → higher harmonics “vn”
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Bjorken expansion

Longitudinal expansion along the beam direction
I Equilibration in a Bjorken expansion is still a challenging problem

I assume local equilibration and discuss
How hydrodynamic fluctuations evolve on a Bjorken background?
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Relativistic fluctuating hydrodynamics

I Conservation law

∂µTµν = 0, Tµν = Tµν
ideal(e, v) + Tµν

viscous(e, v, ∂) + Tµν
noise

I Assume conformal fluid Tµ
µ = −e + 3p = 0

sound velocity c2
s = dp/de = 1/3, bulk viscosity ζ = 0

I Linearized hydrodynamic fluctuations φ = (csδe, g = wv)T

∂

∂t
φa(t, k) = −iLabφb︸ ︷︷ ︸

ideal

−Dabφb︸ ︷︷ ︸
viscous

− ξa︸︷︷︸
noise

,

L =

(
0 csk

csk 0

)
, D = γη

(
0 0
0 k2δij +

1
3kikj

)
,

〈ξa(t, k)ξb(t′,−k′)〉 = 2TwDab(2π)3δ(k − k′)δ(t − t′)
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Kinetic regime for a non-static and non-uniform background

Relaxation on a background flow of time scale ω−1

γηk2
∗ = ω︸ ︷︷ ︸

balance

→ ω

cs
� k∗ =

√
ω

γη
� cs

γη︸ ︷︷ ︸
short wavelength

∵ ε ≡ γηω

c2
s

� 1︸ ︷︷ ︸
gradient expansion

I Kinetic regime k∗: non-equilibrium scale, wavepacket on a background
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Counting on a background

1. Expand up to linear fluctuations φ on background Φ

∂µTµν
id = ∂µ [(e + p)uµuν + pgµν ] ∼ ∂

[
Φ
(0)
id +Φ

(1)
id φ+ · · ·

]
∂µTµν

vis = ∂µ [η∂u + · · · ] ∼ ∂
[
∂Φ

(0)
vis +Φ

(1)
vis∂φ+ ∂Φ

(1)
vis · φ+ · · ·

]
2. Background solution

∂Φ
(0)
id︸ ︷︷ ︸

ω ∼ 1

+ ∂2Φ
(0)
vis︸ ︷︷ ︸

γηω2/c2
s ∼ ε

= 0

3. Langevin equation for fluctuation

Φ
(1)
id ∂φ︸ ︷︷ ︸

csk∗ ∼ 1

+φ∂Φ
(1)
id︸ ︷︷ ︸

ω ∼ ε1/2

+ Φ
(1)
vis∂

2φ︸ ︷︷ ︸
γηk2

∗ ∼ ε1/2

+
XXXXX∂Φ

(1)
vis · ∂φ︸ ︷︷ ︸

γηωk∗/cs ∼ ε

+
XXXXX∂2Φ

(1)
vis · φ︸ ︷︷ ︸

γηω2/c2
s ∼ ε3/2

+noise = 0

4. Gapped modes do not mix at time scales ω−1

eicsk∗/ω ∼ eiε−1/2 ∼ 0︸ ︷︷ ︸
rotating wave approximation
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Equal-time two-point functions

Wigner function

Nab(t,x, k) ≡
∫

d3reik·r〈φa(t,x + r/2)φb(t,x − r/2)〉

Special cases: we can take a uniform comoving frame where v = 0
I Bjorken expansion

gµν = diag(−1, 1, 1, τ2)

I weak metric perturbation

gµν = diag(−1, 1 + h(t), 1 + h(t), 1 − 2h(t))

Uniform comoving frame: Nab(t,x, k) → Nab(t, k)
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Milne coordinates for Bjorken expansion

Approximate boost invariance along the beam in ultrarelativistic collisions

27 HIGHLY RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS:. . . 143

We shall be interested in a time scale of -5—10
fm/c for the evolution of the produced system.
Thus an assumption of local thermal equilibrium,
i.e., applicability of hydrodynamics, seems reason-
able. Once thermal equilibrium is established and
hydrodynamic expansion of the fluid commences,
the t ' time dependence of the energy density e will
not be valid (although we shall calculate a similar
behavior e-t " with 1&n & —,). Thus the time t
appearing in the expression (8) for energy density
should be interpreted as an initial time for imposi-
tion of boundary conditions for hydrodynamic flow.
While that initial time ( —1 fm/c) is somewhat un-
certain, the major uncertainty in imposition of ini-
tial conditions comes from lack of knowledge of the
basic transverse scale factor do.
Let us now make a modest Lorentz boost (say

y-3) and view the collision in another frame.
Again we see a collision of two highly contracted in-
cident nuclei followed by receding pancakes carrying
the baryon number. If, as before, we look at the
nucleon-nucleus collision under these same cir-
cumstances, we will see the same large-angle particle
production as before. This follows from the as-
sumption of a central-plateau structure for the rapi-
dity distribution in nucleon-nucleus collisions. It is
therefore very reasonable that for nucleus-nucleus
collisions the initial conditions for the fluid of quanta
produced between the receding pancakes are the same
as existed in the other frame. This means in particu-
lar that the initial energy density is the same, and
that the initial velocity is zero.
This is the basic feature of this description of the

evolution of the system: throughout the "central-
plateau" region the initial conditions —imposed a
proper time -1 fm/c after the collision time—are
invariant with respect to Lorentz transformations
This will imply that the subsequent time evolution
of the system should also possess this symmetry.
We shall describe this evolution of the system by

assuming that the Landau hydrodynamical model
is applicable. This means that we may define a local
energy density e(x), pressure p(x), and temperature
T=P '(x) and four-velocity of the fluid u (x),

2 |M
P, 7

with u =u&u"=1. Then the energy-momentum
tensor

e =ep =constant - 1—10 GeV /fm

hence To——constant as weH.
Natural variables for describing the flow are

therefore the rapidity y, defined as

t+Zy= —, ln
t —z

and proper time ~,

( t2 2)1/2

(13)

(14)

provided the flow may be considered one dimension-
al, i.e., we have translational symmetry in transverse
coordinates. This should be a good approximation
for times small compared to the radius of the nu-
cleus:

t « 1.2/I '/ =7 fm/c for Pb or U . (15)

Thereafter we must expect three-dimensional expan-
sion and a relatively short time evolution into the fi-
nal system of produced hadrons. (We shall return to
the description of the transverse flow later. )
In the following we shall assume one-dimensional

flow. In general, this would imply that

e =e(7r,g) )

p =p(r 3')

T=T(~,y ),
u„(r,y)=(up(~, y), 0,0,u, (~,y)) .

However, the initial condition

may be displayed in a space-time diagram as shown
in Fig. 3. We see that on the "proper-time" hyper-
bola

~=(t —z )'/ =constant= 1 fm/c,
we have

Tpv=(e+p)upuv g/lvp

is conserved:

8Tpv -=0.
Bx~

(12)

ng
mber

(We shall—perhaps unjustifiably —neglect effects of
viscosity and thermal conductivity. )
The initial boundary conditions we have discussed

Z~ Central plateau

FIG. 3. Space-time diagram of longitudinal evolution
of the quark-gluon plasma.

[Bjorken 1983]

I Coordinate transformation

τ =
√

t2 − z2, η = ln
t + z
t − z

, ds2 = −dτ2 + dx2
⊥ + τ2dη2

I Fourier transformation

φ(τ,x⊥, η) =

∫
d2k⊥dκeik⊥·x⊥+iκηφ(τ, k⊥, κ)

k = (k⊥, κ), K(τ) = (k⊥, kz(τ) ≡ κ/τ)
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Hydrodynamic fluctuations on a Bjorken expansion

1. Background ideal fluid (viscous corrections are subleading for φ)
uη(τ) = 0 ↔ vz(t,x) = z/t︸ ︷︷ ︸

1-dim. Hubble expansion

, s(τ)τ = s(τ0)τ0︸ ︷︷ ︸
entropy conservation

→ “ω” ∼ 1
τ
, k∗ =

√
1

γη(τ)τ

2. Langevin equation for fluctuations φ = (csδe,G) = (csδe, g⊥, τgη)
∂

∂τ
φa(τ, k) = −iLabφb︸ ︷︷ ︸

ideal

−Dabφb︸ ︷︷ ︸
viscous

− Pabφb︸ ︷︷ ︸
expansion

− ξa︸︷︷︸
noise

,

P =
1
τ

diag(1 + c2
s , 1, 1, 2)
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Kinetic equations for the two-point functions

1. Two-point function

〈φa(τ, k)φb(τ,−k′)〉 = Nab(τ, k)(2π)3δ(k⊥ − k′
⊥)δ(κ− κ′)

2. Evolution equation
∂

∂τ
N (τ, k) = −i[L,N ]− {D,N} − {P,N}+ 2Tw

τ
D

3. Eigen modes of L: φα = (φ+, φ−, φT1 , φT2)

left moving sound︸ ︷︷ ︸
λ− = −cs|K |

, right moving sound︸ ︷︷ ︸
λ+ = cs|K |

, transverse modes︸ ︷︷ ︸
λT = 0

4. Rotating wave approximation with eigenmodes

∂

∂τ
Nαα(τ, k) = −2Dαα

[
Nαα − Tw

τ

]
︸ ︷︷ ︸

relaxation ∼ γηk2
∗

− 2PααNαα︸ ︷︷ ︸
expansion ∼ 1/τ
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Large wavenumber asymptotics

∂

∂τ
N±±(τ, k) = −4

3
γηK2

[
N±± − T(e + p)

τ

]
− 1

τ
(2 + c2

s + cos2 θK )N±±

N±±(τ, k) =
Tw
τ

[
1 +

c2
s − cos2 θK

4
3γηK2τ︸ ︷︷ ︸

visc. approx

+ · · ·︸︷︷︸
time integral

]
for K � k∗
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Evolution of the background

T
zz

Hydrodynamic equation in Bjorken expansion
d
dτ

〈τT ττ 〉 = −〈T zz〉

I Without hydrodynamic fluctuations

T zz = p︸︷︷︸
ideal

− 4η
3τ︸︷︷︸

1st visc.

+(λ1 − ητπ)
8

9τ2︸ ︷︷ ︸
2nd visc.

I Hydrodynamic fluctuations give another contribution

〈T zz
fluct(τ)〉 =

〈G2
z 〉

w
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Nonlinear contribution from K ∼ k∗ to the background

~k

θ

Nonlinear contribution to T zz

〈G2
z 〉 = τ

∫
K

N++ + N−−
2

cos2 θK + NT2T2 sin
2 θK︸ ︷︷ ︸

∝ 1 +#/γηK2τ + · · · for K � k∗

I Regularize cubic and linear UV divergences by a cutoff Λ

Renormalize the divergences [Kovtun-Yaffe (03), Kovtun-Moore-Romatschke (11)]

〈T zz〉 = p(Λ) + Λ3T
6π2︸ ︷︷ ︸

≡ p

− 4
3τ

[
η(Λ) +

17ΛT
120π2

1
γη(Λ)

]
︸ ︷︷ ︸

≡ η

+ finite + · · ·
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Finite contributions: Long-time tails

Evaluate the finite parts after renormalization

〈T zz〉 = p︸︷︷︸
ideal

− 4η
3τ︸︷︷︸

1st visc.

+ 1.08318 T
(

1
4πγητ

)3/2

︸ ︷︷ ︸
long-time tail

+ · · ·

Simple understanding of the scaling

〈T zz
fluct〉 ∼ T

∫
d3K︸ ︷︷ ︸

# of modes

∼ Tk3
∗ ∼ T

(
1

γητ

)3/2

Order counting
〈T zz(τ)〉

w
=

p
w︸︷︷︸
∼ 1

− 4γη
3τ︸︷︷︸
∼ ε

+
1.08318

s (4πγητ)3/2︸ ︷︷ ︸
∼ 1/s`3

∗ = 1/N∗

,

The finite contribution from k∗ gives the long-time tails
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Effect of the initial conditions

Longitudinal pressure: initial time can be taken to 0

〈T zz(τ)〉
w

=
p
w

− 4γη
3τ

+
1.08318

s (4πγητ)3/2 ,

Transverse pressure: initial time should be finite (regulator)

〈T xx,yy(τ)〉
w

=
p
w

+
2γη
3τ

+

[
χτ0 + δχτ0

τ2w2

]
1

(12πγητ)︸ ︷︷ ︸
what’s this?

− 0.273836
s(4πγητ)3/2

Time dependence of each term

p
w

=
1
4
,

γη
τ

∝ 1
τ2/3 ,

δχτ0

γηw2τ3 ∝ 1
τ

(
τ

τ0

)1/3

︸ ︷︷ ︸
initial sensitivity

,
1

s(γητ)3/2 ∝ 1
τ
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Initial transverse momentum fluctuations

NT1T1 at initial moment gives divergent contribution in τ0 → 0
I Particular kinematic region contributes (k∗(τ) ∝ τ−2/3)

k⊥ ∼ k∗(τ)︸ ︷︷ ︸
kinetic regime at τ

� k∗(τ0), κ ∼ k∗(τ0)τ0︸ ︷︷ ︸
kinetic regime at τ0

� k∗(τ)τ

Almost uniform in x⊥ at initial times, and in η at later times
I Initial transverse momentum distribution

𝜏!

22 / 29



Initial transverse momentum fluctuations

NT1T1 at initial moment gives divergent contribution in τ0 → 0
I Particular kinematic region contributes (k∗(τ) ∝ τ−2/3)

k⊥ ∼ k∗(τ)︸ ︷︷ ︸
kinetic regime at τ

� k∗(τ0), κ ∼ k∗(τ0)τ0︸ ︷︷ ︸
kinetic regime at τ0

� k∗(τ)τ

Almost uniform in x⊥ at initial times, and in η at later times
I Diffusion in z direction at the initial moment

~𝜏!

1/𝑘∗(𝜏!)
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Initial transverse momentum fluctuations

NT1T1 at initial moment gives divergent contribution in τ0 → 0
I Particular kinematic region contributes (k∗(τ) ∝ τ−2/3)

k⊥ ∼ k∗(τ)︸ ︷︷ ︸
kinetic regime at τ

� k∗(τ0), κ ∼ k∗(τ0)τ0︸ ︷︷ ︸
kinetic regime at τ0

� k∗(τ)τ

Almost uniform in x⊥ at initial times, and in η at later times
I Diffusion in z direction at later time is ineffective

𝜏

1/𝑘∗(𝜏)

frozen
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Initial time effects on transverse pressure

1. Initial momentum fluctuations of modes k ∼ (k∗(τ), k∗(τ0))

〈(g⊥(τ0,x))2〉 ∼ T(τ0)w(τ0) k∗(τ)2k∗(τ0)︸ ︷︷ ︸
# of modes

2. Diluted momentum fluctuations at τ

〈(g⊥(τ,x))2〉 ∼
(τ0
τ

)2
〈(g⊥(τ0,x))2〉

3. Transverse pressure

〈T xx(τ)〉 = 1
2
〈(g⊥(τ,x))2〉

w(τ)
∼

(τ0
τ

)2 w(τ0)

w(τ)
T(τ0)k∗(τ)2k∗(τ0)

∼ k∗(τ)2

τ2w(τ)
τ2

0 T(τ0)w(τ0)k∗(τ0)︸ ︷︷ ︸
= δχτ0
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Energy density for non-conformal fluid

Using the hydro-kinetic equation, we get the energy density as

〈T ττ 〉 = e(Λ) + TΛ3

2π2︸ ︷︷ ︸
renormalize

− TΛ

6π2τ


(

1 +
3T
2

dc2
s

dT
− 3c2

s

)
1
γζ

+ 4
(
1 − 3c2

s
) 1

2γη


+O(Λ0)︸ ︷︷ ︸

long-time tail

,

I Λ3 term can be renormalized into energy density
I How to renormalize Λ/τ term?
I What is background temperature?
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Cutoff dependent temperature

Landau condition Tµνuν = −euµ

I On a rest frame, energy density and temperature are related by

e(T) = 〈T ττ 〉 = 〈T ττ 〉k>Λ︸ ︷︷ ︸
= e(T(Λ),Λ)

+ 〈T ττ 〉k<Λ︸ ︷︷ ︸
fluctuations

I T(Λ) depends on Λ only when the system is out of equilibrium

e(T(Λ),Λ) = e(T +∆T(Λ),Λ) ' e(T ,Λ) +
de(T)

dT
∆T(Λ)

I Renormalization and temperature shift

〈T ττ 〉 = e(T ,Λ) +
TΛ3

2π2︸ ︷︷ ︸
renormalize

+
de(T)

dT
∆T(Λ)

− TΛ

6π2τ

[(
1 +

3T
2

dc2
s

dT
− 3c2

s

)
1
γζ

+ 4
(
1 − 3c2

s
) 1

2γη

]
+ · · ·︸ ︷︷ ︸

cancelled by temperature shift ∆T
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Renormalization of bulk viscosity

Temperature shift affects renormalization of bulk viscosity
I Order counting 1 + ε+ 1/N∗ +���ε/N∗ → ζ(T +∆T ,Λ) ' ζ(T ,Λ)

1
4
〈T xx + Tyy − 2T zz〉 = 1

τ
[η(Λ) + #Λ]︸ ︷︷ ︸

= η

+ · · ·

1
3
〈T xx + Tyy + T zz〉 = p(T +∆T ,Λ)− ζ(Λ)

τ
+#Λ3 +

#Λ

τ
+ · · ·

= p(T ,Λ) +#Λ3︸ ︷︷ ︸
= p(T)

−ζ(Λ)

τ
+

#Λ

τ
+ s(T)∆T︸ ︷︷ ︸

= −ζ/τ

+ · · ·

Renormalization of bulk viscosity [Kovtun-Yaffe (03)]

ζ = ζ(Λ) +
TΛ

18π2

[(
1 +

3T
2

dc2
s

dT
− 3c2

s

)2 1
γζ +

4
3γη

+
(
1 − 3c2

s
)2 2

γη

]
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Summary

What I talked:
I Kinetic regime k∗ is the non-equilibrium scale
I Nonlinear fluctuations from k∗ gives long-time tail
I Some details (initial fluctuations, temperature shift) are discussed

What I promised to talk but I did not: [An et al (2019)]

I Hydro-kinetic theory on general background flow
I Affine connection between local rest frame → confluent derivative
I Kinetic theory on local flows (shear, bulk, rotation, acceleration)

Future direction:
I Critical fluctuations of model H near the QCD critical point
I Kibble-Zurek scaling by mode coupling treatment? [YA et al, in progress]

I Photon and dilepton spectrum [YA et al, in prep.]
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Backup slides
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Time dependence of transverse pressure

Transverse pressure

〈T xx,yy(τ)〉
w

=
p
w

+
2γη
3τ

+

[
χτ0 + δχτ0

τ2w2

]
1

(12πγητ)
− 0.273836

s(4πγητ)3/2

Time dependence of each term

p
w

=
1
4
,

γη
τ

=
η

s
· 1

Tτ1/3︸ ︷︷ ︸
const

· 1
τ2/3 ,

1
γηw2τ3 =

s
η
· Tτ1/3

(wτ4/3)2︸ ︷︷ ︸
const

· 1
τ2/3 ,

1
s(γητ)3/2 =

1
sτ

·
(

s
η
· Tτ1/3

)3/2

︸ ︷︷ ︸
const

·1
τ

χτ0 ∼
[
τ2

0 Tw
√
γητ0

]
τ0

∼
[
Twτ

5/3
0

]
τ0
·

[
τ

1/6
0

γ
1/2
η

]
τ0︸ ︷︷ ︸

const

· 1
τ

1/3
0
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Particle correlations

Fundamental tool for data analysis
I Anisotropic flows (elliptic v2, triangular v3, · · · ) from particle

correlations

vn{2} =
√

〈ein(φ1−φ2)〉, · · ·

Correlation via hydrodynamic fluctuations
I Boltzmann-Langevin equation

f (x, p) = fideal(x, p) + fvisc.(x, p)︸ ︷︷ ︸
viscous hydro

+ δffluct.(x, p)︸ ︷︷ ︸
noise

〈f (2)(x1, p1, x2, p2)〉 6= 〈f (x1, p1)〉〈f (x2, p2)〉

I Hydro fluctuation should influence particle correlation

fideal(x, p) = [exp(βµ(x)pµ)∓ 1]−1

Nonlocal correlation from 〈βµ(x)βν(y)〉 out of equilibrium
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