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Theme of this talk : Background

microscopic particles obeying 
classical mechanics

The motion of the system can be described by 
hydrodynamic theory at a macroscopic scale

Microscopic system Hydrodynamic description

coarse-graining



Theme of this talk : Fluctuating hydrodynamics
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∂ρ
∂t

= − ∇ ⋅ (ρv)

⟨Πab
R (r1, t1)Πcd

R (r2, t2)⟩ = 2kBTδ2(r1 − r2)δ(t1 − t2)[η0(δacδbd + δadδcb) + (ζ0 − η0)δabδcd]

Mass conservation

▶ Hydrodynamics describes slow motion of conserved variables.

∂(ρva)
∂t

= − ∇bΠab

Fluctuating 
constitutive eq.

Πab(r, t) := pδab + ρvavb − η0(∇avb + ∇bva − 2
d

δab ∇cvc) − ζ0δab ∇cvc+Πab
R

Momentum Conservation

We consider a situation where mass and momentum are conserved quantities.

The specific properties of fluids are given by a constitutive equation.

momentum flux

velocity field

density field

pressure advection viscous dissipation noise

◾ Fluctuating hydrodynamics includes a noise term arising from thermal motion of atoms.



Theme of this talk : Goal
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・Demonstrating that bare viscosity  is observable. 
・Specifying the value of bare viscosity  from atomic systems.

η0

η0

▶ Bare viscosity 
 It is a parameter included in the constitutive eq. of fluctuating hydrodynamics.

Transport coefficient           ：shear viscosity,     ：bulk viscosity, η0 ζ0

◼ Here, bare viscosity is defined for a given UV cutoff length. 
   (I will explain this point in detail later)

The goal of this talk

Fluctuating 
constitutive eq. Πab(r, t) := pδab + ρvavb − η0(∇avb + ∇bva − 2

d
δab ∇cvc) − ζ0δab ∇cvc+Πab

R
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Introduction

1.1 Why is observing bare viscosity difficult?



Standard method to measure viscosity
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1. We create the Couette geometry by moving two parallel walls in opposite directions.
In the steady state, the simplest flow pattern, known as shear flow is realized.

Velocity field vx(y)

▶ We consider a practical method for measuring the shear viscosity.



Standard method to measure viscosity
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2. We measure the noise-averaged velocity field and momentum flux in the steady state.

Noise (or Time)-averaged  
velocity field

▶ We consider a practical method for measuring the shear viscosity.

⟨Πab(r)⟩ ·γ
ss

⟨va(r)⟩ ·γ
ss

Noise (or Time)-averaged  
momentum flux



Standard method to measure viscosity
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3. 揺らぐ流体方程式を仮定して、速度場と壁に働く力の関係性を導く
実際に粘性係数を測定する方法を考えてみる。

XY component of  
Fluctuating momentum flux

Πxy(r, t) := ρvxvy − η0(∇xvy + ∇yvx)+Πxy
R

3. We calculate the viscosity through the relationship between the velocity and momentum flux.
▶ We consider a practical method for measuring the shear viscosity.

advection shear viscosity noise

the fluctuating shear flow 
is given as

When velocity field is fluctuating,
vx(t) = ·γy+ δvx(t)
vy(t) = 0 + δvy(t)

⟨Πxy(r, t)⟩ ·γ
ss := ⟨ρδvxδvy⟩ ·γ

ss − η0
·γThe noise-averaged momentum flux 

under shear flow is calculated as 

⟨δvx⟩ ·γ
ss = ⟨δvy⟩ ·γ

ss = ⟨Πxy
R (r, t)⟩ ·γ

ss = 0

advection



Standard method to measure viscosity
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3. 揺らぐ流体方程式を仮定して、速度場と壁に働く力の関係性を導く
実際に粘性係数を測定する方法を考えてみる。
3. We calculate the viscosity through the relationship between the velocity and momentum flux.
▶ We consider a practical method for measuring the shear viscosity.

η := −⟨Πxy(r, t)⟩ ·γ
ss

·γ = η0 − ⟨ρδvxδvy⟩ ·γ
ss

·γ

The nonlinear coupling of fluctuations is NOT zero, 
because  and  can interact due to advection with shear flow .δvx(t) δvy(t) ·γ

When we try to observe the viscosity from the ratio of momentum flux to velocity gradient, 
the resulting viscosity always includes the correction arising from the fluctuations.

Observed viscosity η Bare viscosity η0≠

Observing bare viscosity is difficult !!
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Introduction

1.2 How different are      and       ? 
Why do we aim to observe bare viscosity ?

η η0



▶ In the 1970s, the difference between  and  was calculated based on the fluctuating hydrodynamics.η0 η

η = η0 + C2d log( L
auv

)

How different are     and     ?η0 η

∇ ⋅ v = 0

⟨Πab
R (r1, t1)Πcd

R (r2, t2)⟩ = 2kBTη0δ2(r1 − r2)δ(t1 − t2)[(δacδbd + δadδcb) − δabδcd]
ρ[ ∂v

∂t
+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v +∇ΠR

incompressible condition

Fluctuating 
Navier-Stokes eq.

η = η0 + C3d( 1
L

− 1
auv

)

in two dimensions

in three dimensions

Observed viscosity  depends on the system size  and the ultraviolet (UV) cutoff length η L auv

Anomalous transport 
in low-dimensional fluids

UV cutoff dependence 
of fluctuating hydrodynamics



UV cutoff dependence
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auv

auv

▶ When solving continuum theory numerically or analytically, it is necessary to introduce a spatial 
discretization width, known as the ultraviolet (UV) cutoff length.

Spatial resolution

Simple understanding 
of UV cutoff length

∂v
∂x (ix,iy)

≃
v(ix+1,iy) − v(ix,iy)

auv

(ix, iy)
η = η0 + C2d log( L

auv
)

η = η0 + C3d( 1
L

− 1
auv

)

in two dimensions

in three dimensions

Physical quantities calculated within the framework of fluctuating hydrodynamics generally 
depend on the UV cutoff length above two dimensions 
(when the UV cutoff length changes while all parameters are fixed to the same values)



Why do we aim to observe bare viscosity?
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Anomalous transport 
in low-dimensional systems

UV cutoff dependence 
of fluctuating hydrodynamics

0.67 1.00 2.00auv

0.26

0.28

0.30

0.32

¥

FHD simulation

η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

→ ∞ (auv → + 0)

η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

→ ∞ (L → ∞)

32 64 96 160L

0.24

0.27

0.30

¥

FHD simulation
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η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

The divergence of shear viscosity can be 
understood from the divergence of the 
nonlinear coupling of fluctuations.

→ ∞ (L → ∞)

Anomalous transport in 2D

32 64 96 160L

0.24

0.27

0.30

¥

FHD simulation

2D fluids

Logarithmic 
divergence

▶ In low-dimensional systems, it is well known that transport coefficients can diverge with  
    the system size.



η = 1
kBTL2 ∫

L/v0

auv/v0

dt⟨Πxy(t)Πxy(0)⟩eq

⟨Πxy(t)Πxy(0)⟩eq ∼ t−d/2

η = 1
kBTL2 ∫

L/v0

auv/v0

dt⟨σxy(t)σxy(0)⟩eq ∼ ∫
L/v0

auv/v0

dt
1
t

∼ log L
auv

▶ The existence of long-time tails in the correlation functions leads to a divergence  
    in shear viscosity in 2D.

Long-time tail problem

η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

→ ∞ (L → ∞)

Green-Kubo formula and Long-time tailFormula in nonequilibrium steady state

These two frameworks 
are equivalent.
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▶ In low-dimensional systems, it is well known that transport coefficients can diverge with  
    the system size.

η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

The nonlinear coupling of fluctuations includes 
the long-time tail effect, which leads to the 
system size dependence.

→ ∞ (L → ∞)

Anomalous transport in 2D

32 64 96 160L

0.24

0.27

0.30

¥

FHD simulation

2D fluids

Logarithmic 
divergence

Observing bare viscosity Removing the long-time tail effects completely.

We address this problem!!
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⟨ρδvxδvy⟩ ·γ
ss

▶ In fluctuating hydrodynamics, observed viscosity (or momentum flux) diverges as auv → + 0

UV cutoff dependence

0.67 1.00 2.00auv

0.26

0.28

0.30

0.32

¥

FHD simulation

The UV cutoff length  is also the parameter 
to determine the prediction of fluctuating 
hydrodynamics uniquely.

auv

η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

→ ∞ (auv → + 0)

Logarithmic 
divergence

2D fluids

▶ By changing only the UV cutoff length  while keeping all other parameters fixed, the predictions 
of fluctuating hydrodynamics change above two dimensions.

auv
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⟨ρδvxδvy⟩ ·γ
ssUV cutoff dependence

▶ In atomic systems, the concept of UV cutoff length does not exist !! 
(because the classical Hamiltonian dynamics is not continuum theory.)

Observing bare viscosity Determining the value of UV cutoff length

We also address this problem!!

The UV cutoff length  is also the parameter 
to determine the prediction of fluctuating 
hydrodynamics uniquely.

auv

η = − ⟨ρδvxδvy⟩ ·γ
ss

·γ + η0

→ ∞ (auv → + 0)

We also address this problem!!



Summary of Introduction

η := −⟨Πxy(r, t)⟩ ·γ
ss

·γ = η0 − ⟨ρδvxδvy⟩ ·γ
ss

·γ

Observed viscosity η Bare viscosity η0≠

Observing bare viscosity Removing the long-time tail effects completely.

Including the effects of long-time tail

Observing bare viscosity Determining the value of UV cutoff length

Observing bare viscosity is the challenging problem.

To address these issues, we focus on two-dimensional dense fluids.
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Main results

2.1 Main idea of our study



Preliminary simulation
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▶ We consider solving fluctuating hydrodynamics numerically

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

2d fluid
p(ρ) = Cpressρ cT := ( ∂p

∂ρ )T
= Cpress

The sufficiently large  yields nearly incompressible fluidsCpress

We apply a common boundary condition in fluid dynamics 

1. The velocity field at the wall is  
2. The momentum density field at the wall is 

(vx, vy) = (v0,0)

( jx, jy) = (ρv0,0)

The fluid does not fluctuate at all at the solid walls



Main idea of our study
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▶ Main idea of our study : focusing on fluids near solid walls.

The motivation for this simulation comes from the expectation that bare viscosity can be 
observed near non-fluctuating walls.

Fluid does not fluctuate  
at walls

Hydrodynamic fluctuations 
(or long-time tail) does not 
develop near walls

Bare viscosity appear 
near walls ?

η0



▶ We observe the velocity profile and momentum flux profile in the steady state.

Steady state profile in fluctuating hydro

Color: different wall velocity
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η0 = 0.1, auv = 1.0, ρ0 = 0.765, kBT = 1.0, L = 128

Inducing flow

Inducing flow

▶ We add wall velocity  of three different magnitudes.v0

(I will explain the units for physical quantities later)

v0

v0

0 64 128x

0.2

0.0

°0.2

hv
y (

x
)i

ss

0 64 128x
0.0000

0.0004

0.0012

°
h¶

x
y (

x
)i

ss



▶ Bare viscosity  is observed near solid walls. 
▶ As we move away from the solid wall, it deviates from bare viscosity 

η0

η0

η0 = 0.1
ρ0 = 0.765
kBT = 1.0

Observation of bare viscosity
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The expected results are obtained!!

−⟨Πxy⟩ss = η(x) ∂⟨vy⟩ss
∂x

0 64 128x

0.2

0.0

°0.2

hv
y (

x
)i

ss

0 64 128x
0.1

0.2

0.3

¥(
x
)

Velocity gradient is not spatially uniform 



Observation of bare viscosity
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▶ We change the system size  while fixing to the other parameters.L

32 64 96 160L

0.24

0.27

0.30

¥

FHD simulation

Logarithmic 
divergence

far from walls

near walls

0.0 0.5 1.0x/L
0.1

0.2

0.3

¥(
x
)

L = 32

L = 64

L = 96

L = 128

104 116 128x
0.1

0.2

0.3

¥(
x
)

L = 32

L = 64

L = 96

L = 128

Independent  
of system size

(Long-time tail)

(Bare viscosity)
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Main results

2.2 Is this result robust for more realistic walls

The idea of examining the behaviors near walls seems good!



Molecular dynamics (MD) simulation

▷ simple repulsive potential

V(r) = 10δα

V(r) = 0

for δ > 0

for δ < 0
atomic diameter          
atomic mass           

thermal velocity  
(or microscopic time )  

σ
m

vth := kBT/m

τ = σ/vth
28

▶ We perform molecular dynamics (MD) simulations.

In MD simulations, molecules are represented as particles 
that follow the classical Hamiltonian dynamics.

dpi

dt
= − ∂V

∂ri

dri

dt
= pi

m

Units for the MD simulation



Implementation of solid walls
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1. Solid particles are trapped using an on-site potential.

Vonsite(q) = V0[sin(2πqx) + sin(2πqy)] V0 = 50

10

where θ(r)はヘビサイトのステップ関数、で与えられ、二つの粒子が重なり合った分だけ斥力相互作用が働く。本シミュレーションでは m = σ = 1, k = 10に設定し、数密度 ρ = 0.765,温度 T = 1.0とする。非平衡測定の結果から計算された粘性係数は図 9上行に与えられる。繰り込まれた粘性係数の値はおおよそ η ∼ 0.45程度。
Weeks–Chandler–Andersen (WCA) potential

WCAポテンシャルはレナード・ジョーンズポテンシャルのカットオフを rc = 21/6σに設定して、斥力相互作用部分だけを残したものである。
Vff(r) = 4ϵ

[(σ
r

)12 −
(σ

r

)6
+

1
4

]
θ(21/6σ − r), (34)

本シミュレーションでは m = ϵ = σ = 1に設定し、数密度 ρ = 0.765,温度 T = 1.0とする。非平衡測定の結果から計算された粘性係数は図 9下行に与えられる。繰り込まれた粘性係数の値はおおよそ η ∼ 2.0程度で、HRポテンシャルのおよそ 4倍である。固体壁部分については、揺らぐ流体方程式の数値計算に合わせて二つのモデルを考える。壁を構成する粒子と流体を構成する粒子の間の相互作用 Vwf(r)はWCA potentialで固定する。
Vwf(r) = 4ϵ

[(σ
r

)12 −
(σ

r

)6
+

1
4

]
θ(21/6σ − r), (35)

壁を構成する粒子の位置の時間発展にバリエーションを与えることで、二つのモデルを構成する。
Frozen wall

Frozen wallは空間に固定された粒子で構成される壁である。t = 0にその格子間隔 1.0の正方格子上に粒子を配置する。Bottom wallの場合、
q j(0) = (0.5 + jx,−0.5 − jy) for jx = 0.0, 1.0 · · · , Lx − 1.0 jy = 0.0, 1.0, 2.0 (36)

で与え、Top wallの場合
q j(0) = (0.5 + jx, jy + Ly) for jx = 0.0, 1.0 · · · , Lx − 1.0 jy = 0.0, 1.0, 2.0 (37)

で与える。壁を固定する粒子は一定の速度 v0 で x軸方向に動くとして、時刻 tの座標は以下で与えられる。
qi(t) := qi(0) + v0tex (38)

粒子間の相対位置は常に固定されていることに注意。この壁は揺らぐ流体方程式で考えた Frozen wallに対応していると考えられる。
Maxwell thermal wall

Maxwell thermal wallは熱揺らぎする粒子で構成される壁である。Frozen wallと異なり、固体壁を構成する粒子は以下の Langevin方程式に従って時間発展する。
dq j

dt
=

pw

m
(39)

d pw
j

dt
= −∂Vonsite(q j − v0tex)

∂q j
−

N∑

i=1

∂Vwf
(|ri − q j|

)

∂q j
− γpw

j + ξ j(t) (40)

where Vonsite(q)は固体壁を構成する粒子の位置を固定するためのオンサイトポテンシャルである。Bottom wallの場合、
Vonsite(q) = V0

[
sin

(
2πqx

)
+ sin

(
2π(qy

)]
(41)

▶ Solid walls are implemented as a collection of particles.

2. Solid particles are thermalized using the Langevin 
thermostat.

3. Fluid particles interact with solid particles.
4. The motion of the walls is simulated  
by moving the solid particles collectively at a velocity .v0



MD simulation results
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▶ The local viscosity is observed in the same way as in the fluctuating hydrodynamics.

5

FIG. 5.

stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:

C(t) :=
1

2SB

Z

B
d2rh j(r, t) · j(r, 0)ieq (22)

where SB represents the area of the region B, chosen far from
the walls to minimize boundary e↵ects. Practically, the region
SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
Figs.6(a) and (d). Here, CFH(t) for fluctuating hydrodynamics
is calculated with the best-fitted parameter for local viscosity
⌘MD(x). We can see that CMD(t) in the MD simulations can be
well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.

Color: different wall velocities
−⟨Πxy(x)⟩ ·γ

ss = η(x) ∂vy

∂x

The observed viscosity decreases near solid walls, which is consistent with the behavior in  
fluctuating hydrodynamics.



Changing the wall types
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5

FIG. 5.

stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:

C(t) :=
1

2SB

Z

B
d2rh j(r, t) · j(r, 0)ieq (22)

where SB represents the area of the region B, chosen far from
the walls to minimize boundary e↵ects. Practically, the region
SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
Figs.6(a) and (d). Here, CFH(t) for fluctuating hydrodynamics
is calculated with the best-fitted parameter for local viscosity
⌘MD(x). We can see that CMD(t) in the MD simulations can be
well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.

◼ The microscopic properties of walls do not affect the results at the quantitative level.
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stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:
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SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
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is calculated with the best-fitted parameter for local viscosity
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well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.

Freeze: Set the wall temperature to 0. 
Thermal: Set the wall temperature to a finite value.

hydrophilic: Use attractive solid-fluid interactions (LJ). 
hydrophobic: Use only repulsive solid-fluid interactions (WCA).

This suggests the robustness of the results of the fluctuating hydrodynamics simulations.
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parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
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In Fig. 6(a)-(d), we present the best-fitted results of the lo-
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action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
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As presented in Figs. 4(a) and (b), the stress profile
h�xy

FH(x)i and local viscosity profile ⌘FH(x) increase as the
mesh size approaches zero. To see this increase more clearly,
in Figs. 4(c) and (d), we plot the spatial-averaged stress h�xy

FHi
and the renormalized viscosity ⌘1FH as a function of the UV
cuto↵ length auv. These quantities exhibit the logarithmic di-
vergence in the functional form

⌘1FH ⇠ � log auv, h�xy
FHi ⇠ � log auv, (16)

implying that as auv decreases towards zero, both ⌘1FH and
h�xy

FHi increase without bound. This result is consistent with
that derived from the simple perturbation theory of fluctuating
hydrodynamics.

The fact that local viscosity ⌘FH(x) approaches bare viscos-
ity ⌘0 near the walls is almost una↵ected by the value of auv. In
other words, we can always observe ⌘0 near the walls, which
implies that this phenomenon explicitly depends on both the
bare viscosity and UV cuto↵ length. Therefore, focusing on
this phenomenon would be useful for accurately identifying
both parameters that give the predictions of the real world.

III. THEORETICAL RESULTS ARE SUMMARIZED

IV. VALIDITY OF FLUCTUATING HYDRODYNAMIC
DESCRIPTION FOR ATOMIC SYSTEMS.

The argument of fluctuating hydrodynamics proceeds un-
der the assumption that thermal fluctuations are limited or ne-
glected on solid walls. We here perform the MD simulations
and demonstrate that this assumption is relevant to the atomic
systems. Furthermore, we show that fluctuating hydrodynam-
ics accurately predicts the behavior of local viscosity ⌘(x) by
setting a suitable bare viscosity ⌘0 with the UV cuto↵ length
auv fixed at 1.0. The e↵ects of varying auv are studied in the
next section.

A. Setup of the MD simulation

Within the MD simulations, fluid confinement is achieved
through parallel walls modeled as collections of particles sub-
jected to specific potentials [Fig. ]. Our study examines three
distinct wall configurations to establish the general applicabil-
ity of fluctuating hydrodynamics insights at an atomic scale.
The types of walls are distinguished based on interactions be-
tween walls and fluids and the existence/non-existence of tem-
perature: hydrophobic thermal, hydrophilic thermal, and hy-
drophobic freeze wall.

We below describe the setup of our simulations. Similar
to the simulation of fluctuating hydrodynamics, all quantities
are measured by the microscopic units, atomic diameter �,
atomic mass m, and thermal velocity vth :=

p
kBT/m. The

coincidence with the unit makes it easy to quantitatively com-
pare fluctuating hydrodynamics and the atomic systems. The
interaction between fluid particles is assumed to be simple re-
pulsive interactions

V(r) :=

8>><
>>:

K(� � r)a for r < �
0 otherwise

(17)

with K = 10.0 and � = 1.0. A variety of values of the trans-
port coe�cient are realized by changing the parameter a.

For the thermal wall, the wall particles are subjected to the
on-site potential

Vonsite
±L/2 (r) = V0

"
cos
✓
2⇡

x ± L/2
�

◆
+ cos

✓
2⇡

y ⌥ v0t/2
�

◆#
. (18)

with V0 = 50.0, and are thermalized by the Langevin ther-
mostat with temperature T = 1.0. The wall consists of three
layers of particles, each consistently trapped in the same min-
ima of the on-site potential. For the freeze wall, the on-site
potential is not implemented and instead, the relative position
of the wall particles is fixed as

q j =
✓ jx

2
� ⌥ L

2
,

jy
2
� ⌥ v0t

2

◆
(19)

with jx = 1, 2, 3 and jy = 1, 2, · · · , L/�. Both types of
walls move at the constant velocity v0 in the opposite direc-
tions, which induces the Couette flow. The wall particles in-
teract with the fluid particles through the Weeks–Chandler–
Andersen (WCA) potential

V(r) =

8>><
>>:

4✏
n��

r
�12 � ��r

�6
+ 1

4

o
for r < 21/6�

0 otherwise
(20)

for the hydrophobic case, and through the Lenard–Jones (LJ)
potential with

V(r) =

8>><
>>:

4✏
n��

r
�12 � ��r

�6o for r < 2.5�
0 otherwise

(21)

for the hydrophilic case, where ✏ is fixed to 1.0. To thermal-
ize the fluid, at least one wall must be the thermal wall. We

MD(atomic system)

Use bare viscosity     and UV cutoff      
as fitting parameters.

▶ We determine the bare viscosity of the atomic system by quantitatively comparing the 
results of two models.

η0 auvSet the same system size, density, and 
temperature to match the units of both 
models.

Fluctuating hydrodynamics



Quantitative agreement 

34

▶ We fix the UV cutoff length to  (i.e atomic diameter) and use only bare viscosity  as 
a adjustable parameter.

auv = 1.0 η0

The fluctuating hydrodynamics with 
 reproduces the local 

viscosity  of the MD simulation with 
high accuracy.

η0 = 0.325, auv = 1.0

η(x)

The agreement between the two models 
is observed even at the atomic diameter 
scale.

0 64 128x

0.34

0.44

0.54

¥(
x
)

MD : V (±) = 10±2

FHD : ¥0 = 0.325, auv = 1



Consistency check : long-time tail in EQ

35

CJJ(t) := 1
2 ⟨ j(r, t) ⋅ j(r,0)⟩eq j := ρv

The fluctuating hydrodynamics with 
reproduces the long-time tail  of the MD 
simulation with high accuracy.

η0 = 0.325

CJJ(t)

▶ To validate our estimate of bare viscosity, we compare the time correlation of the momentum 
density field in equilibrium.

10°2 100 102t10°4

10°3

10°2

10°1

100

CJJ(t)

FHD : ¥0 = 0.325, auv = 1

MD : V (±) = 10±2

t−1

The agreement between the two models is 
observed even at the atomic time scale.
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10°2 100 102t10°4

10°3

10°2

10°1

100

CJJ(t)

FHD : ¥0 = 0.325, auv = 1

MD : V (±) = 10±2

t−1

Fluctuating hydrodynamics can reproduce 
MD results down to the atomic scale.

0 64 128x

0.34

0.44

0.54

¥(
x
)

MD : V (±) = 10±2

FHD : ¥0 = 0.325, auv = 1

The mean free path of our system is 
roughly a few atomic diameters.

Our results suggest that fluid description is possible even at the atomic scale in such 
dense systems.
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▶ As another consistency test, we perform the simulation of the Poiseuille flow.

f

The Poiseuille flow is realized by adding a 
constant force to entire fluids and imposing 
periodic boundary condition in the flow direction.

0 64 128x
0.00

0.04

0.08

vy (
x
)

MD : V (±) = 10±2

FHD : ¥0 = 0.325, auv = 1.0

Even for this setup, the predictions of fluctuating 
hydrodynamics and MD simulations are in good 
agreement.
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▶ As another consistency test, we perform the simulation of the Poiseuille flow.

▶ The deterministic hydrodynamics with the viscosity observed in bulk region ( ) 
cannot reproduce the results of MD simulations.

η = 0.464

0 64 128x
0.00

0.04

0.08
vy (

x
)

MD : V (±) = 10±2

DHD pre : ¥ = 0.464

Fluctuating hydrodynamics with bare viscosity is necessary to describe fluids near walls 
(at least in low-dimensional systems).

0 64 128x
0.00

0.04

0.08
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x
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MD : V (±) = 10±2

FHD : ¥0 = 0.325, auv = 1.0
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2.4 Effects of varying UV cutoff length
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of the fluid regardless of the value of auv. However, this result
is reasonable from the perspective of renormalization group
(RG) analysis in field theory.

Changing auv corresponds to altering the coarse-graining
scaling. For example, when auv is increased from 1 to 2, the
spatial and temporal structures existing between these scales
are smoothed out and the nonlinear coupling between small-
scale fluctuations is renormalized into the transport coe�-
cients. Then, there is the di↵erence between ⌘FH(x : ⌘0, auv =
1) and ⌘FH(x : ⌘0, auv = 2) while the base form of the equa-
tions of motion, Eqs. (3) and (4), still fundamentally describe
the dynamics of the fluid. On the other hand, the physically
observed local viscosity ⌘MD(x) in atomic systems remains
uniquely defined. Thus, as long as nonlinear interactions exist
between fluctuations, the ’physical bare viscosity’ that makes
Eq. (23) valid cannot be uniquely determined.

VI. OPERATIONAL ESTIMATION METHOD FOR BARE
VISCOSITY

We finally propose the nonequilibrium measurement
method for bare viscosity that is operational and applicable
for realistic experiments.

VII. DISCUSSIONS

A. How about in three-dimensional fluids?
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Appendix A: Numerical solver of fluctuating hydrodynamics

To solve the fluctuating hydrodynamic equations Eqs. (3),
(4), and (5) numerically, we use the staggered scheme devel-
oped in Ref. [? ? ]. Here, we explain the details of our simu-
lations.

The equations of motion that we actually solve in a two-
dimensional case are

@

@t
(⇢) = �r · j (A1)

@

@t
( ja) = �r · ( jav) � ra p(⇢)

+ ⌘0r · (rva) + ⇣0ra(r · v) + r · ⌃a (A2)
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When the UV cutoff is large, 
the resolution near the wall is 
insufficient.

When the UV cutoff is small, it 
describes regions where fluids 
do not actually exist.

The best value of UV cutoff length is about atomic diameter!!
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of the fluid regardless of the value of auv. However, this result
is reasonable from the perspective of renormalization group
(RG) analysis in field theory.

Changing auv corresponds to altering the coarse-graining
scaling. For example, when auv is increased from 1 to 2, the
spatial and temporal structures existing between these scales
are smoothed out and the nonlinear coupling between small-
scale fluctuations is renormalized into the transport coe�-
cients. Then, there is the di↵erence between ⌘FH(x : ⌘0, auv =
1) and ⌘FH(x : ⌘0, auv = 2) while the base form of the equa-
tions of motion, Eqs. (3) and (4), still fundamentally describe
the dynamics of the fluid. On the other hand, the physically
observed local viscosity ⌘MD(x) in atomic systems remains
uniquely defined. Thus, as long as nonlinear interactions exist
between fluctuations, the ’physical bare viscosity’ that makes
Eq. (23) valid cannot be uniquely determined.

VI. OPERATIONAL ESTIMATION METHOD FOR BARE
VISCOSITY

We finally propose the nonequilibrium measurement
method for bare viscosity that is operational and applicable
for realistic experiments.

VII. DISCUSSIONS

A. How about in three-dimensional fluids?
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V. NON-UNIQUENESS OF UV CUTOFF LENGTH

As mentioned in the Introduction, the application of fluc-
tuating hydrodynamics necessitates the specification of a spe-
cific set of parameters, (⌘0, auv), to return the unique results.
We here examine how predictive accuracy changes by altering
auv.

A. Relationship between physical bare viscosity and UV cuto↵
length

We apply the analysis procedure used in Sec. IV C to cases
with various UV cuto↵ lengths auv. Specifically, we fine-tune
the bare viscosity ⌘0 in increments of 0.005, while fixing auv
at specific values, to determine the conditions under which
fluctuating hydrodynamics best matches the MD results for
each auv.

In Fig. 7(a)-(e), we present the fitting results of the local
viscosity ⌘MD(x) for five di↵erent auv, where we fix the MD
simulation [V(�) = 10�4, thermal hydrophobic wall]. The
figures show that fluctuating hydrodynamic simulations using
the best-fitted ⌘0, are in excellent agreement with the MD re-
sults for all examined auv. This result is summarized by the
following equation

⌘MD(x) = ⌘FH(x : ⌘P
0 , auv) (23)

Here, We call ⌘P
0 –practically the best-fitted ⌘0– the ’physical

bare viscosity’, which enables fluctuating hydrodynamics to
provide physically observed quantities in atomic systems.

Remarkably, multiple pairs of (⌘P
0 , auv) quantitatively repro-

duce the MD results with high accuracy, although ⌘P
0 depends

on the UV cuto↵ length auv. In Fig. 5(f), we present the rela-
tionship between ⌘P

0 and auv. We find that this relationship is
well described by the equation

⌘P
0 = 0.392 log auv + 0.472. (24)

The logarithmic dependence is consistent with our previous
result [Eq. (16)]. Specifically, when the boundary e↵ects are
ignored, Eq. (23) is simplified to

⌘1MD = ⌘
1
FH(⌘0, auv). (25)

From our previous observation [Eq. (16)], we know

⌘1FH(⌘0, auv) = c1 � c2 log auv. (26)

and then we can derive the form of Eq. (24).

B. Interpretation for non-uniqueness of UV cuto↵ length in
the language of field theory

Notably, our result indicates that the parameters across a
specific scale range [auv = 2/3 ⇠ 8/3] reproduce ⌘MD(x)
in atomic systems with nearly the same high level of accu-
racy. In other words, for the practical application of fluc-
tuating hydrodynamics, only one pair from the many possi-
ble pairs, (auv, ⌘P

0 ), is necessary. This is a crucial distinction
from conventional deterministic hydrodynamics, where only
one intrinsic viscosity is considered a fundamental property

▶ We define the "bare viscosity" that reproduces the behavior in the atomic system as the 
physical bare viscosity  .ηP

0

ηP
0

The physical bare viscosity  depends on the UV 
cutoff length.

ηP
0

If  lie on this relationship, any pair will 
reproduce the macroscopic phenomena 
well.

(η0, auv)

In practice, the physical bare viscosity  is determined 
to satisfy

ηP
0



Renormalization group

43

▶ Changing the UV cutoff length is related to coarse-graining using the renormalization group.
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of the fluid regardless of the value of auv. However, this result
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1) and ⌘FH(x : ⌘0, auv = 2) while the base form of the equa-
tions of motion, Eqs. (3) and (4), still fundamentally describe
the dynamics of the fluid. On the other hand, the physically
observed local viscosity ⌘MD(x) in atomic systems remains
uniquely defined. Thus, as long as nonlinear interactions exist
between fluctuations, the ’physical bare viscosity’ that makes
Eq. (23) valid cannot be uniquely determined.
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Appendix A: Numerical solver of fluctuating hydrodynamics

To solve the fluctuating hydrodynamic equations Eqs. (3),
(4), and (5) numerically, we use the staggered scheme devel-
oped in Ref. [? ? ]. Here, we explain the details of our simu-
lations.

The equations of motion that we actually solve in a two-
dimensional case are
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@
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Any parameters along the renormalization 
group flow can accurately reproduce the 
phenomena.
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Main results

2.5 Simple estimation method for bare viscosity
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∇ ⋅ v = 0

⟨Πab
R (r1, t1)Πcd

R (r2, t2)⟩ = 2kBTη0δ2(r1 − r2)δ(t1 − t2)[(δacδbd + δadδcb) − δabδcd]

ρ[ ∂v
∂t

+ϵ(v ⋅ ∇)v] = − ∇p + η0 ∇2v +∇ΠR

incompressible condition

Fluctuating 
Navier-Stokes eq.

v0

v0
Boundary condition

vx
y=0

= 0

vx
y=L

= 0

vy
y=0

= − v0

vy
y=L

= v0

    This calculation can be done using a perturbative expansion in . 
    (We adopted some approximations but the details are omitted here.)

ϵ

▶ We can calculate the theoretical expression for the noise-averaged Couette flow.
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v0

v0

⟨vy(x)⟩ = ·γx − ϵ2
·γA
L ∑

kx

1
kx

(x − sin(2kxx)
2kx

)
 : velocity gradient at  
 : numerical factor depending on density, temperature….

·γ x = 0, L

A

kx := π
L

n

η(x) = η0(1 + ϵ2 A
L ∑

kx

1
kx

sin2(kxx))

The information of  is included within the range of the sum.auv

▶ We obtained the theoretical expression for the noise-averaged Couette flow.
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η0 = 0.116

η(x) = η0(1 + A
L ∑

kx

1
kx

sin2(kxx))

A = 1.609

0 64 128x0.1

0.2

0.3

¥(
x
)

FHD : ¥0 = 0.1, aUV = 1.0

Theory

▶ We confirmed that this analytical expression accurately reproduces the simulation results.

We fixed  and compared the numerical 
solution (full order) of the fluctuating hydrodynamics 
to this analytical expression for the local viscosity.

auv = 1.0
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0 64 128x

0.34

0.44

0.54

¥(
x
)

MD : V (±) = 10±2

FHD : ¥0 = 0.325, auv = 1

η0 = 0.312

η(x) = η0(1 + A
L ∑

kx

1
kx

sin2(kxx))

A = 0.342

0 64 128x

0.34

0.44

0.54

¥(
x
) MD : V (±) = 10±2

Theory

▶ We proceed to fit the MD results to estimate the bare viscosity.

(previously presented) 
solving fluctuating hydrodynamics numerically 

fitting the MD results using the analytical 
expression

We can easily estimate the bare viscosity using this analytical expression.

(auv = 1.0 : fixed)
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Summary

Discussion 
▶ Fluctuating hydrodynamics and the renormalization group are strongly connected.  
Can we understand this connection from a microscopic perspective and is there a concept of the 
best choice for the UV cutoff length from a microscopic perspective? 
(for example, mean free path?) 

▶ What happens when the mean free path is large?  
While this study focused on dense liquids, how might the breakdown of fluctuating 
hydrodynamics appear in dilute gases?

Main Message 
▶Bare viscosity is directly observed near solid walls. 
We believe that this result is robust even for real solid walls.


