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Goal

Goal: To provide a mathematically rigorous foundation for Generalized
Hydrodynamics (GHD)!

• GHD is a hydrodynamic theory for (one-dimensional) many body
integrable systems.

• GHD is expected to be universally applicable to classical systems,
quantum systems, field theories, spin systems, cellular automata, etc.

• There are very few rigorous results deriving the “GHD equations”
from concrete microscopic models via the space-time scaling limits

The box-ball system (BBS) is simple enough to be mathematically
tractable, yet has a rich structure for studying the macroscopic behavior of
many body integrable systems.



0. Introduction



Box-Ball System (BBS)

Introduced in 1990 by Takahashi-Satsuma

• Discrete time deterministic dynamics (Cellular-Automaton)

• Finite number of balls

・・・
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Box-Ball System (BBS)

Def 1

• Every ball moves exactly once in each evolution time step

• The leftmost ball moves first and the next leftmost ball moves next
and so on...

• Each ball moves to its nearest right vacant box

・・・
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Notation

• η = (ηn)n∈Z ∈ {0, 1}Z：Ball configuration

• Ωfinite := {η ∈ {0, 1}Z :
∑

n∈Z ηn < ∞}：Set of all configurations
with finite number of balls

• BBS dynamics map：T : Ωfinite → Ωfinite

Remark

In each time step, every ball moves at least one step to the right ⇒
There is no probability measure P on Ωfinite satisfying T P = P except the
trivial one (P(ηn = 0 ∀n) = 1).

Dynamics (Equation of motion):

T ηn = min{1− ηn,
∑
m<n

(ηm − T ηm)}

Non-local. Infinite sum.



Box-Ball System

Def 2

• A carrier moves from left to
right

• The carrier picks up a ball if it
finds a ball (The carrier can
load any number of balls)

• The carrier puts down a ball if
it comes to an empty box
when it carries at least one
ball



Integrable systems around BBS
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discrete integrable system

Ud-KdV equation : Euler representation of BBS
Ud-Toda equation : Lagrange representation of BBS



KdV equation and Toda lattice

• KdV equation : PDE on R

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0, x ∈ R

• Toda lattice : One-dimensional chain of oscillators with potential
function V (r) = exp(−r) + r − 1.{

dqn
dt = pn
dpn
dt = eqn−1−qn − eqn−qn+1

n ∈ Z

• Infinitely many conserved quantities ⇒ Generalized Gibbs Ensembles
(GGE) and Generalized hydrodynamics (GHD)

• Random matrix representation of GGE and GHD for Toda (Spohn,
2020,2021,...)

• White-noise is invariant for KdV equation (Killip-Murphy-Visan,
Invent. math. (2020)) . Well-posedness of the dynamics on R was
one of obstacles. Ergodicity is still open.
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Background

Discrete integrable systems
• Explicit special solutions (soliton solutions, tau functions)
• Relation to special orthogonal polynomials
• Relation to crystals (which relate to solvable lattice models)
• Initial value problem is solved with periodic or zero boundary condition
• There are many integrable variants of BBS
• Discrete integrable systems have been well studied as classical
integrable systems, but not from statistical physics points of view!

Relation with integrable probability
• KPZ fixed point “satisfies” KP equation（Matetski-Quastel-Remenik,

2017), Polynuclear growth model “satisfies” the non-Abelian 2D Toda
lattice (Matetski-Quastel-Remenik)

• Integrable Markov process = transition probabilities satisfy an
integrable equation !?

• Pitman’s transformation and independence preserving property：
Common structure shared by deterministic and stochastic integrable
systems
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Recent developments on BBS from statistical
physics/probabilistic points of view

• Construction of bi-infinite dynamics（Existence and uniqueness of the
dynamics）[Ferrari-Nguyen-Rolla-Wang (2021),
Croydon-Kato-S-Tsujimoto (2023), Croydon-S-Tsujimoto (2022)]

• Construction of invariant measures, (periodic) Generalized Gibbs
Ensembles : [Ferrari-Nguyen-Rolla-Wang (2021),
Croydon-Kato-S-Tsujimoto (2023), Ferrari-Gabrielli (2020),
Croydon-S (2019), Suda (2024+)]

• Derivations of macroscopic dynamics, in particular give a rigorous
mathematical foundation of Generalized Hydrodynamics (GHD) :
[Ferrari-Nguyen-Rolla-Wang (2021), Croydon-S (2021), Olla-S-Suda
(2024+)]



1. Brief background on
generalized hydrodynamic limits



Hydrodynamic limits
Consider αN particles independently performing asymmetric simple
random walk on the torus Z/NZ, with drift v ̸= 0.
Write Xm

t for the position of the m-th particle at time t, and set the
scaled empirical measure

πN
t (du) :=

1

N

∑
x∈Z/NZ

αN∑
m=1

1{Xm
Nt=x}δx/N(du).

Suppose πN
0 (du) → ρ(u, 0)du for some suitably smooth ρ, then

πN
t (du) → ρ(t, u)du,

where ρ(t, u) (= ρ(u − vt, 0)) satisfies the partial differential equation
(hydrodynamic equation):

∂tρ = −∂u(vρ).

E.g. [Kipnis-Landim (1999)]. Many similar results for interacting particle
systems, e.g. zero range process, exclusion process.



Generalized Hydrodynamics

Extension of the theory of hydrodynamics to integrable systems with
infinitely many conserved quantities, which was originally introduced for
quantum integrable systems, see [Doyon (2020)] for a recent survey.

Figure : [Doyon (2020)]



GHD equations (kinetic equation for a soliton gas) for KdV
equation

Let fs = fs(u, t) be the density at space-time point (u, t) of solitons with
respect to their ‘spectral parameter’ s. These solve:

∂t fs = −∂u
(
v effs (f )fs

)
,

v effs (f ) = vs −
1

s

∫ ∞

0
κ(s, r)fr

(
v effr (f )− v effs (f )

)
dr ,

where:

• vs = 4s2 is the speed of an isolated s-soliton;

• κ(s, r) = log |(s + r)/(s − r)| is an interaction kernel.

See [Zakharov, 1971], [El, 2003]. These can be seen as the ‘GHD
equations’ for the system.

Similar equations are (formally) derived for other integrable systems,
including classical and quantum gases, chains and field theory models.



‘Cold-gas’ reduction [El-Kamchatnov-Pavlov-Zykov, 2010]

Consider fs =
∑I

i=1 fiδsi (s), where 0 < s1 < s2 < · · · < sI .
Resulting system of hydrodynamic conservation laws:

∂tρi = −∂u
(
v effi (ρ)ρi

)
,

v effi (ρ) = vsi −
I∑

j=1

κijρj

(
v effj (ρ)− v effi (ρ)

)
,

where ρi = si fi and κij =
1
si sj

κ(si , sj).

We derive the exactly same form of equations from the box-ball system
with vsi = i and κij = 2(i ∧ j) as a space-time scaling limit.

Remark

For hard rods, the corresponding result was obtained for homogeneous
rods in 80’s by Boldrighini, Dobrushin and Sukhov and for inhomogeneous
rods recently by Ferrari, Franceschini, Grevino and Spohn (2023).



2. Solitonic behavior of the BBS



Solitons in the BBS

The BBS is an ‘ultra-discretization’ (i.e. zero temperature limit of a
discretization) of the KdV equation, and also exhibits solitonic behavior:

• (1, 0), (1, 1, 0, 0), (1, 1, 1, 0, 0, 0), . . . are ‘solitons’

• Call (1, 1, . . . , 1, 0, 0, . . . , 0) a length k soliton if it contains k copies
of 1

• length k soliton moves with speed k

vk = k : the speed of an isolated k-soliton



Soliton interaction in the BBS

Example interaction between two solitons:

When a size k soliton overtakes a size ℓ soliton (k > ℓ), the larger soliton
receives a push forward of 2ℓ = 2min{k , ℓ}, and the smaller a push back
by the same amount.

κ(k , ℓ) := 2min{k , ℓ} : the phase shift between k-soliton and ℓ-soliton

* Solitons will eventually line up in order of right to largest, and then each
will simply move at its own speed.

* There are infinite number of conserved quantities : ♯ of k-solitons for
each k ∈ N



Identifying solitons (Takahashi-Satsuma algorithm)

run := consecutive 0s or 1s

Let k be the length of the left-most run that is followed by a run of at
least the same length. Group the elements of this run with the first k
elements of the subsequent run. The 2k grouped elements are identified as
a size k soliton. Remove the identified soliton, and repeat.
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Linearization of the dynamics by the slot decomposition
[Ferrari-Nguyen-Rolla-Wang, 2023]

Slot number (count how many 1’s (or 0’s)) from the left in the same
soliton.

������������ 

������ �� ����������� �������� �� �� �������� �� �� �  

Slot configuration:
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Site x is a k-slot if the above number at x is bigger than k .
The effective distance between two size k-solitons = ♯ k slots between
them.



Slot decomposition [Ferrari-Nguyen-Rolla-Wang, 2023]

ζk(m) := The number of k solitons between the m-th k-slot and m + 1-th
k-slot = The number of k solitons at “the effective position m”

ζ = (ζk)k∈N where ζk ∈ ZZ
+ : the slot decomposition of η.

Importantly:

• This decomposition has an inverse (under some condition) ; η ↔ ζ

• The dynamics of ζ is linearized : ζk(t,m) = ζk(m− kt) for any time t



3. Invariant measures
and

Generalized Gibbs Ensembles for the BBS



Invariant measures of BBS via Pitman’s transform
description [Croydon-Kato-S-Tsujimoto, 2023]

BBS has a nice Pitman’s transform description, which defines the dynamics
for bi-infinite ball configurations with asymptotic ball density less than 1

2

• I.i.d. Bernoulli product measure on {0, 1}Z with ball density
0 ≤ p < 1

2 is T -invariant.

• The distribution given by a two-sided stationary Markov chain on
{0, 1} with p0 + p1 < 1 where pi = P(η1 = 1|η0 = i) is T -invariant.

• For each K ∈ N, the distribution given by conditioning the i.i.d.
Bernoulli product measure with ball density p ∈ (0, 1) on the event
that there is no soliton greater than K is T -invariant.



Formal Generalized Gibbs Ensembles for BBS

Formally, Generalized Gibbs Ensembles for BBS should be

P(η) =
1

Zβ
exp

(
−

∞∑
k=0

βk fk(η)

)
f0(η) : Number of balls in η
fk(η) : Number of solitons with size ≥ k in η
In particular,

f0(η) =
∑
x∈Z

ηx , f1(η) =
∑
x∈Z

1(ηx ,ηx+1)=(1,0)

• Bernoulli product measure : β0 = log
(
1−p
p

)
, βk = 0 (k ≥ 1)

• Stationary Markov chain：
β0 = log

(
1−p0
p1

)
, β1 = log

(
p1(1−p0)
p0(1−p1)

)
, βk = 0 (k ≥ 2)

• Bernoulli product measure conditioned to solitons of size ≤ K :

β0 = log
(
1−p
p

)
, βk = 0 (1 ≤ k ≤ K ), βk = ∞ (k > K )



Periodic Generalized Gibbs Ensembles for BBS

PN be the probability measure on the configurations with period N as

PN(η) =
1

ZN
β

exp

(
−

∞∑
k=0

βk f
N
k (η)

)
1{

∑N
x=1 ηx<

N
2
}.

Theorem

For any β, PN is invariant under T .

For three examples in the last slide, PN converges to the corresponding
probability measure as N → ∞. [Croydon-S, 2019]

Remark

Except the three special cases, the convergence of PN to the
corresponding probability measure is not yet proved.



Invariant measures via solitons
[Ferrari-Nguyen-Rolla-Wang, 2023]

Let ζ = (ζk)k≥1 be independent random elements of ZZ
+ with

shift-invariant distributions satisfying

∑
k

kE(ζk(0)) < ∞, P

∑
k,m

ζk(m) > 0

 = 1.

Then there exists a unique shift-invariant probability measure on η such
that η has soliton decomposition ζ. This measure is T -invariant.
Moreover, if (ζk(m))m∈Z is i.i.d. for each k , then this measure is
shift-ergodic.

Note : Given a sequence (ρk)k∈N specifying the density of k-solitons, we
can construct an infinite number of mutually singular shift-invariant and
T -invariant measures, all having the same specified soliton densities.



Soliton decomposition in i.i.d. case and Markov chain case
[Ferrari-Gabrielli, 2020]

• For η i.i.d. Bernoulli with density p < 1/2, the elements of
(ζk(m))k,m are independent. Moreover, ζk(m) is geometric, with
parameter 1− qk , where q1 := p(1− p) and

qk :=
(p(1− p))k∏k−1

ℓ=1 (1− qℓ)2(k−ℓ)
, k ≥ 2.

• For η : stationary Markov chain, the elements of (ζk(m))k,m are
independent. Moreover, ζk(m) is geometric, with some parameters
given by p0, p1.

Note : Given a sequence (ρk)k∈N specifying the density of k-solitons
(satisfying some condition), there is a unique shift-invariant and
T -invariant measure under which (ζk(m))k,m are independent and ζk(m)
is geometric. These measures are shift-ergodic. They should be
“Generalized Gibbs Ensembles” for BBS.



4. Euler-scale dynamics of solitons



Soliton speeds with random initial condition : simulation

The figure shows the numerical simulation result for initial configuration
η = (ηx)x∈Z a realization of a sequence of i.i.d. Bernoulli(0.2) random
variables. By Croydon.



Effective speeds [Ferrari-Nguyen-Rolla-Wang, 2023]

Let the initial configuration η follow a T -invariant and shift-ergodic
measure with (ρk)k≥: the densities of solitons of different sizes.

Xk(t) be the position of a tagged k-soliton at time t, then

lim
t→∞

Xk(t)

t
= v effk (ρ) almost surely

where the effective speeds (v effk (ρ))k≥1 satisfy:

v effk (ρ) = vk −
∞∑
ℓ=1

κk,ℓρℓ(v
eff
ℓ (ρ)− v effk (ρ)),

where vk := k and κk,ℓ = 2(k ∧ ℓ)
Note: The above equation for (v effk (ρ))k≥1 may have multiple solutions. In
the case when soliton sizes are bounded by K , we have

M(ρ)v eff(ρ) = v

for a suitable K × K matrix M(ρ) which is invertible, and so
v eff(ρ) = M(ρ)−1v is the unique solution.



Generalized hydrodynamic limit [Croydon-S, 2020]:
assumptions

Fix K ∈ N. Let ρ0 = (ρ0k)
K
k=1 satisfy some total density condition and the

regularity condition. For each N ∈ N, consider the BBS starting from a
(random) configuration ηN ∈ ΩK where

ΩK := {η = (ηx)x ∈ {0, 1}Z | ηx = 0 (∀x ≤ 0), no soliton with size > K}.

σN
k (x , t) := 1{∃ a soliton of size k in T tηN starting at spatial location x

}
.

and set

πN,t
k (du) :=

1

N

∑
x∈N

σN
k (x , ⌊Nt⌋) δx/N(du), u, t ∈ R+.

Suppose that, for every (Fk)
K
k=1 ∈ C0(R+,R)I ,

lim
N→∞

∣∣∣∣∫
R+

Fk(u)π
N,0
k (du)−

∫
R+

Fk(u)ρ
0
k(u)du

∣∣∣∣ = 0 in prob.



Generalized hydrodynamic limit [Croydon-S, 2020]:
conclusion

It then holds that, for every t ∈ (0,∞) and (Fk)
K
k=1 ∈ C0(R+,R)K ,

lim
N→∞

∣∣∣∣∫
R+

Fk(u)π
N,t
k (du)−

∫
R+

Fk(u)ρk(u, t)du

∣∣∣∣ = 0 in prob.,

where (ρk(u, t))u,t∈R+,k=1,2,...,K is the unique classical solution of the
partial differential equation ∂tρk = −∂u

(
v effk (ρ)ρk

)
,

ρk(·, 0) = ρ0k(·),
k = 1, 2, . . . ,K ,

amongst the class of functions ρ ∈ C 1(R2
+,R+)

K satisfying some total
density condition for all t ≥ 0.



Remarks/Open problems

1. Ongoing work to extend to K = ∞. (Mainly technical.)

2. For two-sided case, need to handle flow across the origin 0. This will
also allow one to connect with GHD of [Kuniba-Misguich-Pasquier, 2020].

3. For the finite capacity BBS, we can prove the same result by using our
new results which connect KKR bijection and the slot decomposition
(Mucciconi-S-Sasamoto-Suda, 2024)



GHD equation starting from the domain-wall initial
condition [Kuniba-Misguich-Pasquier, 2020]



5. Fluctuation of tagged solitons



On going work with S.Olla and H. Suda

Assume that the initial distribution ν of η is a Bernoulli product measure
or two-sided Markov distribution with ball density less than 1

2 .

Xk(t) be the position of a tagged k-soliton at time t, then

• the process t → Xk(t)− v effk (ν)t converges to a Brownian motion
under the diffusive space-time scale. The diffusion coefficient is
computable, but complicated.

• For two different k-solitons, Xk(t) and X ′
k(t), if

|Xk(0)− X ′
k(0)| = O(N), then their fluctuations converges to the

same Brownian motion under the diffusive space-time scale.

• Xk (t)
t satisfies the large deviation principle with a certain good rate

function.



6. Key ideas



Macroscopic scattering map

• Slot decomposition = Microscopic scattering and inverse scattering
maps

• We construct macroscopic scattering and inverse scattering maps
(ρk(u))k∈N ↔ (ρ̄k(u))k∈N explicitly

• ρ̄k(u, t) = ρ̄k(u − vkt).

• The relation between these scattering/inverse scattering maps and
the GDH equation is universal!



Relation between different linearization methods

Known linearization methods
• KKR-bijection : complicated, BBS as a quantum integrable system
• 10-elimination : intuitively simple, but mathematically not

New linearization method
• Slot decomposition : Depends heavily on Takahashi-Satsuma
algorithm, BBS as a classical integrable system, useful in statistical
physics and probabilistic approaches

To connect them, we introduced the seat number configuration
(Mucciconi-S-Sasamoto-Suda, 2024).

1 1 0 0 1 1 1 0 1 . . . 



Seat number and slot configuration

Recall:
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How to obtain these numbers without Takahashi-Satsuma algorithm?

• Consider a carrier with seat numbers

• The ball that picked up always sits in the seat with the smallest seat
number of the vacant seats.

• When put down the ball from the carrier, put down the one at the
smallest seat number.

• Record the number of the seat number where the occupation variable
has changed.



Seat number algorithm

1
1

1
2

0
1

0
2



Seat number algorithm

1
1

1
2

1
3

0
1



10-elimination
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Record all the places where (1, 0) are in this order and erase them.

Original configuration: 1 size 1-soliton, 2 size 2-soliton, 1 size 4-soliton
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New configuration: 2 size 1-soliton, 1 size 3-soliton
Repeat this procedure and collect all the information.
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10-elimination and 1-seat elimination [Suda, 2024+]
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Erase all the sites with the seat number 1.

Original configuration: 1 size 1-soliton, 2 size 2-soliton, 1 size 4-soliton
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New configuration: 2 size 1-soliton, 1 size 3-soliton
The new seat number = the old seat number −1
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Decomposition of fluctuation

• The recursive structure of 1-seat elimination and the i.i.d. property of
the slot decomposition ζk(m) are key ingredients.

• Fluctuation of the position of a tagged k-soliton is decomposed as (i)
the sum of the part about the interactions with solitons larger than
size k and (ii) the part about the interactions with size ℓ-soliton for
1 ≤ ℓ ≤ k − 1. These solitons can be considered as a random
environment.

• The part about the interactions with solitons larger than size k is
independent from the smaller solitons. But the scaling limit of this
part is not trivial. For Bernoulli or Markov distribution case, we can
use the existing result of the ergodicity for the current of balls in
[Croydon-Kato-S-Tsujimoto].

• The part about the interactions with size ℓ-soliton can be reduced to
the i.i.d. sum where the number of terms is random and depends on
the larger solitons. It is not too difficult to prove that this part
converges to a Brownian motion.


