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Theme of this talk : Background

Microscopic system

=

coarse-graining
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Hydrodynamic description
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microscopic particles obeying The motion of the system can be described by
classical mechanics hydrodynamic theory at a macroscopic scale



Theme of this talk : Fluctuating hydrodynamics

P Hydrodynamics describes slow motion of conserved variables.

We consider a situation where mass and momentum are conserved guantities.

=

The specific properties of fluids are given by a constitutive equation.

2
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density field

Mass conservation

velocity field

Momentum Conservation

momentum flux

Fluctuating
constitutive eq.

pressure viscous dissipation noise
<H?€b(r1’ tl)HICQd(r2’ ZL2)> — 2k3T52(r1 — r2)5(t1 o t2) [ﬂO(éacébd + 5ad56b) + (50 o nO)éabécd]

B Fluctuating hydrodynamics includes a noise term arising from thermal motion of atoms. 3



Theme of this talk : Goal

p Bare viscosity
It Is a parameter included in the constitutive eq. of fluctuating hydrodynamics.

Fluctuating
constitutive eq.

Transport coefficient ¢, - bulk viscosity,

B Here, bare viscosity Is defined for a given UV cutoff length.

.
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(I will explain this point in detall later)

The goal of this talk

- Demonstrating that bare viscosity 7, is observable.

- Specifying the value of bare viscosity 5, from atomic systems.
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Introduction

1.1 Why 1s observing bare viscosity difficult?



Standard method to measure viscosity

P We consider a practical method for measuring the shear viscosity.

1. We create the Couette geometry by moving two parallel walls in opposite directions.
In the steady state, the simplest flow pattern, known as shear flow Is realized.
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Velocity field v*(y)



Standard method to measure viscosity

P We consider a practical method for measuring the shear viscosity.

2. We measure the noise-averaged velocity field and momentum flux in the steady state.
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Standard method to measure viscosity

P We consider a practical method for measuring the shear viscosity.

3. We calculate the viscosity through the relationship between the velocity and momentum flux.

XY component of I(r, 1) == pv*vY — ,70( V.Y + Vyvx>+H’g
Fluctuating momentum flux

shear viscosity noise

~ - | ) ™
When velocity field is fluctuating, ) = y=L
X _ A X
the fluctuating shear flow Vi) =1yt ovi(D) —»/
IS glven as V(i) =0 + ovV(r) * Y
. (v = (8v) = (Y (r, 1)), = 0 y=0 y

The noise-averaged momentum flux (ny(r, t))é’s — (pé\;xé\/y)?s’s — Moy
under shear flow Is calculated as

>




Standard method to measure viscosity

P We consider a practical method for measuring the shear viscosity.

3. We calculate the viscosity through the relationship between the velocity and momentum flux.

~

Ve
Observed viscosity 7 =+ Bare viscosity 7,

o <ny(l", t)>}s}s
= . =
Y

The nonlinear coupling of fluctuations is NOT zero,
because §v*(r) and §v(r) can interact due to advection with shear flow y.

When we try to observe the viscosity from the ratio of momentum flux to velocity gradient,
the resulting viscosity always includes the correction arising from the fluctuations.

Observing bare viscosity is difficult !!
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Introduction

1.2 How difterent are 7 and % ?
Why do we aim to observe bare viscosity ?
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How different are np and n 7

p In the 1970s, the difference between 5, and n was calculated based on the fluctuating hydrodynamics.

iIncompressible condition V.-v=0
Fluctuating Kl ' ,
—+ W -Vyw|==Vp+n,Vv +VII
Navier-Stokes eaq. Pl ot v )V_ PTioVy R

(R, IRy, 1) ) = 2kgTigd?(ry = )8t — )| (8,pa + 82dBe) — SupFed

Anomalous transport

n=1my+ Cyy log(a—> In two dimensions in low-dimensional fluids
' =+ C ( 11 ) e dimensions UV cutoff dependence
— — —— | | | - :
0 3\ r a,. of fluctuating hydrodynamics

Observed viscosity n depends on the system size L and the ultraviolet (UV) cutoff length a,,



UV cutoff dependence

P When solving continuum theory numerically or analytically, it is necessary to introduce a spatial

discretization width, known as the ultraviolet (UV) cutoff length.

r ™
Simple understanding oy Vi+1i) ~ V(iniy) . . .
of UV cutoff length O i) a,.
- Y . . .
L (ixa ly)
n=ny+ Cy log(—> IN two dimensions
auV o [ o auV
e ( 1 1 ) S g _ auv
= INn three dimensions : :
1= 0T~ L ag Spatial resolution

Physical quantities calculated within the framework of fluctuating hydrodynamics generally
depend on the UV cutoff length above two dimensions
(when the UV cutoff length changes while all parameters are fixed to the same values)
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Why do we aim to observe bare viscosity?

Anomalous transport UV cutoff dependence

In low-dimensional systems of fluctuating hydrodynamics
0.50] —@— FHD simulation 0.32] @ FHD simulation

= ~
0.30]
0.27]
s o (v V)i,
F 1 n = ; = "o
0.24 0.96! — o (a,, = +0)
160 0.67  1.00 2.00




Anomalous transport in 2D

P In low-dimensional systems, it is well known that transport coefficients can diverge with

the system size.

SV VY Y
.50 —@— FHD simulation n=— Y . )5 + 1,
~ | Y
2D fluids S ——
— o0 (L - o0)
0.27] The divergence of shear viscosity can be
understood from the divergence of the

Logarithmic nonlinear coupling of fluctuations.
divergence

0.24 J

32 T, 64 96 160
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L ong-time tall problem

Formula in nonequilibrium steady state Green-Kubo formula and Long-time tail
. 1 L/V()
(pSv*EvY)T n = J dt (T ()T (0)
N=———"—""1m H kgTL2 ) ( )eq
}/ uv/ Y0

— o0 (L - oo0)  These two frameworks <ny(t)l_[xy(0)> ~ A2
are equivalent. .

P The existence of long-time tails in the correlation functions leads to a divergence
INn shear viscosity in 2D.

L/VO L/V() 1 L
J di{ ™ (1)c™(0)) ~ J di— ~ log —
cq a

a /vy a /vy ! uv
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Anomalous transport in 2D

P In low-dimensional systems, it is well known that transport coefficients can diverge with

the system size.

SV VY
0.30] —@— FHD simulation n=— Y . )5 + 177
~ _ Y
2D fluids e
— 00 (L — o0)
0.27] The nonlinear coupling of fluctuations includes
the long-time tall effect, which leads to the
Logarithmic system size dependence.
divergence
0.24 2
32 T, 64 96 160 We address this problem!!

Observing bare viscosity * Removing the long-time tail effects completely.



UV cutoff dependence

3y changing only the UV cutoff length «,, while keeping all other parameters fixed, the predictions

4

of fluctuating hydrodynamics change above two dimensions.

P In fluctuating hydrodynamics, observed viscosity (or momentum flux) diverges as a,, — + 0

0.32] —@— FHD simulation vZ 5Vx5Vy>}s}s
2D fluids o

— o0 (a,, = +0)

0.30]

0 281 he UV cutoff length a,, I1s also the parameter

to determine the prediction of fluctuating

Logarithmic . .
o9 hydrodynamics uniquely.

0.26! divergence
0.67  1.00 2.00
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UV cutoft dependence

P In atomic systems, the concept of UV cutoff length does not exist !!
(because the classical Hamiltonian dynamics is not continuum theory.)

i

(pSV* V)
v

N = +

$285888

”00%0:
%30t

— o0 (a,, = +0)

The UV cutoff length a_, Is also the parameter

to determine the prediction of fluctuating
hydrodynamics uniguely.

We also address this problem!! We also address this problem!!

Observing bare viscosity * Determining the value of UV cutoff length

19
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U )
Observed viscosity =+  Bare viscosity p >
{ L [LLLLLL LSSy —
N .= ; — w4

}/ /////////////////Z:O

%
Including the effects of long-time tall
a Observing bare viscosity is the challenging problem. B

Observing bare viscosity * Removing the long-time tail effects completely.

. Observing bare viscosity * Determining the value of UV cutoff length y

To address these issues, we focus on two-dimensional dense fluids.



2.1 Main 1dea of our study
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Preliminary simulation

P We consider solving fluctuating hydrodynamics numerically

ap
— ==V ) p(p) = Cprenss = (%
ress — — =./C
2d fluid ot ’ T (aﬂ>T \/ press
I _
Ay -V ==Vp+n, Vv + &, V(V-v) + VI,

The sufficiently large C,. Yields nearly incompressible fluids

Fluid
We apply a common boundary condition in fluid dynamics
1. The velocity field at the wall is (v¥, ) = (v,,0) (v, v?) = (vy,0)
2. The momentum density field at the wall is (%, ;%) = (pv,,0) U577 = (ove,0)

The fluid does not fluctuate at all at the solid walls

22



Main idea of our study

The motivation for this simulation comes from the expectation that bare viscosity can be
observed near non-fluctuating walls.

p Main idea of our study : focusing on fluids near solid walls.

Fluid Fluid Fluid

> >

Hydrodynamic fluctuations
Fluid does not fluctuate (or long-time tail) does not
at walls develop near walls

Ho

Bare VISCosIty appear
near walls 7

23



Steady state profile in fluctuating hydro

o = 0.1, ay, = 1.0, py = 0.765, kzT = 1.0, L = 128

| will explain the units for physical quantities later

P We observe the velocity profile and momentum flux profile in the steady state.

P We add wall velocity v, of three different magnitudes.
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The expected results are obtain

bserved near solid walls.

1S O

ty 1y
P As we move away from the solid wall, it deviates from bare v

ISCOSI

P Barev
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Observation of bare viscosity

P We change the system size L while fixing to the other parameters.

0.30] —@— FHD simulation
<

0.3 \ e B /
g Ao VR G T far from walls’*’ .
~ . RN © EBSS & WG Logarithmic
‘é divergence
0.24 (Long-time tail)
64 96 160
0.21 - Independent
o of system size
</ J—
- . re viscosity)
GD @ — —
|, =
e
O.]O- '
.0 0.5

26

R (17! 116 128



The 1dea of examining the behaviors near walls seems good!

2.2 Is this result robust for more realistic walls

27



Molecular dynamics (MD) simulation

P We perform molecular dynamics (MD) simulations.

In MD simulations, molecules are represented as particles
that follow the classical Hamiltonian dynamics.

dr; p; dp; oV

dt  m dt or;

/ Units for the MD simulation \

atomic diameter o

> simple repulsive potential

V(r) = 106* tor 0 > 0

V(r) = 0 for 5 < 0 Q atomic mass m

thermal velocity v, := \/kgT/m

K (or microscopic time 7 =o/v,) /

28




Implementation of solid walls

p Solid walls are implemented as a collection of particles.

1. Solid particles are trapped using an on-site potential.

Vonsi@) = Vo|sin(zg,) + sinzg)| V=50

2. Solid particles are thermalized using the Langevin
thermostat.

a4; _p"
dt m
dp?  OVensie(q; — votex) < OVii(lri — q;l)
J onsite\ { j 0€x wfllFi — g W
7 - _ — — 4+ E(T
z T Y T

3. Fluid particles interact with solid particles.

4. The motion of the walls Is simulated
by moving the solid particles collectively at a velocity v,.

29



MD simulation results

000 .a'f ® o0

So 000040 029 200 0.52

000 o o®

A SO R B 014 o o0 -

L i:.‘,g:": oo, of PR 5 —— =018 S
@ ® 0: ® _

—o— 1y = 0.1792 = f!%a’c‘"a'b‘ W%%M‘%
v = 0.256 4?“ MV‘{} |
0.420 I \-\s

| ' \
—0.06 ;{ ® Vo — 00768 ;'I\‘
—0.08 J'F ® Vo = 0.128 \&
.] |

o o— = 0.1792 l,
0.32 vy = 0.256 :
0 64 o 128 0 64 128
Color: different wall velocities | oY
— (TP (x))%, = ﬂ(x)g

P The local viscosity is observed in the same way as in the fluctuating hydrodynamics.

The observed viscosity decreases near solid walls, which is consistent with the behavior In

fluctuating hydrodynamics. -



Changing the wall types

/E;%\ freeze i /Sg\
thermal <
h‘\,N \\v‘ .-
/ v o~ ,.\'
e 0.44
N
v 10.38
\ \
\
XA hydrophilic e 1032
...~ o %0 ¢°9 400 h d h b
@ O ropnopnic
(1) Y I L ST 0 39 T 64 64 96 T 128
Freeze: Set the wall temperature to O. nydrophilic: Use attractive solid-fluid interactions (LJ).
Thermal: Set the wall temperature to a finite value. nydrophobic: Use only repulsive solid-fluid interactions (WCA

B The microscopic properties of walls do not affect the results at the quantitative level.

This suggests the robustness of the results of the fluctuating hydrodynamics simulations.
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2.3 The determination of bare viscosity
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Quantitative comparison

= |Fluctuating hydrodynamics MD (atomic system)

| Q '
0 64 r 128 L

P We determine the bare viscosity of the atomic system by quantitatively comparing the
results of two models.

Set the same system size, density, and Use bare viscosity 7y and UV cutoff a,,
temperature to match the units of both as fitting parameters.

models.

33



» We fix the UV cutoff length to a,, =

Quantitative agreement

1.0 (.e atomic diameter) and use only bare viscosity 75, as

a adjustable parameter.

0.54]

7N

0.34 ¥

e MDD : V() = 1057

®. b
X Tl

s W Ve Y ,$ v,
V ;ﬂ’ ‘>‘t\) u

-

Ja.‘ yj 5
\t‘

~—— FHD : 1y = 0.325, 4y, = 1

(]
\‘b"q‘

QJ)

0 64 €X

The fluctuating hydrodynamics with
= 0.325, a,, = 1.0 reproduces the local

viscosity n(x) of the MD simulation with

high accuracy.

[ The agreement between the two models

IS observed even at the atomic diameter

\ scale.
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Consistency check : long-time tail in EQ

P To validate our estimate of bare viscosity, we compare the time correlation of the momentum
density field in equilibrium.

1
CJJ(t) .= 5(.].(’.9 t) 'j(ra()))eq j .= Py

The fluctuating hydrodynamics with 5, = 0.325
reproduces the long-time tail C,,(r) of the MD

simulation with high accuracy.

The agreement between the two models is | FHD : 1y = 0.325, ay, — 1 ——
observed even at the atomic time scale. 1 MD : V(§) = 105% = =-

10752 100 £ 10
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0.34

Description ablility of atomic scale behavior

Fluctuating hydrodynamics can reproduce
MD results down to the atomic scale.

| D : V(§) = 106

~—— FHD : 1y = 0.325, ayy = 1

®-
OV WPy 7Y 1Y P
l«“‘lg‘« '\“'1“./ \!a(:ﬁ',a é\'ﬂH '.“ “"/ - ’A"W “
s oV, IS 4 G N ash BT Vesiey

W

@ T\
\
D

%)

L )
{

{

0 64 €X

128

100?

10—l

10—2

1077

1074

1072

FHD : 1 = 0.325, a4y = 1 ~—-
MD : V(§) = 106 ==-=

100 + 102

Our results suggest that fluid description is possible even at the atomic scale in such

dense systems.

The mean free path of our system Is
roughly a few atomic diameters.
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Consistency check : Poiseuille flow

P As another consistency test, we perform the simulation of the Poiseuille flow.

—_— 008

! . ! . ! . E ...........
—o—9 R » ~

i oo ¢ e 4 >

—— [ . | 0.04]

MD : V(§) = 105°

[ —— FHD : 1 = 0.325,
0.00F

0 64 T 128

—ven for this setup, the predictions of fluctuating
hydrodynamics and MD simulations are in good
agreement.

—_

-
o

> - &)

The Poiseullle flow Is realized by adding a
constant force to entire fluids and imposing
periodic boundary condition in the flow direction.
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Consistency check : Poiseuille flow

P As another consistency test, we perform the simulation of the Poiseuille flow.

0.08

cannot reproduce the results of M

D simulations.

0.08

P e AT e A Ay

B2t S
S

+3a

%
“““" 5

/ MD : V(§) = 105
[ ——— FHD : 1y = 0.325, ay,

h
1.0

64
P The deterministic hydrodynamics with the viscosity observed in bulk region (3 = 0.464)

L

123

Fluctuating hydrodynamics with bare viscosity I1s necessary to describe fluids near walls
(at least in low-dimensional systems).



2.4 Effects of varying UV cutoff length
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Best value of UV cutoff length

P We investigated the best-fit bare viscosity for different UV cutoff lengths.

0.650 0.650 0.650

- =@— MD: V(d) = 105" =—@= \D : V()= 105" =—@= \D:V(5) = 105"

S FHD : g = 0.455, aue = 2/3 "3 e FHD : 7y = 0.510, ay, = 8/3
~— Oy —

- (0L =~ \ _

: 'b:‘- \
- . 4 N, ; "
\ N 4 = ) U
S é -\ v D

0.555 ’, g 0.555
'!L \('
0.460 | 0.460
0 64 T 128 0 64  x 128 0 64 x 128
ny = 0.455 for a,, =2/3 1n,=0.480 for a,, =4/3 1n,=0.510 for a,, = 8/3
Black: MD Colored: FHD By carefully choosing 7, the MD results can be

(all the same data) (with different (5. «,,)) well reproduced for any a,,.
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Best value of UV cutoff length

g -.- MD : V(5) — 1054 _._ MDD - V(é) __ 1054
8 R :\0'455’ Qe =2/3 | TS e FHD -y = 0.510, 4y, = 8/3
-~ RS
P ) ; t é & v Q"e
0555 ¥, g
4 ‘L\{

[}

)

r »
’ .
When the UV cutoff Is small, it ‘
| describes regions where fluids \

(

)
do not actually exist.

0.460— ).460)t insufficient. |
(0 64 T 128 0 64 T 128

The best value of UV cutoff length is about atomic diameter!!

When the UV cutoff Is large,
the resolution near the wall is




Physical value of bare viscosity

physical bare viscosity 7, .

0.02)

0.50

0.4

0.46

0.44

- 70.39210g ayy + 0.472

05 1.0 20 Ay

P We define the "bare viscosity" that reproduces the behavior in the atomic system as the

In practice, the physical bare viscosity 5, is determined

to satisty

nvp(X) = mra(x : 75, dyy)

The physical bare viscosity ) depends on the UV
cutoft length.

If (n,,a,,) lie on this relationship, any pair will

reproduce the macroscopic phenomena
well.
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0.52

0.50

0.48

0.46

0.44

Renormalization group

P Changing the UV cutoff length is related to coarse-graining using the renormalization group.

| S R B | Coarse-graining

re
- 70.39210g ayy + 0.472

0.5 1.0 20 Qyuy

[ Any parameters along the renormalization ‘
. group flow can accurately reproduce the
\_phenomena.
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2.5 Simple estimation method for bare viscosity
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Analytical expression of local viscosity

P We can calculate the theoretical expression for the noise-averaged Couette flow.

iIncompressible condition V-y=0
Fluctuating "oy | V) '
Navier-Stokes eaq. P or e - V_

(1182, 1)1 (ry, 1) ) = 2kgTig7(r — ry)8(t, — 1)

v | =0
Boundary condition y=0

X

=(
y=L

= —Vp+n,V?v +VII,

VY | = —
y=0

Vy | — VO
y=L

This calculation can be done using a perturbative expansion In e.
(We adopted some approximations but the details are omitted here.)

(5a65bd + 5ad56b) o 561[?5661: v

L St |




Analytical expression of local viscosity

P We obtained the theoretical expression for the noise-averaged Couette flow.

VA | sin(2k,.x) -
y —_— x — 62_ — (x — ) c— 3 - * = i ® & ® ?

y . velocity gradient at x =0, L

A : numerical factor depending on density, temperature:---.

1

A |
n(x) = ;70(1 + e’— Z — sinz(kxx))
L - k.

X

The information of q_, Is Included within the range of the sum.
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Validity of Analytical expression

A 1 0.3
— —_ _ qin? A~
n(x) = ;70(1 + Zk ' sin (kxx)) .
X Q

We fixed a,,

solution (full order) of the fluctuating hydrodynamics
to this analytical expression for the local viscosity.

= 1.0 and compared the numerical

0.1

P We confirmed that this analytical expression accurately reproduces the simulation results.
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—~ Th
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0 64 r 128
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PN
= '@' FHD : ny = 0.325, ayy = 1
N
Ny
I i, 4 ) ‘x",”;\\
0.4 VAR
W)
- &?
y ‘\!
, \
“’ { |
\ (
0.34% ‘
O w1 T 128

(previously presented)
solving fluctuating hydrodynamics numerically

Simple estimation method for local viscosity

P We proceed to fit the M

D 'ts to estimate the b | Ity. A L
results to estimate the bare viscosity n(x)=170<1 | LZ_sz(kxx))

( ) . t[ 34 X
[ ]
T gy
s A eeeeny W B L,

0.34

(a,, = 1.0 : fixed)

0 64 €T 128

fitting the MD results using the analytical
expression

We can easily estimate the bare viscosity using this analytical expression. 48



Main Message
P Bare viscosity is directly observed near solid walls.
We believe that this result Is robust even for real solid walls.

Discussion
P Fluctuating hydrodynamics and the renormalization group are strongly connected.
Can we understand this connection from a microscopic perspective and is there a concept of the

best choice for the UV cutoff length from a microscopic perspective?
(for example, mean free path?)

P What happens when the mean free path is large?
While this study focused on dense liquids, how might the breakdown of fluctuating

hydrodynamics appear in dilute gases?
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