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Focus of this workshop
Implication of intrinsic alignments/shapes of galaxies to cosmological science

H0

wDE(a) = w0 + w1(1 − a)

fNL

S8 = σ8 (Ωm/0.3)1/2

Cosmological parameters

Test of fundamental hypothesis

Primordial chirality

Novel cosmological probe
Gravitational waves

Primordial non-Gaussianity

Spins from shapes of spiral galaxies 

•  Thin circular disk approximation – angular 
momentum perpendicular to the disk 

 

Pen + 2000, Lee+ 2007 

Exchange ideas and discuss recent progress 
and perspective on future galaxy surveys

ΩGW



Galaxy shape & cosmology
Shapes of distant galaxies as background light sources have 
now been extensively used to measure the weak lensing effect

Lensing induces spatial 
correlations between widely 

separated galaxy shapes



Galaxy shape & cosmology
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Galaxy shape & cosmology
Non-zero ellipticity of distant galaxy consists of two contributions:

ϵa ≃ γI
a + 2 ga

Reduced shear

ga ≡ γa

1 − κ
( ≪ 1)(a = + or ×)

Lensing

Lensing induces non-zero spatial correlation

However, IA can have non-zero spatial correlation

 A clue to detect lensing signal→

(contaminant of lensing measurement)

Intrinsic alignment (IA)



Observations of IA: GI correlation

（GI correlation）
⟨δgγI

+⟩

Non-zero signal from early-type galaxies

Behaviors of IA correlations crucially depend on galaxy type

Galaxy-IA correlation

Galaxy Alignments: An Overview 41

Fig. 12 Top: Examples of some large-scale intrinsic alignments measurements in the literature, employing
a galaxy density-shape correlation function, wg+ , as a function of comoving transverse separation between
galaxies, rp . The samples called “Main” refer to the SDSS main (flux-limited) spectroscopic sample, divided
into two subsamples, both at intermediate (Milky Way-type) luminosities. The red sample results use the
sample from Hirata et al. (2007), but were re-measured by Joachimi et al. (2011) using a different colour cut
that is more consistent with ones used by later works. The WiggleZ results come from Mandelbaum et al.
(2011), and the LOWZ (a low-redshift sample from the SDSS BOSS survey) results come from Singh et al.
(2014). Bottom: A comparison of the observed density-shape correlation for LRGs in SDSS, a prediction
from the MassiveBlack-II (MB-II) hydrodynamic simulation, and the non-linear alignment model. As shown,
both hydrodynamic simulations and this simple analytic model are well able to reproduce the scaling of
the observed density-shape correlations with separation. The data and predictions have been normalised by
the linear galaxy bias, here referred to as blin, relating the galaxy and matter overdensities, δg = blinδ. The
analytic model labelled ‘NLA’ corresponds to a slightly modified version of Eq. (16); see also Bridle and
King (2007). Bottom figure based on data from Tenneti et al. (2015), with credit to Sukhdeep Singh

6.3 Late-Type Galaxies

The alignment of late-type galaxies follows an equally persuasive physical picture, but there
are two competing mechanisms as possible explanations. Late-type spiral galaxies have
formed a galactic disc which, depending on the angle of inclination, is perceived to have
a certain ellipticity. The inclination of the disc must be determined by its angular momen-
tum, but how the angular momentum is ultimately linked to the surrounding large-scale
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No clear signal from late-type galaxies
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Low-z measurements of



Alignment mechanisms
Tidally induced alignment

Spin-induced alignment

aligned along the tidal !eld induced by large-scale structure

aligned along the acquired angular momentum direction 

γI
a ∝ (∇2

x − ∇2
y , 2∇x ∇y) Φ

γI
a ∝ (T2

xk − T2
yk, 2TxkTyk) ;

Gravitational potential

Where do Luminous Red Galaxies form?

Early-type

Late-type
Weak correlation

Strong correlation

Tij = (∇i ∇j − 1
3 δK

ij ∇2) Φ

(c.f.  EFT description by Vlah et al. ’20, ’21)
e.g, Kiessling et al. (’15)



3D IA correlations on large scales
Using the information on angular position (2D) + redshirt + shape

3D spatial correlation of luminous red galaxy (LRG) samples
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Figure 5. Comparison of the real space correlation functions between the
observed and mock LRGs. The black points with the error bars show the
observed correlation function (Zehavi et al. 2005). The dashed line is that
of the mock galaxy catalog using the best-fit HOD model for the LRGs (Seo
et al. 2008).
(A color version of this figure is available in the online journal.)

LRGs are then assigned to each halo with a central based on the
Poisson distribution with the average of 〈Nsat(M)〉. The satel-
lite LRGs inside dark matter halos are distributed following the
Navarro–Frenk–White profile (Navarro et al. 1997). The result-
ing fraction of central LRGs is 93.7%, consistent with that from
the observation (Section 2).

In Figure 5, we show a comparison of the real-space cor-
relation function between the mock and observed (Zehavi
et al. 2005) LRGs. Very good agreement of the results be-
tween the observation and mock catalog can be seen except
for r < 0.5 h−1 Mpc, as was seen by Seo et al. (2008). This
small discrepancy is irrelevant to the current study because the
satellite distribution within halos dominates on this scale and
only central LRGs are used for the statistical analysis below.

4.3. Modeled Ellipticity Correlation Function

The principal axes of each halo in a projected plane are
computed by diagonalizing the momentum of inertial tensor
(e.g., Miralda-Escudé 1991; Croft & Metzler 2000)

Iij =
∑

xixj , (5)

where the sum is over all the particles in the halo. The ellipticity
components of each halo are then estimated in the same way as
those of LRGs (Equation (1)), where the value of q is assumed
to be zero again.

First, we assume that all central galaxies are completely
aligned with their parent dark matter halos. Then the ellipticity
correlation functions of central galaxies are equal to those of
their parent halos. With this assumption, we plot the ellipticity
autocorrelation functions of the mock LRGs, c11 and c22, in
Figure 6. In order to refine the statistics, we averaged over seven
mock LRG samples with different random seeds for assigning
LRGs to dark halos. Interestingly, the ellipticity correlation
function c11 of the mock LRGs has a very similar shape to
the observed function, but the amplitude is about four times
higher. The function c22 is significantly negative at r about a few
h−1 Mpc, compared to the real observed one. In the next section,
we will explain these differences between the observation and
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Figure 6. Ellipticity autocorrelation functions of the central LRGs, (top) c11(r)
and (bottom) c22(r). In both panels, the data points with the error bars are the
measurements from the SDSS, the same ones as those in the bottom panel of
Figure 1. The dashed red lines are results of the mock central LRGs with no
misalignment with their parent halos. The solid red lines are those with the
misalignment parameter of σθ = 35◦. The horizontal axis at the top shows the
corresponding angular scale when all the galaxies are located at z = 1.
(A color version of this figure is available in the online journal.)

simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp

[

−1
2

(
θ

σθ

)2
]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation
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and (bottom) c22(r). In both panels, the data points with the error bars are the
measurements from the SDSS, the same ones as those in the bottom panel of
Figure 1. The dashed red lines are results of the mock central LRGs with no
misalignment with their parent halos. The solid red lines are those with the
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corresponding angular scale when all the galaxies are located at z = 1.
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simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp

[

−1
2

(
θ

σθ

)2
]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation

⟨γ
I +γ

I +⟩
(r)

SDSS LRG @ 
z~0.33

Halo alignment 

Halo + ‘misalignment ‘
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simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp
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]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation
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Measured result resembles the halo ellipticity correlation in N-body 
simulations (solid & dashed) → IA of LRG traces tidal !elds of LSS



Testing anisotropic IA correlations

GI & II correlations measured from cosmological N-body simulations

@ z=0.3 698 T. Okumura, A. Taruya and T. Nishimichi

Figure 1. Alignment statistics of subhaloes with mass Mh ≥ 1013 M" as a function of r = (r⊥, r‖), GI (upper-left), VI (upper-right), and II (lower-left and
lower-right) correlations, ξ+ and ξ−, respectively. The left- and right-hand sides of each panel show the statistics in real and redshift space, respectively. In
each panel, the colour scale shows the measurements from the N-body simulations and the grey sold contours show the LA model prediction. The BAO scale,
r ∼ 100 h−1 Mpc, is denoted by the dashed grey circle.

body results. The ratio of the correlation function in redshift and real
space, ξS

−,"/ξ
R
−,", is shown in the lower right-hand panel of Fig. 4.

Interestingly, while the ratios for the monopole and quadrupole are
more or less consistent with unity, that for the hexadecapole deviates
from unity by ∼10 per cent at all the scales probed. It is partially
caused by the non-linearity of RSDs that cannot be captured by the
LA model and beyond the scope of this paper. We will investigate
such non-linearities in future work.

4.3 VI correlation

The VI correlation function of subhaloes is shown as a function
of r = (r⊥, r‖) in the upper right-hand panel of Fig. 1. Again, the
difference between the measurements in real and redshift space
is small. However the agreement with the LA model gets worse
in redshift space than in real space, as expected. Since the VI
correlation function depends on odd powers of µ, the sign of the

function flips for r! > 0 and r! < 0. Moreover, because of the
non-linear RSD called the Fingers of God (FoG) effect, the sign of
the VI correlation is further changed at r < 10 h−1 Mpc (see e.g.
Okumura et al. 2014).

The multipoles of the VI correlation function in real space are
shown in the left-hand side of the upper right-hand set of Fig. 2.
The real-space VI dipole has been already presented in Okumura
et al. (2019). The octopole measured from the simulations shows a
behaviour very similar to the dipole. The octopole-to-dipole ratio of
the VI correlation in real space is shown in the lower left-hand panel
of Fig. 3. Although the measured VI multipoles start to deviate from
the NLA model at r ∼ 60 h−1 Mpc, the octopole-to-dipole ratio is
consistent with the prediction of the tidal alignment model, −1,
within 1 per cent to slightly smaller scales.

The multipoles of the VI correlation function in redshift space
are significantly suppressed, even at BAO scales, as shown in
the right-hand side of the upper right-hand set of Fig. 2. The
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Okumura, AT & Nishimichi (’20)
(See also Kurita et al. ’21)Using (sub-)halos of ,Mh ≥ 1013 h−1 M⊙



Measured anisotropic IA correlations !
Singh & Mandelbaum (’16)

2312 S. Singh and R. Mandelbaum

Figure 10. The 3D galaxy–galaxy correlation function ξgg (top row, equation 11), galaxy density–shape correlation function ξg+ (middle row, equation
12), and shape–shape correlation function ξ++ (bottom row, equation 13) as a function of rp, " (left column, reflected about rp = 0) and their multipole
moments (right column). All plots use isophotal shapes. In the left column, the filled contours are showing the data, while solid lines are the theory predictions
corresponding to the outer edge of the filled contours. The right column shows monopole and quadrupole measurements as a function of three-dimensional

redshift-space separation (s =
√

r2
p + "2 [Mpc/h]). The points are measurements from the data, while dashed lines are NLA model predictions. Theory

predictions in both columns are from the best-fitting models to wgg and wg+, with fII = 1 in ξ++. The dashed lines in (e) show predictions with fII = 2. The
linear models with non-linear power spectrum are consistent with data for s ! 30 h−1 Mpc, below which significant deviations are expected due to non-linear
RSD and, on even smaller scales, non-linear galaxy bias.
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Geometric & dynamical constraints
RSD & BAO can be measured 

from GI & II correlations
{dA(zi), H(zi), f σ8(zi)} AT & Okumura (’20)

GG :   galaxy clustering
II :   IA statistics

GG+GI+II :  both combined

Combing conventional GG  with IA 
correlations can improve constraints !

Fisher matrix forecast
(Chisari & Dvorkin ’13 

for an early work)

(Assuming a good IA measurement 
of ELGs based on Shi et al. ’21)

Okumura & AT (’22)

kmax = 0.1 h Mpc−1



Fisher forecast from IA statistics
Geometric & dynamical constraints 

at 0.6<z<2.3 (from PFS ELG)

Subaru PFS ELG

H(z)

(1 + z) DA(z)

AT & Okumura (’20)
Okumura & AT (’22)

"at  CDM model w0waγ

kmax = 0.1 h Mpc−1



Extending cosmological science with IA
Beyond linear alignment model Schmitz, Hirata, Blazek & Krause (’18), Blazek, MacCrann, Troxel 

& Fang (’19), Vlah, Chisari & Schmidt (’20, ’21)

Testing modi!ed gravity models with IA statistics Chuang, Okumura & Shirasaki (’22)

IA statistics as a sensible primordial non-Gaussianity probe 
Schmidt, Chisari & Dvorkin (’15); Kogai, Matsubara, Nishizawa & Urakawa (’18);  
Kogai,  Akitsu, Schmidt & Urakawa (’21); Akitsu, et al. (’21)

Synergy between imaging, spectroscopic & CMB observations Okumura & AT (’22)

and gravitational waves ?

Imprint of relativistic e#ects on IA signal Saga et al. (’22)

Schimit & Jeong (’12); Schimit Pajer & Zaldarriaga (’14); Akitsu, Li & Okumura (’22)

Inoue, Saga, Okumura & AT (’22, in prep.)

Probing dark matter self-interction  with IA signals Harvey, Chisari, Robertson & McCarthy (’21)



Credit: AIP/ A. Khalatyan/ J. Fohlmeister

More on IA statistics
Characterizing galaxy spins & angular momenta 
provides many interesting cosmological science

Galaxy spins & dark energy

Probing primordial chirality with galaxy spins
Motloch, Pen & Yu (’21a, b)

Motloch, Yu, Pen & Xie (’21)

Lee & Pen (’00, ’01,’02,’08), Lee, Pen & Seljak (’00), Crittenden, Natarajan, Pen & Theuns (’01)Spin-induced IA

Yu, Motloch, Pen, Yu, Wang, Mo Yang & Jing (’20)

Spin of cosmic !laments Sheng, Li, Yu, Wang, Wang & Kang (’20)

Spin mode reconstruction Wu, Yu, Liao & Du (’21)

Neutrino & galaxy spins/shape Yu, Pen, & Wang (’19)

Galaxy spins & initial conditions
Lee & Libeskind (’20)

Lee, Libeskind & Ryu (’20)

Spins from shapes of spiral galaxies 

•  Thin circular disk approximation – angular 
momentum perpendicular to the disk 

 

Pen + 2000, Lee+ 2007 

̂J Spin

Testing spin parity violation
Iye, Yagi & Fukamoto (’21), Tadaki, Iye & Fukamoto (’20),  Iye, Tadaki & Fukamoto (’19)

N. Libeskind
J. Lee U-L. Pen

M. Iye



New Frontiers in Cosmology with the Intrinsic alignments of galaxies
YITP international workshop on

Budget 1,750,000 JPY ( 12,600USD 12,000euro)≈ ≈

Workshop page (hidden page)

Short history of this workshop
In-person 
workshop

In 2021,

Postponed
Nov. 30—Dec. 3, 2021



Hybrid-type 
workshop

In 2021,

Galaxy shape statistics and cosmology
allowing on-site participation only for people in Japan Budget 420,000 JPY

Nov. 30—Dec. 3, 2021

https://www2.yukawa.kyoto-u.ac.jp/~iacosmology/MoleculeWorkshop/

Molecule-type workshop on

Short history of this workshop

37 participants 
（onsite 12）

https://www2.yukawa.kyoto-u.ac.jp/~iacosmology/MoleculeWorkshop/


Highlights
First evidence of high-z IA correlations

Amplitude of IA correlations

(T. Okumura)

Promising for upcoming high-z surveys (DESI, PFS, Euclid,…)

2.4-σ detection of IA for LRGs at z>1

• 2.4-σ (w/o shear and magnification)

• With gG and mG, the significance gets 
larger. 
• It is straightforward to extend the 

analysis to HSC LRG shape – PFS [OII] 
emitter position cross-correlation.

4 Tonegawa & Okumura

of blue galaxies that are spectroscopically confirmed
from the FastSound at z ∼ 1.36. Other studies at
lower redshifts also have not found any GI signal for
blue galaxies (Mandelbaum et al. 2011; Johnston et al.
2021). IA of spiral galaxies are likely to be explained
by the quadratic alignment model (Catelan et al. 2001;
Hirata & Seljak 2004, 2010; Kirk et al. 2015), and the
model indeed predicts null GI signals for a Gaussian
density field.

4.2. Linear Alignment Model

Here we consider a more physically motivated pre-
diction of IA, the linear alignment (LA) model
(Catelan et al. 2001; Hirata & Seljak 2004) which re-
lates the shear field linearly to the gravitational poten-
tial. Under this model the density-ellipticity power spec-
trum at redshift z is given by

Pδ,γ(k, z) =
C1ρ̄(z)

(1 + z)D(z)
a2Pδ(k, z), (3)

where ρ̄(z) is the mean matter density, D(z) the growth
factor, and Pδ(k, z) the matter power spectrum. While
the original LA model used linear theory prediction for
Pδ (Hirata & Seljak 2004), using the non-linear matter
power spectrum was found to better explain the ob-
served IA (non-linear LA, NLA; Bridle & King 2007;
Blazek et al. 2011). Therefore, we use the non-linear
matter spectrum of Takahashi et al. (2012) to obtain the
theoretical prediction. The normalization parameter C1

varies much with given galaxy samples. Following the
convention, we introduce another parameter, ALA, as
ALA = C1ρcr/0.0134, where ρcr is the critical density.
The Hankel transform converts the power

spectrum into the 3-D GI correlation function
(Okumura & Taruya 2020; Okumura et al. 2020):

ξspecg+ (rp, rπ , z) = (1− µ2)bg

∫

∞

0

k2dk

2π2
Pδ,γ(k, z)j2(kr),

(4)

where µ = rπ/r with r =
√

r2p + r2π , j2 is the spherical

Bessel function of the second order and bg is the lin-
ear bias parameter of the FastSound galaxies, bg = 1.9
(Okumura et al. 2016). We use photo-z for the shape
sample, which modulates equation (4) due to the scat-
ter along the line-of-sight as (Joachimi et al. 2011)

ξg+(r̄p, r̄π, z̄m) =

∫

dz2 pε

(

z2|z̄m +
r̄πH(z̄m)

2c

)

× ξspecg+

(

r̄p
χ(1

2
(z1 + z2))

χ(z̄m)
,

c |z2 − z1|

H(1
2
(z1 + z2))

,
1

2
(z1 + z2)

)

,

(5)

where z̄m denotes the mean of photo-z of the shape sam-
ple and spec-z of the density sample, a bar means a

Figure 2. Constraints on the amplitude of the NLA model
as a function of redshift. The points are color-coded ac-
cording to the mean sample luminosity, and different sym-
bols are assigned to different survey samples (see Table 1).
The dashed lines are the best-fitting model prediction at
z = 0.54 obtained by Joachimi et al. (2011) (equation (6))
for 〈Mr〉 = −21.5 (green) and −20.5 (blue).

quantity affected by photo-z, H is the Hubble param-
eter, c is the speed of light, χ(z) is the comoving dis-
tance, z1 = z̄m − r̄πH(z̄m)/2c, and pε(z|z̄) denotes the
probability distribution of the true redshift z under a
given photo-z, z̄, for the shape sample. We assume
that the error in photo-z follows the normal distribu-
tion with σz/(1 + z̄) = 0.04 (Hildebrandt et al. 2012).
We integrate ξg+(r̄p, r̄π , z̄m) along the line of sight to
obtain the projected correlation function wg+(r̄p), sim-
ilarly to equation (2). With our choice of r̄π,max,
r̄π,max = 160 h−1Mpc, we find the amplitude of wg+(r̄p)
becomes 76% of that determined with spec-z, wspec

g+ (rp).
As shown by Joachimi et al. (2011), the rp dependence
remains almost unchanged when photo-z are considered.
The LA model fitting to the measured wg+(r̄p) gives a
constraint on the amplitude asALA = 27.48+11.53

−11.54, show-
ing a 2.4σ deviation from zero similarly to the result
obtained in section 4.1. The dark and light red shaded
regions in the top panel of figure 1 indicate the 68% and
95% confidence levels of the NLA model.

4.3. IA of red galaxies as a function of redshift

Table 1 and figure 2 show the constraints on ALA ob-
tained from our analysis at z ∼ 1.3 together with the
previous studies at lower redshifts at z < 1. Since the
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previous studies at lower redshifts at z < 1. Since the

Redshift

New

Previous works

ALA

(ALA ≡ C1 ρcr /0.0134)

New estimator to enhance IA signals from non emission-line galaxies (J. Shi)

4

accretion direction should reflect shapes of the host halo
and surrounding cosmic web, and the method we pro-
pose below is sensitive to these building blocks to better
capture the overall IA signal. However, some of these
building blocks become invisible when the sky noise is
added, as shown in the middle panel. The right panel
shows the pixels that have S/N � 3, and bright building
blocks survive even after the S/N cut.

3.2. An aperture shape estimator for ELGs

We now characterize the “shape” of each ELG using
the simulated images around each ELG we described
in the preceding section. In this work, we propose an
“aperture inertia tensor” for ELG shapes, defined as

Iapij =

P
n;(S/N)pix>3;r2Dn 500h�1kpc fnxnixnjP

n;(S/N)pix>3;r2Dn 500h�1kpc fn
, (1)

where fn is the flux of the n-th pixel in the simulated
image, xni, xnj(i, j = 1, 2) are the relative position of
this pixel with respect to the ELG position, and the
summation runs over all the pixels within circular aper-
ture of the projected radius r2D  500h�1kpc that have
S/N � 3 for the signal-to-noise ratio of photon counts in
the pixel. The average virial radius of the host halos for
ERGs at z = 1.5 is hR200i ' 470h�1kpc, corresponding
to the average halo mass hM200i ' 7.6 ⇥ 1012 h�1M�
(Table 1), and roughly matches the aperture radius.
Note that we use the fixed aperture of r2Dap = 500h�1kpc
for all the results in this paper. We also test our re-
sults with smaller aperture sizes, such as 200h�1kpc or
300h�1kpc, as shown in Appendix B.

We find that the inertia tensor is ill-defined if we do
not employ the S/N cut. However, the results basically
do not change if we adopt di↵erent S/N cuts such as
S/N > 4 or S/N > 5. For the above inertia tensor,
stellar particles at outer radii are up-weighted so that
the estimator can capture contribution from building
blocks around each ELG as seen in the middle and right
panels of Fig. 1.

For comparison, we also study the conventionally used
inertia tensor for the same sample of ELGs. The reduced
inertia tensor is widely used (Tenneti et al. 2015),

Ireducedij =

P
n mn

xnixnj

r2nP
n mn

, (2)

where mn is the mass of the n-th member stellar particle
of the ELG, xni, xnj(i, j = 1, 2, 3) are the 3D position
vector of the particle with respect to the ELG center.
For this method, the weight 1/r2n is used, but the fol-
lowing results we show remain almost unchanged even
if we do not use this radial weight, as long as the sum-
mation is restricted to member particles of each ELG.

The ellipticity of a galaxy is (assuming the x3-axis as
the LOS direction):

✏1 ⌘ I11 � I22
I11 + I22

, ✏2 ⌘ 2I12
I11 + I22

. (3)

In the following we use either of Eq. (1) or (2) for the
inertia tensor. The column “�✏” in Table 1 gives the
intrinsic rms ellipticities for the new method (Eq. 1),
showing that the new method gives a larger �✏ ⇠ 0.4
than that of the usual method, �✏ ⇠ 0.3 as shown in Shi
et al. (2021).

The IA power spectrum between matter density field
�m and E-mode shear field �E is estimated following the
method in Kurita et al. (2021):

h�E(k)�m(k0)i ⌘ (2⇡)3�D(k + k0)P�E(k), (4)

where �E(k) = �1(k) cos 2�k + �2(k) sin 2�k is the E-
mode decomposition of galaxy shear in Fourier space
and �1,2 = ✏1,2/(2R) (R ⌘ 1 � h✏2i i is the responsivity
as defined in Bernstein & Jarvis 2002). The non-linear
alignment model (Blazek, McQuinn & Seljak 2011) pre-
dicts

P�E(k, µ) = �AIAC1⇢cr0
⌦m

D(z)
(1 � µ2)P��(k, z), (5)

where P��(k, z) is the non-linear matter power spectrum
at redshift z, D(z) is the growth rate, and C1⇢cr0 =
0.0134 for convention (Joachimi et al. 2011). The
dimension-less coe�cient AIA is an indicator of the IA
strength (Shi et al. 2021).

4. RESULTS

In this section we show the main results of this pa-
per. Fig. 2 shows that our new estimator of ELG shape,
defined by Eq. (1), allows for a clear detection of the

monopole moment of P (0)
�E (k) at z = 1.5, while the con-

ventional shape method gives only an upper limit on
the cross-power spectrum in low k bins. To be more
quantitative, the new method gives more than a ten-
fold boost in the P (0)

�E amplitude over the range of k
bins we consider. Recalling that the TNG300 simula-
tion has a small volume of ⇠ 0.0086 (h�1Gpc)3, this re-
sult means that upcoming galaxy surveys covering more
than 1 (h�1Gpc)3 volume enables a significant detection
of the IA signal. The IA signal in smaller k bins contains
cleaner cosmological information, and a fitting of the
model (Eq. 5) with the measured power spectrum over
the three lowest k-bins (up to k ' 0.4hMpc�1) gives
AIA = 12.86 ± 2.83, 4.5� detection, while AIA for the
standard method is consistent with a null detection at
2� level (AIA = 3.2±2.0). Is this new IA estimator opti-
mal? To address this question, Fig. 2 also shows the IA
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Figure 1. A simulated i-band image of the region around an example ELG at z = 1.5, made from the TNG300 simulation
data. Left panel: The original image of the ELG region. Middle: The simulated image taking into account the 0.600 FWHM
seeing e↵ect , the total system throughput of the Subaru telescope (0.5), and the sky background noise at the Subaru site,
assuming texp = 1, 200 sec for the exposure time and the i-band filter transmission. Right: Similar to the middle panel, but it
shows only the pixels with S/N > 3 within an aperture of radius 500h�1kpc around the ELG. The legend gives the stellar mass
and the half-stellar-mass radius of the ELG, and the halo mass and the virial radius of the host halo.

Volmerange 2019). Each stellar particle represents
a single age stellar population. First, we construct
the table of SEDs for di↵erent metallicities Z =
[0.0, 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05, 0.1] up to the
age of 100Myr. Then, for each particle, we allocate
SEDs by linearly interpolating the table with respect
to the metallicity and age. The attenuation due to
di↵use interstellar medium and dust is taken into ac-
count in PÉGASE.3. Using the rest-frame luminosity
per unit wavelength and the luminosity distance to the
galaxy redshift (e.g. z = 1.5), we calculate the observer-
frame flux per unit wavelength. Then we include the
filter transmission to calculate the noise-free and PSF-
free photon counts in each pixel of the simulated im-
age, taking the x3-direction as the line-of-sight direc-
tion, as shown in the left panel of Fig. 1. In doing
these we assume the atmosphere transparency of 1.0,
the aperture of the 8.2m Subaru Telescope, the total
system throughput of 0.5, texp = 1, 200 sec for the expo-
sure time, and the transmission of i-band, more exactly
the i2-filter of Subaru HSC2 that has a transmission
curve over 689 < �/[nm] < 845. We generate a sim-
ulated image of each ELG in 1282 pixels for a square
region of 1 (h�1Mpc)2 around the ELG. The pixel size
is 7.8h�1kpc corresponding to 0.53 arcsec for a galaxy
at z = 1.5.

2 https://www.subarutelescope.org/Observing/Instruments/
HSC/sensitivity.html

We then include the atmospheric e↵ects. The turbu-
lence of the atmosphere smears the image resolution –
the seeing e↵ect. To model the seeing e↵ect, we con-
volve the above observer-frame image with a 2D Gaus-
sian function with FWHM= 0.6 arcsec, which is a typical
seeing size of the HSC data (Aihara et al. 2018). In addi-
tion, the sky itself emits light – the sky background. As-
suming the sky background dominated regime, we gen-
erate the random noise in each pixel, assuming a Gaus-
sian distribution with width �sky = 2849e�/s/arcsec2

(electron counts per second per arcsec2 solid angle) and
texp = 1, 200 sec for the exposure time, where �sky is
obtained from the HSC ETC3 assuming an observation
at 7 days after new moon with moon-object distance of
90 degrees. Our simulated image fairly well reproduces
ilim ' 25.7 for the 5� limiting magnitude (200 aperture)
for a point source as obtained in the HSC ETC, and this
depth is roughly equivalent to the depth of the ongoing
Subaru HSC survey (Aihara et al. 2018).

Fig. 1 shows the simulated image in the region around
an example ELG. This ELG resides at the central sub-
halo, and the host halo has the virial radius R200 '
1h�1Mpc (M200 ' 7.4⇥ 1013 h�1M�), greater than the
panel size, whilst the ELG itself has a half-stellar-mass
radius of R⇤ ' 46 h�1kpc, much smaller than R200.
The figure shows that the ELG is surrounded by satel-
lites or many building blocks, which would accrete onto
the ELG to form a bigger galaxy at lower redshifts. The

3 https://hscq.naoj.hawaii.edu/cgi-bin/HSC ETC/hsc etc.cgi
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Figure 2. The monopole moment of the cross-power spec-
trum between matter and the galaxy E-mode shape, P (0)

�E (k),
for ELGs at z = 1.5. The red triangles show the result when
using the aperture shape estimator (Eq. 1). For comparison
the open diamonds show the result when using the standard
method of shape estimator (Eq. 2) for the same sample of
EGLs, and the squares show the result using the standard
method for the host halos using DM particles centered on
each ELG.

Figure 3. The IA strength, characterized by P (0)
�E /P��,

for the ELG samples of the fixed number density at di↵er-
ent redshifts. The AIA values in the legend are the best-
fit linear IA coe�cient, obtained from the data points with
k < 0.4hMpc�1 (see text for details).

power spectrum for DM halos hosting ELGs, where we
use the parent halos even for satellite ELGs (the member
DM particles) to characterize the halo shapes centered
on each ELG. The DM halo gives AIA = 15.7±2.4, which
is very similar to the IA signal of ELGs. The good agree-
ment between the flux based aperture inertia tensor and
the DM halo particle based inertia tensor suggests that
the light distribution follows the matter distribution,
which is supported by the good correlations (although
with scatters) between the ellipticities calculated using
light and matter distributions as shown in Appendix A.
This is also consistent with the results shown in Shin
et al. (2021) and O’Neil et al. (2021), where they show
the baryons trace the matter distribution well using DES
lensing profile and IllustrisTNG hydro-simulation sepa-
rately. Also, the stronger IA signal with our aperture
based inertia tensor is in consistent with the picture that
the outer region of galaxies/satellites in galaxy groups
are more aligned with the large scale tidal field as re-
vealed by previous studies (Singh & Mandelbaum 2016;
van Uitert et al. 2017).

Table 1 summarizes the IA signal for ELGs at dif-
ferent redshifts, z = 0.5, 1.0, 1.5 and 2.0. Note that
all ELG samples have the fixed number density of
10�4 (h�1Mpc)3. The ELG samples at all the redshifts
give a clear detection of AIA. Fig. 3 shows the ratio of
the IA power spectrum to the matter power spectrum.
The figure shows that the IA signals are detected over
the range of k bins, with very weak redshift dependence.
As can be found from Table 1, the samples display slight
increases in the mean stellar mass and host halo mass
with the decrease of redshift. The redshift evolution of
AIA depends on the sample selection and redshift, as
shown in Fig. 6 of Kurita et al. (2021). In our previous
work of Shi et al. (2021), we found that AIA shows very
weak redshift dependence for the galaxy samples of a
fixed stellar mass range across z = 0.3 to z = 2. The
mean stellar mass evolves within ⇠ 0.4 dex from z = 0.5
to z = 2 for the ELGs, as listed in Table 1. The weak
redshift dependence in the ELG IA signals is thus con-
sistent with our previous studies. In addition the ratio
displays very weak k-dependence up to k ⇠ 1hMpc�1,
which is in agreement with the prediction of non-linear
alignment model.

In Appendix B we also show how the results change
with varying aperture sizes and the S/N cuts in the pix-
els that are needed to define the aperture based shapes
of ELGs. Figs. 3 and B.2 show that the findings we de-
scribed above hold for these di↵erent definitions of the
ELG shapes.

5. DISCUSSION AND SUMMARY

ELG IA (conventional)
ELG IA (new estimator)matter-IA cross spectrum 

(monopole) @ z=1.5

z=1.5



prediction, based on our formula, can well reproduce the
leakage moments.

V. DISCUSSION

We would like to mention about several things looking
ahead to application of our method to real data. Direct
observables of the auto power spectra are the “plus-” and
“minus-” spectra, Pþ and P−, not the spectra of the “E”
and “B” modes as shown in Eq. (21). Although
fPþðk; μÞ; P−ðk; μÞg and fPEEðk; μÞ; PBBðk; μÞg are
exchangeable at the level of functions of ðk; μÞ, the direct
observables in our method are the angle-integrated
moments, fPðl¼0;2;4;…Þ

þ ðkÞ; PðL¼4;6;…Þ
− ðkÞg, in terms of dif-

ferent basis, i.e., the Legendre and associated Legendre
polynomials, respectively. Hence, it is not straightforward
to reconstruct the E- and B-mode spectra from the
measured moments, where the E- and B-mode spectra
might be used to measure the power spectrum of the
dominated scalar mode for the ΛCDM model and to test
residual systematics in the linear regime, respectively, e.g.,
as expected in the case of the IA spectra and the cosmic
shear angular power spectra. Nevertheless, we stress that a
set of the multipole moments of Pþ and P− can be used to

extract the full information on the underlying power spectra
of scalar, vector, and tensor modes according to our
method, as shown in Sec. II D. In addition, if a stochastic
noise such as shape noise of galaxies equally contributes to
the E- and B-mode spectra, only the monopole of Pþ has
the shape noise contribution, and other higher-order
moments of Pþ and all moments of P− can be free of
the stochastic noise. In any case we can utilize these
properties to perform tests of systematic effects in an actual
measurement.
An obvious application of our method is to explore the

spin-2, local-type anisotropic primordial non-Gaussianity
(PNG) from the power spectrum of the projected tensor
field, which carries an independent information from the
isotropic PNG in the density tracer [54]. Note that, to
explore the PNG signal, the power spectrum analysis is
needed, and the correlation function in configuration space
is not suitable [5]. In the presence of spin-2 PNG, the power
spectrum, probed by galaxy shapes, is modified as

PðkÞ → ½1þ 12fs¼2
NL δbIAM−1ðkÞ&PðkÞ ð64Þ

where Mðk; zÞ≡ ð2=3Þk2TðkÞDðzÞ=ðΩmH2
0Þ, with TðkÞ

and DðzÞ denoting the transfer function and the linear

FIG. 4. The upper panels compare the multipole moments of power spectra, measured by the LPP estimator (points with error bars),
with the theoretical predictions including the window effects (solid lines). The lower panels show the fractional differences. We plot the
mean of 1000 realizations with error bar of the mean in each k bin, and normalize all the moments as in Fig. 2. Left panel: the blue
circles, orange inverted triangles and green triangles show the matter spectrum P̃ð0Þ, the lowest-order L ¼ 2 moment of cross spectrum
P̃ðL¼2Þ
γδ and the lowest-order L ¼ 4 moment of “minus”-auto spectrum P̃ðL¼4Þ

− , respectively, which are the lowest order multipole
moments for each spectrum. Right: the blue circles, orange inverted triangles, and green triangles show the l ¼ 0, 2, 4-th moments of
the “plus”-auto spectrum P̃ðlÞ

þ , respectively. The dark and light gray-shaded regions in the lower panel correspond to 1% and 3%
fractional differences.
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Highlights
FFT-based estimator for IA power spectra in wide-angle surveys (T. Kurita)

Validation Tests I: methods

Projection

Estimator

Observation-like 

Local PP 
(this work)

Global PP Global PP

✤ We validate our estimator using hypothetical observations with three different 
configurations.
✤ BOSS-like geometry (gray regions)

Observation-like 
Distant obs. approx.

(Pijkl(x̂) → Pijkl(n̂))

essential to probe large-scale modes

 constraining primordial non-Gaussianity (PNG)→

growth factor, respectively, fs¼2
NL is a parameter to character-

ize the PNG amplitude and δbIA is the response of galaxy
shapes to the quadrupolar modulation of the local matter
power spectrum due to the PNG. In the following we adopt
δbIA ¼ 0.17 as motivated by the results in Ref. [54].
Figure 6 shows how the window convolution affects the

quadrupole moments of the cross power spectrum, PðL¼2Þ
γδ ,

which carries a leading signal of the PNG effect [54]. It is
clear that the survey window effect for the BOSS-like survey
is significant. For comparison, we also show that the window
effect alters the power spectrum with the Gaussian initial
condition (i.e., the case of fs¼2

NL ¼ 0) at the comparable level
to the modification in the power spectrum with fs¼2

NL ∼ −180
in the absence of the survey window effect. Since the current
CMB constraint is at the level of σðfs¼2

NL Þ ∼ 20 [88], it is of
critical importance to take into account the survey window
effect, using our method, to obtain an unbiased estimate or
constraint of the PNG signal in Pγδ.

VI. CONCLUSION

In this paper, we have developed a method for measuring
the 3D power spectrum of the projected tensor field that is
estimated from large-scale structure observables, e.g.,

galaxy shapes. The projected tensor power spectrum is
related to the underlying power spectrum of scalar, vector
and tensor modes of LSS, so the measurement opens up a
window for exploring these different types of perturbations.
In a wide-area survey where the global plane-parallel

(GPP) approximation (or the distant observer approxima-
tion) is no longer valid, the statistical translation invariance
does not hold for the observed tensor field due to the
LOS dependent projection, very similarly to the case of
the observed galaxy density field affected by the LOS
dependent RSD effect. To obtain both the estimators and
window convolutions, we first formulated the coordinate-
independent power spectra and correlation functions taking
into account the projection of the tensor field to plane
perpendicular to each LOS (n̂) direction that leads to the
phase factor [e2iϕk̂;n̂ in Eq. (14)] reflecting the spin-2
properties of the tensor field. In addition we derived the
Hankel transformation between the multipole moments of
the power spectra and those of the correlation functions by
introducing the associated Legendre polynomial expansion.
The expansion in terms of the associated Legendre poly-
nomials provides us with two crucial results for the analysis
proposed in this paper:

(i) For measurements of the projected tensor power
spectra, the exact cancellation of the geometrical
prefactors allows us to construct FFT-based

FIG. 5. Similar to Fig. 4, but this plot shows the leakage
moments that arises due to the anisotropy of BOSS-like survey
window; in other words, the moments should be vanishing if
there is no window effect or for an isotropic window. The blue
circles and orange inverted triangles are the quadrupole moment
of the matter spectrum P̃ð2Þ and the L ¼ 4th moment of the cross
spectrum P̃ðL¼4Þ

γδ , respectively. The blue open and blue dashed
lines denote the negative values (we plot their absolute values).
Note that the range of y-axis is different from that in Fig. 4.

FIG. 6. Comparison of the BOSS-like survey window effect on
the cross power spectrum PðL¼2Þ

γδ with the modification in PðL¼2Þ
γδ

due to the spin-2 local-type primordial non-Gaussian (PNG)
initial condition. Here we show the quadrupole moment of Pγδ

because it is the lowest-order moment in our formulation and
carries most of the PNG information. The blue curves show the
power spectra in the Gaussian condition and the red curves are
those in the presence of the spin-2 PNG. The solid (dashed) lines
correspond to the results with (without) the window convolution.
We chose fs¼2

NL ¼ −180 for demonstration, because the effect
without the window convolution (dashed-red curve) is at the
comparable level with the Gaussian result with the window
convolution (solid-blue curve).
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E#ective-Field-Theory (EFT) description of IA (Z. Vlah)

EFT treatment developed in describing galaxy bias is generalized,
including both linear alignment & tidal torque models

Biasing of shapes in 3D: e↵ective approach

Expansion of the field of galaxy shapes:
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Explicit calculations of 1-loop  
power spectra/tree-level bispectraBias operators for IA

Galaxy 
shape !eld
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Now able to invite people from abroad and to organize  Int’l workshop
Since October 11, cross-border travel has been resumed

And in 2022,
2nd-order shape bias & onlinearity of IA 

Understaing IA from cosmic-web modeling
Forward modeling of full complexity of IA

Galaxy and cosmic !lament spin

Subaru HSC WL measurements

Rubin Observatory

Constraining IA from DES/eBOSS

Baryonic e#ects on Lagrangian clustering  & spin

IA measurements from SDSS and simulations

Simulating IA with deep learning

EFT of galaxy shapes
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