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Energy Cascade

da Vinci, Royal Collection at Windsor, RCIN 912660v Frisch, Sulem, and Nelkin (1978)

Richardson’s poem Richardson (1922, p. 66)� �
[...] big whirls have little whirls that feed on their velocity, and

little whirls have lesser whirls and so on to viscosity [...].

� �
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Causality and “Synchronised” Small Scales
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▶ Time delay between energy

K(k, t) :=
〈
u2

〉
/2

and energy dissipation rate

ϵ(k, t) := ν(∇u)2

Vela-Martı́n (2021)

▶ “Twin” simulations with

synchronised large scales.

▶ Despite the chaos, small scales

are also synchronised.
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Statistical Universality and “Forgotten” Large Scales

Davidson (2015, § 5.2.1)
[The small scales] do not retain any in-

formation which relates to their great-

great-great-grand parents.

G. L. Eyink (2007-2008, § II(E))
[...] the small-scales will“forget”about

the detailed geometry and statistics of

the large-scale flow modes.

Paradox: Information flows or dams up?
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Goto (2018)
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Information Flow and Its Bound in Turbulent Cascade

▶ Tomohiro Tanogami and Ryo Araki (2024). Information-thermodynamic

bound on information flow in turbulent cascade. Phys. Rev. Res. 6 (1),

p. 013090

▶ Remark: Theoretical results are attributed to Tanogami-san.
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Information Theory

▶ “Theory of communication” Shannon (1948)

▶ Actively applied to cryptography, physics, machine learning, ...

Shannon entropy

▶ Information := − ln p(x) is “amount of surprise” of the event x ∈ X.

∴ Unlikely event has large information.

▶ Shannon entropy := H(X) is average surprise of possible events.

H(X) =
∑

x∈X

p(x) × [− ln p(x)]

Average of possible events

Information of an observed event
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Information Theory

Mutual information

I[X : Y ] :=
∑

x

∑

y

p(x, y) ln
p(x, y)

p(x)p(y)

= H(X) +H(Y )−H(X,Y )

= H(X)− H(X|Y )

≥ 0
:= −

∑

x,y

p(x, y) ln
p(x, y)

p(y)

H(X|Y ) H(Y |X)I[X : Y ]

H(X) H(Y )

H(X,Y )

▶ I[X : Y ] quantifies

▶ Generalised correlation (shared information) between X and Y .

▶ Decrease of surprise in Y by knowing X (or vice versa).
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Setup: Fluctuating Hydrodynamics

Fluctuating Navier–Stokes equations in Fourier space:

∂ûk

∂t
= Bk(û, û

∗)
︸ ︷︷ ︸

Nonlinear

− νk2ûk
︸ ︷︷ ︸

Viscous

+ f̂k
︸︷︷︸

External force

+

√

2νk2kBT

ρ
ξ̂k

︸ ︷︷ ︸

Thermal agitation

where noise is delta-correlated
〈

ξ̂k(t)ξ̂
∗
k′(t′)

〉

=
1

V

(

I−
kk

k2

)

δk,k′δ(t− t′).

� �
ûk: Fourier-space velocity at wave number k (and time t), ν: kinematic viscosity, ρ: mass density,
kB: Boltzmann constant, T : temperature, V : volume, ·∗: complex conjugate,

� �
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Setup: Decomposed Velocity and Mutual Information

▶ Decompose the velocity field

{ûk, û
∗
k
} = U<

K
︸ ︷︷ ︸

{ûk,û
∗

k
|k≤K}

Large-scale

∪ U>
K

︸ ︷︷ ︸

{ûk,û
∗

k
|k>K}

Small-scale

▶ Define the mutual information

I[U<
K : U>

K ] :=

〈

ln
p(U<

K ,U
>
K)

p(U<
K)p(U

>
K)

〉

,

→ Quantify the correlation

between large- and small-scale

eddies. log k

lo
g
E
(k
)

∝ k−5/3

KU<
K U>

K
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Setup: Information Flow with Learning Rate

“Learning rate” of the large-scale velocity

İ<K := lim
dt↘0

I[U<
K(t+ dt) : U>

K(t)]− I[U<
K(t) : U

>
K(t)]

dt
.

Learning rate of the small-scale velocity

İ>K := lim
dt↘0

I[U<
K(t) : U

>
K(t+ dt)]− I[U<

K(t) : U
>
K(t)]

dt
.

At steady state, İK := İ>K = −İ<K holds and

▶ İK > 0: Small scale learns large scale.

▶ İK < 0: Large scale learns small scale.
log k

lo
g
E
(k
)

∝ k−5/3

K
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Main Result: Information Flow in Turbulence

From the second law of information

thermodynamics, we found that at steady state:

1. The following inequality

İK ≥ 0

holds for wave number K in the inertial

range kf ≪ K ≪ kν .

2. Furthermore,

ρV ϵ

kBT
≥ İK

establishes the upper bound of İK .
log k

lo
g
E
(k
)

∝ k−5/3

K

İK

kf kν

There is the information flow from large to small scales in turbulence.
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Energy Cascade Mechanisms and Information Flow

▶ Ryo Araki, Alberto Vela-Martı́n, and Adrián Lozano-Durán (2024).

Forgetfulness of turbulent energy cascade associated with different

mechanisms. Journal of Physics: Conference Series 2753 (1),

p. 012001

▶ Remark: NO fluctuating hydrodynamics in this section.
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Physical Mechanisms of the Energy Cascade

How are energy and information in turbulence transferred

from large to small scales?

Vortex Stretching (VS)
Coherent hierarchical vortex tubes

Strain Self-Amplification (SSA)
Strong velocity gradient

The physical mechanism of the cascade is still an open question Goto, Saito,

and Kawahara (2017), Carbone and Bragg (2020), Johnson (2021), and McKeown et al. (2022).
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Inter-scale Energy Flux with Coarse-grained Velocity Field

Coarse-grained velocity field Johnson (2021, Fig. 4)

ūℓ
i(x) =

∫∫∫ ∞

−∞

Gℓ(r)ui(x+ r) dr

▶ Gaussian filter Gℓ(r) = N exp
(
−|r|2/2ℓ2

)

Inter-scale energy flux

Πℓ = −τ̊ℓ(ui, uj)S̄
ℓ
ij

▶ Reynolds stressa τℓ(ui, uj) = uiuj
ℓ − ūℓ

i ū
ℓ
j

▶ Strain-rate S̄ℓ
ij =

[
∂ūℓ

i

/
∂xj + ∂ūℓ

j

/
∂xi

]
/2

aNon-diagonal part v̊ij := vij − vkkδij/3
log k

lo
g
E
(k
)

∝ k−5/3

ℓ−1

Πℓ
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Distributions of Decomposed Energy Flux Johnson (2021, Fig. 8(a))

SSA: Strain self-amplification, VS: Vortex stretching

Πℓ = −τ̊ℓ(ui, uj)S̄
ℓ
ij = Πℓ

s1 + Πℓ
ω1 + Πℓ

s2 + Πℓ
ω2 + Πℓ

c .

▶ Scale-local SSA Πℓ
s1

▶ Scale-local VS Πℓ
ω1

▶ Scale-nonlocal part: Πℓ
s2 , Πℓ

ω2 , Πℓ
c

In the inertial range:

Πℓ
s1 > Πℓ

ω1

With Johnson (2021), the SSA transfers

more energy to smaller scales than the VS.
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Quantification of Causality by “Information Flux”
Lozano-Durán and Arranz (2022, § IV)

▶ Consider NY -DoF system: Y = [Y1, Y2, . . . , YNY
]

▶ Not observe i-th variable: Y
�i
= [Y1, Y2, . . . , Yi−1, Yi+1, . . . , YNY

]

▶ Consider time evolution: Y n+1

j = fj(Y
n)

“Information flux” T Y
i→j from Y n

i to Y n+1
j

T Y
i→j := H

(
Y n+1

j |Y n

�i

)
− H

(
Y n+1

j |Y n
)

i-th component of Y n is unknown

Fully known Y n

Information flux T Y
i→j := Decrease of “surprise” to observe Y n+1

j

when knowing Y n
i .
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Information Flux with Different Cascade Mechanisms

〈

Π`1
ω1

〉

`1

〈

Π`2
ω1

〉

`2

〈

Π`3
ω1

〉

`3

〈

Π`1
ω1

〉

`1

〈

Π`2
ω1

〉

`2

〈

Π`3
ω1

〉

`3

TΠω1
i→j/H(Πj)

1

2

3

4

5×10−2

Scale-local VS TΠ
ω1

Large > small

L
a

rg
e

>
s
m

a
ll

Current → future
〈

Π`1
s1

〉

`1

〈

Π`2
s1

〉

`2

〈

Π`3
s1

〉

`3

〈

Π`1
s1

〉

`1

〈

Π`2
s1

〉

`2

〈

Π`3
s1

〉

`3

TΠs1
i→j/H(Πj)

1

2

3

4

5×10−2

Scale-local SSA TΠ
s1

Information flux: TΠω1 > TΠs1 ↔ energy flux: Πs1 > Πω1

Efficient information transfer mechanism ̸= efficient energy transfer mechanism.
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Ideas: Turbulence with Fluctuating Hydrodynamics
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Information Flow and Error Cascade in Turbulence
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Error cascade
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Spontaneous stochasticity Tanogami (2023), Palmer (2024), and G. Eyink (2024)

[...] two states of the system differing initially by a small “obser-

vational error” will evolve into two states differing as greatly as

randomly chosen states of the system within a finite time interval,

which cannot be lengthened by reducing the amplitude of the

initial error. Edward N. Lorenz (1969). The predictability of a flow which possesses many

scales of motion. Tellus 21 (3), pp. 289–307

Falkovich, Gaw ȩdzki, and Vergassola (2001)

▶ Finite predictability time horizon

̸= conventional sensitivity on initial condition

▶ Uniqueness of solution is violated.

▶ Affects inertial range dynamics of turbulence
Thalabard, Bec, and Mailybaev (2020) and Bandak et al. (2024)

Can we establish a unified view of information

flow and error cascade in turbulence?

Ideas: Turbulence with Fluctuating Hydrodynamics ARAKI, Ryo@Advances in Fluctuating Hydrodynamics 20/21



Turbulence Model: Large Eddy Simulation (LES)

▶ Real-world flows are too demanding.

▶ Numerically solve the filtered NS equation

with modelled small scales.

▶ Drawback: Unknown initial condition of the

modelled scales → unreliable solution.

Stochastic LES Pope 2000, § 13.5.6

▶ Introduce a stochastic term to statistically

represent the modelled scales

∂t ˆ̄u
ℓ
i(k, t) = · · ·+ cPij(k) dWj(k, t)

︸ ︷︷ ︸

Wiener process

.
log k

lo
g
E
(k
)

∝ k−5/3

ℓ−1

Numerically solve

Model

Can we integrate the fluctuating NS eqs into stochastic turbulence model?
G. Eyink (2024)
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