

Minimum scaling model and exact exponents for the Nambu-Goldstone modes in the Vicsek Model (arXiv:2401.01603)

Harukuni Ikeda
Department of Physics, Gakushuin University


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Introduction

## Continuous symmetry breaking in equilibirum

$\mathrm{O}(\mathrm{n})$ model ( $\mathrm{n}=2 \rightarrow \mathrm{XY}, \mathrm{n}=3 \rightarrow$ Heisenberg)

$$
F[\boldsymbol{\phi}]=\int d x\left[\frac{k}{2}(\nabla \boldsymbol{\phi})^{2}+f(\boldsymbol{\phi})\right] f(\boldsymbol{\phi})=a \frac{|\phi|^{2}}{2}+b \frac{|\phi|^{4}}{4}
$$

Order parameter: $\phi=\left\{\phi_{1}, \cdots, \phi_{n}\right\}$
Schematic pictures of $f(\boldsymbol{\phi})$ for $\mathbf{n}=\mathbf{2}$

Disordered phae


$$
\langle\boldsymbol{\phi}\rangle=0
$$

Ordered phae

$\langle\boldsymbol{\phi}\rangle \neq 0$

## Hohenberg-Merming-Wagner theorem

$$
F[\boldsymbol{\phi}]=\int d x\left[\frac{k}{2}(\nabla \boldsymbol{\phi})^{2}+f(\boldsymbol{\phi})\right]
$$

$$
\phi=\binom{\phi \cos \theta}{\phi \sin \theta}
$$

$f(\boldsymbol{\phi})$ does not depend on $\theta$
$\theta$ is a NG mode!

Fluctuation in real space
$\left.\left.\left\langle\delta \theta(\boldsymbol{x})^{2}\right\rangle \propto \int d \boldsymbol{q}\langle | \delta \theta_{\boldsymbol{q}}\right|^{2}\right\rangle \sim \int_{q} \frac{d \boldsymbol{q}}{k q^{2}} \sim \begin{cases}\infty & (d \leq 2) \\ \text { const } & (d>2)\end{cases}$
Fluctuations of the NG mode diverge in two dimensions, which destroy the long-range order.

## Hohenberg-Merming-Wagner theorem

In $d \leq 2$, systems with short range interactions do not show continuous symmetry breaking in equilibirum.

XY model in 2d



System size

Continous symmetry breakings do not occur in $\mathrm{d}=2$ in equilibirum. How about systems far from equilibirum?

## Introduction

## Continuous symmetry breaking far from equilibirum

## Several non-equilibrium systems exhibit

 the continuous symmetry breaking even in $d \leq 2$2D Vicsek model
Vicsek (1994)
Ikeda, arXiv:2403.02086(2024)
$\mathbf{x}_{i}(t+1)=\mathbf{x}_{i}(t)+\mathbf{v}_{i}(t) \Delta t$.
$\theta(t+1)=\langle\theta(t)\rangle_{r}+\Delta \theta$,


2d O(n) model Nakano et al. (2021),
with shear Ikeda arXiv:2401.01603 (2024)

$$
\left[\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right] \varphi_{a}=-\Gamma \frac{\delta \Phi[\varphi]}{\delta \varphi_{a}}+\eta_{a}
$$

## 2d XY model

 with anistropic noiseM. D. Reichl et al. (2010)


## Anticorreltaed noise

Galliano et al. (2023)
Ikeda, PRE 108(6), 064119 (2023) Ikeda, arXiv: 2309.03155 (2023) Kuroda et al. (2024)

## Introduction

## Continuous symmetry breaking far from equilibirum

## Several non-equilibrium systems exhibit

 the continuous symmetry breaking even in $d \leq 2$
## 2D Vicsek model

Vicsek (1994)
Ikeda, arXiv:2403.02086(2024)
$\mathbf{x}_{i}(t+1)=\mathbf{x}_{i}(t)+\mathbf{v}_{i}(t) \Delta t$.
$\theta(t+1)=\langle\theta(t)\rangle_{r}+\Delta \theta$,


2d O(n) model Nakano et al. (2021),
with shear Ikeda arXiv:2401.01603 (2024)

$$
\left[\frac{\partial}{\partial t}+\boldsymbol{v} \cdot \nabla\right] \varphi_{a}=-\Gamma \frac{\delta \Phi[\varphi]}{\delta \varphi_{a}}+\eta_{a}
$$

## 2d XY model

 with anistropic noiseM. D. Reichl et al. (2010)


## Anticorreltaed noise

Galliano et al. (2023)
Ikeda, PRE 108(6), 064119 (2023) Ikeda, arXiv: 2309.03155 (2023) Kuroda et al. (2024)

## Introduction <br> Vicsek model

## Wired 「群れ科学」



## Introduction

## Vicsek model

Model Vicsek et al. (1995)

$$
\begin{aligned}
\theta_{j}^{t+1}= & \arg \sum_{\substack{k \sim j \\
\text { illingnment } \\
\text { interactionto } \\
\text { average direction }}} \mathrm{e}^{\mathrm{i} \theta_{k}^{t}}+\eta_{j}^{t}, \\
\boldsymbol{r}_{j}^{t+1}= & \boldsymbol{r}_{j}^{t}+v_{0} \boldsymbol{e}_{\theta_{j}^{t+1}}
\end{aligned}
$$

Small noise
Damian Sowinski's YouTube chanel
Nishiguchi (2023)


## Introduction <br> Vicsek model

XY model like
Order paramter

## Order parameter

$$
C=\left|\left\langle\frac{1}{N} \sum_{i=1}^{N} e^{i \theta_{i}}\right\rangle\right| v_{i}\left(\theta_{i}\right)=\binom{v_{i} \cos \theta_{i}}{v_{i} \sin \theta_{i}}
$$

Chaté and Mahault (2019)



## Vicsek like model in experiment

## Janus particles in AC electric field



Iwasawa, Nishiguchi, and Sano (2021)


(c)


Effective Vicsek like alingment interaction

## Introduction

## Vicsek like model in experiment

## Janus particles in AC electric field

Low density, disordered phase
High density, ordered phase


## Introduction

## Vicsek like model in experiment

## Janus particles in AC electric field

Low density, disordered phase


High density, ordered phase


Iwasawa, Nishiguchi, and Sano (2021)

## Vicsek like model in experiment

Iwasawa, Nishiguchi, and Sano (2021)

## XY model like

Order paramter

$$
C=\langle |\left\langle e^{i \theta}\right\rangle_{S}| \rangle_{t}
$$



True long-range order emerge even in d=2!!!

## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


# Previous reserach: Toner-Tu thoery Hydrodynamic description 

## Question

Why does the Vicsek model exhibit the continuous symmetry breaking even in $\mathrm{d}=2$ ?

To answer, this question, Toner and Tu constructed and investigated a coarse grained hydrodynamic equation for the Vicsek model

## Previous reserach: Toner-Tu thoery

## Hydrodynamic description

Slow (hydrodynamic) variables of the Vicsek Model $\rho(\boldsymbol{x}, t)$ : local density, $\boldsymbol{v}(\boldsymbol{x}, t)$ : local velocity

$$
\begin{gathered}
\text { Navier-Stokes equation } \\
\frac{\partial v}{\partial t}+(v \cdot \nabla) v=\kappa \nabla^{2} v-\frac{1}{\rho} \nabla P \\
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \boldsymbol{v}) \quad \begin{array}{c}
\text { Pressure } \\
p=f(n v)
\end{array}
\end{gathered}
$$

Standard model to describe hydrodynamic variables.

O(n) model

$$
\begin{gathered}
F(\boldsymbol{\phi})=\int d \boldsymbol{x}\left[a \frac{|\boldsymbol{\phi}|^{2}}{\left.\right|^{2}}+b \frac{\mid \boldsymbol{\phi}}{2}\right. \\
\phi=\binom{\phi \cos \theta}{\phi \sin \theta}
\end{gathered}
$$

Standard model to describe Continuous symmetry breaking

## Previous reserach: Toner-Tu thoery Toner-Tu hydrodynamic description

$$
\begin{aligned}
& \text { Navier-Stokes equation } \\
& \frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=\kappa \nabla^{2} \boldsymbol{v}-\frac{1}{\rho} \nabla P
\end{aligned}
$$

O(n) model

$$
F(\boldsymbol{\phi})=\int d x\left[a \frac{|\boldsymbol{\phi}|^{2}}{2}+b \frac{|\boldsymbol{\phi}|^{4}}{4}\right]
$$

## Toner-Tu equation



## Previous reserach: Toner-Tu thoery Scaling behaviors

Toner-Tu equation Toner and Tu (1995)

$$
\begin{array}{r}
\frac{\partial v}{\partial t}+(v \cdot \nabla) v=\kappa \nabla^{2} v-\frac{1}{\rho} \nabla P-\gamma \frac{\delta F[\boldsymbol{v}]}{\delta \boldsymbol{v}}+\boldsymbol{\xi} \\
F[v]=\int d x\left[\frac{a}{2}|v|^{2}+\frac{b}{4}|v|^{4}\right]
\end{array}
$$

Disordered phae


$$
\langle\boldsymbol{v}\rangle=0
$$

Ordered phae

$\langle\boldsymbol{v}\rangle \neq 0$

## Previous reserach: Toner-Tu thoery

## Scaling behaviors

Ordered phae

$$
a<0
$$


$\delta v_{\perp}$ : The velocity component orthogonal to the mean-veloctiy $\langle\boldsymbol{v}\rangle$ is the NG mode.

Fluctuation of NG mode in the ordered phae


## Anisotropic scaling transformations

$$
x_{\perp} \rightarrow l x_{\perp}, x_{\|} \rightarrow l^{\zeta} x_{\|}, t \rightarrow l^{z} t, \delta v_{\perp} \rightarrow l^{\chi} \delta v_{\perp}
$$

## Previous reserach: Toner-Tu thoery

## Scaling behaviors

Toner-Tu equation Toner and Tu (1995)

$$
\frac{\partial v}{\partial t}+(v \cdot \nabla) v=\kappa \nabla^{2} v-\frac{1}{\rho} \nabla P-\gamma \frac{\delta F[v]}{\delta v}+\boldsymbol{\xi}
$$

## Anisotropic scaling transformations

$$
x_{\perp} \rightarrow l x_{\perp}, x_{\|} \rightarrow l^{\zeta} x_{\|}, t \rightarrow l^{z} t, \delta v_{\perp} \rightarrow l^{\chi} \delta v_{\perp}
$$

## Renormalization group

## Calculations

Scaling exponents (TT95)

$$
z=\frac{2(1+d)}{5}, \zeta=\frac{d+1}{5}, \chi=\frac{3-2 d}{5}
$$

Fluctuation

$$
\chi<0 \text { for } d>3 / 2
$$

$\left\langle v_{\perp}^{2}\right\rangle \sim l^{2 x} \xrightarrow{l \rightarrow \infty} \begin{cases}\infty & d \leq 3 / 2 \\ 0 & d>3 / 2\end{cases}$
Long range order can exist in $\mathrm{d}=2$

## Previous reserach: Toner-Tu thoery Comarison with numerical simulation

## Scaling exponents (TT95)

$$
z=\frac{2(1+d)}{5}, \zeta=\frac{d+1}{5}, \chi=\frac{3-2 d}{5}
$$

## Comparison with simulation

B. Mahault et al. (2019)

|  |  | $d=2$ |  |
| :--- | :--- | :--- | ---: |
|  |  | Vicsek |  |
|  |  | TT95 |  |
| $\boldsymbol{v}_{\perp}$ | $\chi$ | $-0.31(2)$ | -0.2 |
| $x_{\\| \\|}$ | $\zeta$ | $0.95(2)$ | 0.6 |
| $t$ | $z$ | $1.33(2)$ | 1.2 |


| $d=3$ |  |
| ---: | ---: |
| Vicsek | TT95 |
| -0.62 | -0.6 |
| 1 | 0.8 |
| 1.77 | 1.6 |

Numerical results of the Vicsek model are inconsistent with TT95. In particular, the numerical results suggest the (almost) isotropic scaling $\zeta \doteqdot 1$

## Previous reserach: Toner-Tu thoery What was the problem?

In 2012, J. Toner, one of the authoer of the Toner-Tu thery, performed reanalysis of the hydrodynamic equation. J. Toner (2012)

The most general EOM for slow variables allowed by symmetry

$$
\begin{align*}
& \partial_{t} \vec{v}_{\perp}+\gamma \partial_{\|} \vec{v}_{\perp}+\lambda_{1}^{0}\left(\vec{v}_{\perp} \cdot \vec{\nabla}_{\perp}\right) \vec{v}_{\perp} \\
& \partial_{t} \delta \rho+\rho_{o} \vec{\nabla}_{\perp} \cdot \vec{v}_{\perp}+w_{1} \vec{\nabla}_{\perp} \cdot\left(\vec{v}_{\perp} \delta \rho\right)+v_{2} \partial_{\|} \delta \rho \\
& =D_{\rho_{\|}} \partial_{\|}^{2} \delta \rho+D_{\rho_{\perp}} \nabla_{\perp}^{2} \delta \rho+D_{\rho v} \partial_{\|}\left(\vec{\nabla}_{\perp} \cdot \vec{v}_{\perp}\right) \\
& +\phi \partial_{t} \partial_{\|} \delta \rho+w_{2} \partial_{\|}\left(\delta \rho^{2}\right)+w_{3} \partial_{\|}\left(\left|\vec{v}_{\perp}\right|^{2}\right), \\
& \begin{aligned}
= & -g_{1} \delta \rho \partial_{\|} \vec{v}_{\perp}-g_{2} \vec{v}_{\perp} \partial_{\|} \delta \rho-\frac{c_{0}^{2}}{\rho_{0}} \vec{\nabla}_{\perp} \delta \rho-g_{3} \vec{\nabla}_{\perp}\left(\delta \rho^{2}\right) \\
& +D_{B} \vec{\nabla}_{\perp}\left(\vec{\nabla}_{\perp} \cdot \vec{v}_{\perp}\right)+D_{T} \nabla_{\perp}^{2} \vec{v}_{\perp}+D_{\|} \partial_{\|}^{2} v_{\perp} \\
& +v_{t} \partial_{t} \vec{\nabla}_{\perp} \delta \rho+v_{\|} \partial_{\|} \vec{\nabla}_{\perp} \delta \rho+\vec{f}_{\perp}
\end{aligned}  \tag{2.18}\\
& \text { Preivously overlooked } \\
& \text { relevant terms }
\end{align*}
$$

In parinciple, this equation probides the correct scaling exponents.
However the EOM is so complicated...

- 1995: Vicsek model (Vicsek et al.)
- 1995: Toner-Tu theory (Toner and Tu)
- 2012: Re-analysis revealed some missing terms in TT95 (Toner)
- 2019: Extensive numerical simulation $\left(N \sim 10^{9}\right)$ of the Vicsek model reported different values of scaling exponents (Mahault et al.)
- 2024: Correct scaling exponents (this work)


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Model

## Origin of the discrepancy between TT95 and simulation

In 2012, J. Toner, one of the authoer of the Toner-Tu thery, performed reanalysis of the hydrodynamic equation. J. Toner (2012)

The most general EOM for slow variables allowed by symmetry

$$
\begin{align*}
\begin{array}{c}
\partial_{t} \vec{v}_{\perp}
\end{array}+\gamma \partial_{\|} \vec{v}_{\perp}+\lambda_{1}^{0}\left(\vec{v}_{\perp} \cdot \vec{\nabla}_{\perp}\right) \vec{v}_{\perp}
\end{align*} \quad \begin{array}{r}
\partial_{t} \delta \rho+\rho_{o} \vec{\nabla}_{\perp} \cdot \vec{v}_{\perp}+w_{1} \vec{\nabla}_{\perp} \cdot\left(\vec{v}_{\perp} \delta \rho\right)+v_{2} \partial_{\|} \delta \rho \\
= \\
=-g_{1} \delta \rho \partial_{\|} \vec{v}_{\perp}-g_{2} \vec{v}_{\perp} \partial_{\|} \delta \rho-\frac{c_{0}^{2}}{\rho_{0}} \vec{\nabla}_{\perp} \delta \rho-g_{3} \vec{\nabla}_{\perp}^{2}\left(\delta \rho^{2}\right) \\
\\
\quad+D_{B} \vec{\nabla}_{\perp}\left(\vec{\nabla}_{\perp} \cdot \vec{v}_{\perp}\right)+D_{T} \nabla_{\perp}^{2} \vec{v}_{\perp}+D_{\rho_{\perp}} \nabla_{\|}^{2} \nabla_{\perp} \delta \rho+D_{\rho v} \partial_{\|}\left(\vec{\nabla}_{\perp} \cdot \vec{v}_{\perp}\right)  \tag{2.18}\\
+\phi \partial_{t} \partial_{\|} \delta \rho+w_{2} \partial_{\|}\left(\delta \rho^{2}\right)+w_{3} \partial_{\|}\left(\left|\vec{v}_{\perp}\right|^{2}\right),
\end{array} \quad \begin{array}{r}
\text { Preivously overlooked } \\
\\
+v_{t} \partial_{t} \vec{\nabla}_{\perp} \delta \rho+v_{\|} \partial_{\|} \vec{\nabla}_{\perp} \delta \rho+\vec{f}_{\perp}
\end{array}
$$

In parinciple, this equation probides the exact scaling exponents. However the EOM is so complicated that we can not solve exactly.

> Here instead, we porpose a simple phenomenological equation of motions (EOM) for slow modes.

## Model

## Equations for slow variables in d=2

## Slow variables

Velocity fluctuations perpendicular to $\langle v\rangle$

$$
\delta v_{\perp}(\boldsymbol{x}, t), \quad \delta \rho(\boldsymbol{x}, t) \quad \text { Density fluctuations }
$$

First order gradient expansion for equation of motion

$$
\begin{gathered}
\binom{\delta \dot{\rho}}{\delta \dot{v}_{\perp}}=\left(\begin{array}{cc}
\boldsymbol{a} & \boldsymbol{b} \\
\boldsymbol{c} & \boldsymbol{d}
\end{array}\right)\binom{\nabla \delta \rho}{\nabla \delta v_{\perp}}+\cdots \\
\text { in the Fourier space }
\end{gathered}
$$

Eigenmodes Tonear and $\operatorname{Tu}(1995,1998)$

$$
\dot{\tilde{u}}_{ \pm}(\boldsymbol{q}, t)=i q c_{ \pm}(\hat{q}) \tilde{u}_{ \pm}(\boldsymbol{q}, t)+O\left(q^{2}, u^{2}\right)
$$

Eigenmodes Tonear and $\operatorname{Tu}(1995,1998)$

$$
\dot{\tilde{u}}_{ \pm}(\boldsymbol{q}, t)=i q c_{ \pm}(\hat{q}) \tilde{u}_{ \pm}(\boldsymbol{q}, t)+O\left(q^{2}, u^{2}\right)
$$

Non-degenerated sound velocities $c_{+}(\hat{q}) \neq c_{-}(\hat{q})$

Eigenmodes Tonear and $\operatorname{Tu}(1995,1998)$

$$
\dot{\tilde{u}}_{ \pm}(\boldsymbol{q}, t)=i q c_{ \pm}(\hat{q}) \tilde{u}_{ \pm}(\boldsymbol{q}, t)+O\left(q^{2}, u^{2}\right)
$$

Non-degenerated sound velocities $c_{+}(\hat{q}) \neq c_{-}(\hat{q})$

## Interaction representation $\quad \tilde{u}_{ \pm}(\boldsymbol{q}, t)=u_{ \pm}(\boldsymbol{q}, t) e^{i q c_{ \pm} t}$

Spatial correlation
$C_{\alpha \beta}(\boldsymbol{x})=\int d \boldsymbol{q} e^{i \boldsymbol{q} \cdot \boldsymbol{x}}\left\langle\tilde{u}_{\alpha}(\boldsymbol{q}, t) \tilde{u}_{\beta}^{*}(\boldsymbol{q}, t)\right\rangle=\int d \boldsymbol{q} e^{i \boldsymbol{q} \cdot \boldsymbol{x}}\left\langle u_{\alpha}(\boldsymbol{q}, t) u_{\beta}^{*}(\boldsymbol{q}, t)\right\rangle e^{i q\left(c_{\alpha}-c_{\beta}\right) t}$
The correlation decouples for difference modes $\alpha \neq \beta$, due to the fast oscillation of $e^{i q\left(c_{\alpha}-c_{\beta}\right) t}$, when $c_{\alpha} \neq c_{\beta}$
$u_{+}$and $u_{-}$can be treated separately! Chaté and Solon (2024)
We shall construct a EOM for $u_{ \pm}$, separately.

Model
Phenomelorogical EOM for $u_{ \pm}$
We shall construct a EOM for $u_{ \pm}$, separately.

## Model

## Phenomelorogical EOM for $u_{ \pm}$

## We shall construct a EOM for $u_{ \pm}$, separately.

- Since $u_{ \pm}$have the same symmetry, it is sufficient to consider one of them. Hereafter, we omit the subscritp $u_{ \pm} \rightarrow u$
- We must take into account ALL the relevant terms allowed by symmetry.



## Advection $c \cdot \nabla u$ do not appear in the interaction representation.

(Higher order terms $\ddot{u}, \nabla^{3} u,(\nabla u)^{2}, \cdots$ are irrelevant )

## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Linear analysis

We first investigate the linear model to revisit the derivation of the scaling exponents.

## The most general EOM

$$
\dot{u}=\nabla^{2} u+u \boldsymbol{a} \cdot \nabla u+\xi
$$

Neglect non-linear term
$u a$

## Linear model

$$
\dot{u}=\nabla^{2} u+\xi
$$

Linear model
$\dot{u}=\nabla^{2} u+\xi$

$$
\dot{u}=\nabla^{2} u+\xi
$$

$$
\begin{gathered}
x_{\perp} \rightarrow l x_{\perp}, x_{\|} \rightarrow l^{\zeta} x_{\|}, t \rightarrow l^{z} t, u \rightarrow l^{\chi} u \\
l^{\chi-z} \dot{u}=l^{\chi-2} \nabla_{\perp}^{2} u+l^{\chi-2 \zeta} \partial_{\|}^{2} u+l^{-(d-1+\zeta+z) / 2} \xi
\end{gathered}
$$

Scaling relations $\chi-z=\chi-2=\chi-2 \zeta=-(d-1+\zeta+z) / 2$

## Scaling exponents

Fluctuations destroy

## long-range order in $d \leq 2$

$\zeta=1, z=2, \chi=\frac{2-d}{2}$

$$
\left\langle u^{2}\right\rangle \sim l^{2 \chi} \xrightarrow{l \rightarrow \infty} \begin{cases}0 & d>2 \\ \infty & d \leq 2\end{cases}
$$

The lower-critical dimension of the linear model is $d_{\text {low }}=2$ What will happen for non-linear model?

## Theory

## Vicsek Model

$$
\dot{u}=\nabla^{\text {Non-linear EOM }} \boldsymbol{u}+\boldsymbol{u} \boldsymbol{a} \cdot \nabla u+\xi
$$

Pseudo-Galilean invariance
$u \rightarrow u+U, \boldsymbol{x} \rightarrow \boldsymbol{x}+U \boldsymbol{a} t$
$\boldsymbol{x}=\left\{x_{\|}, \boldsymbol{x}_{\perp}\right\}$ and $u t$
have the same scaling dimension

$$
\begin{aligned}
& {\left[x_{\perp}\right]=[u t] \rightarrow 1=\chi+z} \\
& {\left[x_{\|}\right]=[u t] \rightarrow \zeta=\chi+z}
\end{aligned}
$$

$$
\chi-z=-(d-1+\zeta+z) / 2
$$

## Theory

## Vicsek Model

## Scaling relations

$$
1=\chi+z \quad \zeta=\chi+z \quad \chi-z=-(d-1+\zeta+z) / 2
$$

## Theory

## Vicsek Model

## Scaling relations

$$
1=\chi+z \quad \zeta=\chi+z \quad \chi-z=-(d-1+\zeta+z) / 2
$$

New Scaling exponents

$$
\zeta=1, z=\frac{2+d}{3}, \chi=\frac{1-d}{3}
$$

Different from TT95

Fluctuations destroy
long-range order in $d \leq 1$

$$
\left\langle u^{2}\right\rangle \sim l^{2 \chi} \xrightarrow{l \rightarrow \infty} \begin{cases}\infty & d \leq 1 \\ 0 & d>1\end{cases}
$$

The non-linear term stabilizes the long-range order even in $\mathrm{d}=2$.

> We get new scaling exponents distrinct from the Toner-Tu theory.

## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- Summary and discussions


## Comparison with numerical simulation Scaling exponents

B. Mahault, F. Ginelli, and H. Chaté (2019)

|  |  | $d=2$ |  |  | $d=3$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Vicsek | TT95 | work | Vicsek | TT95 | This work |
| $u$ | $\chi$ | -0.31(2) | -0.2 | -0.33 | -0.62 | -0.6 | -0.67 |
| $x_{\\|}$ | $\zeta$ | 0.95(2) | 0.6 | 1 | 1 | 0.8 | 1 |
| $x_{1}$ | $z$ | 1.33(2) | 1.2 | 1.33 | 1.77 | 1.6 | 1.67 |

- In d=2, we get almost perfect agreement.
- In $d=3$, the both theories work well, and it is difficult to judge which theory works better.


# Comparison with numerical simulation Correlation function 

## Scalings

$$
\boldsymbol{x}_{\perp} \sim l, x_{\|} \sim l^{\zeta}, t \sim l^{z}, u \sim l^{\chi}
$$

## Correlation function in real space

$$
C\left(\boldsymbol{x}_{\perp}, x_{\|}\right)==\left\langle u\left(\boldsymbol{x}_{\perp}, x_{\|}\right) u(\mathbf{0}, 0)\right\rangle=l^{2 x} C\left(l^{-1} \boldsymbol{x}_{\perp}, l^{-\zeta} x_{\|}\right)= \begin{cases}\left|\boldsymbol{x}_{\perp}\right|^{2 x} & \left|\boldsymbol{x}_{\perp}\right| \gg x_{\|} \\ \left|x_{\|}\right|^{2 \chi / \zeta} & \left|\boldsymbol{x}_{\perp}\right| \ll x_{\|}\end{cases}
$$

Correlation function in Fourier space

$$
\tilde{C}\left(\boldsymbol{q}_{\perp}, q_{\|}\right)= \begin{cases}\left|\boldsymbol{q}_{\perp}\right|^{-z} & \left|\boldsymbol{q}_{\perp}\right| \gg q_{\|} \\ \left|q_{\|}\right|^{-z / \zeta} & \left|\boldsymbol{q}_{\perp}\right| \ll q_{\|}\end{cases}
$$

## Comparison with numerical simulation Correlation function

Velocity correlation in d=2


Our theory works better than the Toner-Tu theory (1995).

Comparison with numerical simulation Correlation function

Velocity correlation in d=3


Both theories work well in $\mathrm{d}=3$.
Further studies are necessary to judge the correct theory.

## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- discussions


## Overview

- Introduction
- Previous research: Toner-Tu theory
- Model
- Theory
- Comparison with numerical simulations
- discussions


## Connection with the Toner-Tu theory

Here we brifely revisit the derivation of the scaling exponents of the Toner-Tu model.

## Non-linear EOM

$$
\dot{u}=\nabla^{2} u+u a_{\perp} \cdot \nabla_{\perp} u+u a_{\|} \partial_{\|} u+\xi
$$

Slow mode for Toner-Tu theory

The Toner-Tu theory neglects (non-linear) coupling between velocity and density fluctuations. Toner (2012)


## Symmetry

$$
v_{\perp}\left(-x_{\perp}\right)=-v_{\perp}\left(x_{\perp}\right) \longmapsto u \underset{\text { Prohibited by symmetry }}{u a_{\perp} \cdot \nabla_{\perp} u+u a_{\nu}{ }^{\prime} u}
$$

Non-linear EOM
$\dot{u}=\nabla^{2} u+u a_{\perp} \cdot \nabla_{\perp} u+u a_{\nu} \nabla_{V} u+\xi$

## Non-linear EOM

$$
\dot{u}=\nabla^{2} u+u a_{\perp} \cdot \nabla_{\perp} u+u a_{\gamma} x_{\|} u+\xi
$$

## Galilean invariance

$$
u \rightarrow u+U, \boldsymbol{x}_{\perp} \rightarrow \boldsymbol{x}_{\perp}+U \boldsymbol{a}_{\perp} t \quad u \boldsymbol{a}_{\perp} \cdot \nabla_{\perp} u=\nabla_{\perp} \cdot\left(\boldsymbol{a}_{\perp} u^{2} / 2\right)
$$

$\boldsymbol{x}_{\perp}$ and $u t$
have the same scaling dimension

## Conservative non-linear term

 scaling exponents of the terms without $\nabla_{\perp}$$\dot{u} \sim l^{x-z}, \partial_{\|}^{2} u \sim l^{x-2 \zeta}, \xi \sim l^{-(d+z) / 2}$

## Discussion

## Connection with the Toner-Tu theory

## Scaling relations

$$
1=\chi+z \quad \chi-z=\chi-2 \zeta=-(d-1+\zeta+z) / 2
$$

## Discussion

## Connection with the Toner-Tu theory

## Scaling relations

$$
1=\chi+z \quad \chi-z=\chi-2 \zeta=-(d-1+\zeta+z) / 2
$$

Scaling exponents

$$
\zeta=\frac{1+d}{5}, z=\frac{2(1+d)}{5}, \chi=\frac{3-2 d}{5}
$$

## Consisten with TT95

Fluctuations destroy
long-range order in $d \leq 3 / 2$
$\left\langle u^{2}\right\rangle \sim l^{2 \chi} \sim \begin{cases}\text { finite } & d>3 / 2 \\ \infty & d \leq 3 / 2\end{cases}$
The non-linear term stabilizes the long-range order even in $\mathrm{d}=2$.

What will happen for Vicsek Model, where the density fluctutaions couple with velocity fluctutaions?

## Connection with the Toner-Tu theory

## Non-linear EOM

$$
\dot{u}=\nabla^{2} u+u \boldsymbol{a} \perp \cdot \nabla_{\perp} u+u a_{\|} \partial_{\|} u+\xi
$$

## Slow mode for the Vicsek Model

$u$ is a mixed mode between $\delta \rho$ and $v_{\perp}$

$$
v\left(-x_{\perp}\right)=-v_{\perp}\left(x_{\perp}\right)
$$

There is no-reason to prohibit $u a_{\|} \partial_{\| \mid} u$
When constructing phenomenological EOM, it is important to consider ALL relevant terms allowed by symmetry.

## Summary

- We constructed a phenomenological EOM for the slow modes of the Vicsek Model and calculated the scaling exponents.
- Our scaling exponents well agree with the numericla simulation of the Vicsek Model in $\mathrm{d}=2$.
- Our theory and TT95 equally well fit the numerical data in $\mathrm{d}=3$.

