Hyperuniformity in Chiral Active Fluids

J. Stat. Mech. 10, 103203 (2023) (& in preparation)

Yuta Kuroda Nagoya University, Japan

> 2024, June 24th Advances in Fluctuating Hydrodynamics

Introduction

- Active Matter
- Fluctuations in Active Matter
- Hyperuniformity in Chiral Active Fluids

Theory for HU in 2D Chiral Active Fluid

Density Fluctuations in 3D Chiral Active Fluid Microscopic Model and Hydrodynamic Equations Numerical Simulation

Introduction

- Active Matter
- Fluctuations in Active Matter
- Hyperuniformity in Chiral Active Fluids

Theory for HU in 2D Chiral Active Fluid

- Density Fluctuations in 3D Chiral Active Fluid Microscopic Model and Hydrodynamic Equations
 Numerical Simulation
 - Summary

O What is Active Matter?

Active matter = any collection of self-propelled objects

Janus particle

I. Buttinoni, et al., (2015)

Bacteria

H. P. Zhang, et al., (2010)

School of fish

Taken at Nagoya public aquarium

O Modeling of Active Matter

Mostly active particles are modeled as straight swimmers

 \mathbf{M} ABP performs almost straight motion for the time scale 1/D

O Chiral Active Matter

Most active objects *can't* **go straight!**

A walking guy who can't see anything draws a circular trajectory

80 70 60 50 40 30 20 ۳ 10 2 ≻<u>-</u>10 -20 -30 -40 -50-60 -70 -80 30 40 50 60 80 90 -10 10 20 70 100 110 0 X [m]

T. Obata *et al.*,(2005)

O Chiral Active Matter

Chiral active matter:

A collection of swimmers whose motion don't have mirror symmetry

M. Huang et al.,(2021)

F. Kümmel et al. (2013)

O Chiral Active Matter

Collective phenomenon we're interested in here:

Density fluctuations in chiral active fluids

M. Huang et al.,(2021)

F. Kümmel et al. (2013)

O Fluctuations in Active Matter: Giant Number Fluctuations (GNF)

Solution $\Delta N = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$

 \blacksquare GNF: $\Delta N \propto \langle N \rangle^{lpha}$ with lpha > 0.5 (in equilibrium systems, lpha = 0.5)

O Fluctuations in Active Matter: Giant Number Fluctuations (GNF)

Solution $\Delta N = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$

 \blacksquare GNF: $\Delta N \propto \langle N \rangle^{lpha}$ with lpha > 0.5 (in equilibrium systems, lpha = 0.5)

$$S(q) = \frac{1}{N} \langle \delta \rho(\boldsymbol{q}) \delta \rho^*(\boldsymbol{q}) \rangle \sim \frac{1}{q^{\beta}} \text{ with } \beta = 4\alpha - 2$$
 Increases in density fluctuations!

O Large Fluctuations in Non-equilibrium Systems

Large fluctuations are abundant in systems out of equilibrium

O Hyperuniformity in 2D Chiral Active Fluid

- Q. What about 2D chiral active fluids?
- A. They show hyperuniformity, not GNF
- **Myperuniformity (HU):** $S(q) \propto q^{\gamma}$ with $\gamma > 0$

Anomalous suppression of density fluctuations (opposite to GNF!)

O A Numerical Study on Hyperuniformity in 2D Chiral Active Fluid

Model of the set of t

O Summary of Backgrounds

Most active matter systems (w/o chirality) show increases in density fluctuations at large scales

2D chiral active fluids exhibit the suppression of density fluctuations called hyperuniformity (observed numerically & experimentally)

O Questions

Q. Can we theoretically understand hyperuniformity in 2D chiral active fluids from a microscopic point of view?

Yes!

Q. What about density fluctuations in 3D chiral active fluid?

Emergence of a singular correlation

Introduction

- **Active Matter**
- Fluctuations in Active Matter
- **Hyperuniformity in Chiral Active Fluids**

Theory for HU in 2D Chiral Active Fluid

Density Fluctuations in 3D Chiral Active Fluid Microscopic Model and Hydrodynamic Equations Numerical Simulation

Summary

Theory for HU in 2D Chiral Active Fluid

O Fluctuating Hydrodynamic Equations

$$\dot{\boldsymbol{r}}_{j}(t) = -\mu \sum_{k=1}^{N} \nabla_{j} U(\boldsymbol{r}_{j} - \boldsymbol{r}_{k}) + v_{0} \boldsymbol{e}(\phi_{j})$$
$$\dot{\phi}_{j}(t) = \Omega + \sqrt{2D} \eta_{j}(t)$$
$$\rho(\boldsymbol{r}, t) = \sum_{j=1}^{N} \delta(\boldsymbol{r} - \boldsymbol{r}_{j}(t)) \qquad \text{:Density}$$
$$\boldsymbol{p}(\boldsymbol{r}, t) = \sum_{j=1}^{N} \boldsymbol{e}(\phi_{j}(t)) \delta(\boldsymbol{r} - \boldsymbol{r}_{j}(t)) \qquad \text{:Polarization}$$

$$\begin{aligned} \partial_t \rho(\boldsymbol{r},t) &= -\nabla \cdot \boldsymbol{J}(\boldsymbol{r},t) \\ \partial_t \boldsymbol{p}(\boldsymbol{r},t) &= -\nabla \cdot \left(\frac{\boldsymbol{J}(\boldsymbol{r},t)\boldsymbol{p}(\boldsymbol{r},t)}{\rho(\boldsymbol{r},t)} \right) - D\boldsymbol{p}(\boldsymbol{r},t) + \boldsymbol{\Omega} \times \boldsymbol{p}(\boldsymbol{r},t) + \sqrt{D\rho(\boldsymbol{r},t)} \boldsymbol{\Upsilon}(\boldsymbol{r},t) \\ \boldsymbol{J}(\boldsymbol{r},t) &= -\mu \nabla P(\boldsymbol{r},t) + v_0 \boldsymbol{p}(\boldsymbol{r},t) \end{aligned}$$

"Pressure": $\nabla P(\mathbf{r}, t) := \rho(\mathbf{r}, t) \nabla \frac{\delta \mathcal{F}[\rho(\cdot, t)]}{\delta \rho(\mathbf{r}, t)} \quad \mathcal{F}[\rho(\cdot, t)] = \frac{1}{2} \int_{V} \mathrm{d}^{2}\mathbf{r} \int_{V} \mathrm{d}^{2}\mathbf{r}' \ \rho(\mathbf{r}, t) \rho(\mathbf{r}', t) U(\mathbf{r} - \mathbf{r}')$

Theory for HU in 2D Chiral Active Fluid

O Fluctuating Hydrodynamic Equations

$$\begin{aligned} \partial_t \rho(\boldsymbol{r},t) &= -\nabla \cdot \boldsymbol{J}(\boldsymbol{r},t) \\ \partial_t \boldsymbol{p}(\boldsymbol{r},t) &= -\nabla \cdot \left(\frac{\boldsymbol{J}(\boldsymbol{r},t) \boldsymbol{p}(\boldsymbol{r},t)}{\rho(\boldsymbol{r},t)} \right) - D \boldsymbol{p}(\boldsymbol{r},t) + \boldsymbol{\Omega} \times \boldsymbol{p}(\boldsymbol{r},t) + \sqrt{D\rho(\boldsymbol{r},t)} \boldsymbol{\Upsilon}(\boldsymbol{r},t) \\ \boldsymbol{J}(\boldsymbol{r},t) &= -\mu \nabla P(\boldsymbol{r},t) + v_0 \boldsymbol{p}(\boldsymbol{r},t) \end{aligned}$$

Linearization: $\rho(\mathbf{r}, t) = \rho + \delta\rho(\mathbf{r}, t)$ $\mathbf{p}(\mathbf{r}, t) = \mathbf{0} + \delta\mathbf{p}(\mathbf{r}, t)$

Assumption:

$$\nabla P(\mathbf{r}, t) \simeq \frac{1}{\rho \chi} \nabla \delta \rho(\mathbf{r}, t)$$

$$\chi^{-1} := \rho \left. \frac{\partial P}{\partial \rho} \right|_{\rho(\mathbf{r}) = \rho}$$

 $\partial_t \delta \rho(\mathbf{r}, t) = b \nabla^2 \delta \rho(\mathbf{r}, t) - v_0 \nabla \cdot \delta \mathbf{p}(\mathbf{r}, t) \qquad \qquad \mathbf{*} b := \mu / (\rho \chi)$

 $\partial_t \delta \boldsymbol{p}(\boldsymbol{r},t) = -D\delta \boldsymbol{p}(\boldsymbol{r},t) + \boldsymbol{\Omega} \times \delta \boldsymbol{p}(\boldsymbol{r},t) + \sqrt{D\rho} \boldsymbol{\Upsilon}(\boldsymbol{r},t)$

Theory for HU in 2D Chiral Active Fluid

O Static Structure Factor

$$\partial_t \delta \rho(\boldsymbol{r}, t) = b \nabla^2 \delta \rho(\boldsymbol{r}, t) - v_0 \nabla \cdot \delta \boldsymbol{p}(\boldsymbol{r}, t)$$

 $\partial_t \delta \boldsymbol{p}(\boldsymbol{r},t) = -D\delta \boldsymbol{p}(\boldsymbol{r},t) + \boldsymbol{\Omega} \times \delta \boldsymbol{p}(\boldsymbol{r},t) + \sqrt{D\rho} \boldsymbol{\Upsilon}(\boldsymbol{r},t)$

Static structure factor:
$$S(q) = \frac{1}{N} \left\langle |\delta \rho(\boldsymbol{q}, t=0)|^2 \right\rangle = \frac{v_0^2}{2b} \cdot \frac{D + bq^2}{\Omega^2 + (D + bq^2)^2}$$

 $\overrightarrow{S} \text{ In the limit } D \to 0,$ $S(q) = \frac{v_0^2}{2\Omega^2} \cdot \frac{q^2}{1 + b^2 q^4 / \Omega^2}$ $= \frac{1}{2} (Rq)^2 + O(q^6) \qquad R = v_0 / \Omega$ Hyperuniformity!

We succeeded in deriving HU in 2D chiral active fluids!

Introduction

- **Active Matter**
- **Fluctuations in Active Matter**
- **Hyperuniformity in Chiral Active Fluids**

Theory for HU in 2D Chiral Active Fluid

Density Fluctuations in 3D Chiral Active Fluid Microscopic Model and Hydrodynamic Equations Numerical Simulation

Summary