Spin-Alignment of Dark Matter Subhaloes

Daiki Osafune^[1], Keiichi Wada^[1], Tomoaki Ishiyama^[2] [1]Kagoshima University, [2]Chiba University

2022/12/08

Introduction : The evolution of spin direction

Cumulative distribution of $\Delta M/M$ of the halo with a large change in spin direction.

1.0 0.5

-0.5

The evolution the direction of the spin (angular momentum vector) of halo is not clear

In this study, we investigate the effect of a nearby large halo on the change in spin direction.

Data: Cosmological N-body simulation data

Simulation	$L(h^{-1}\mathrm{Mpc})$	$m_p\left(h^{-1}M_{\odot}\right)$	N	R
$\nu^2 \text{GC} - \text{S}$	280	2.20×10^{8}	2048 ³	Ishiya
Halo finder : ROCKSTAR (Behroozi+2013a)				
Merger tree	e : consistent t	ree (Behroozi+	-2013b)	

From this merger tree, we obtain $X, M_{vir}, R_{vir}, \overline{J}$ (spin) and host-subhalo relationship

Analysis: The angle between \vec{J}_{sub} and \vec{J}_{host}

Result : Correlation between position and $\cos \theta$

Result: Correlation between position and $\cos \theta$

The red line represents a subhalo located parallel to \vec{J}_{host} , polar direction of host haloes.

Result: Correlation between position and $\cos \theta$

Result: Correlation between position and $\cos \theta$

Result: History of host/subhaloes spin direction

This figure shows the direction of the spin of the halo at a time over N Gyrs.

The y-axis represent the angle between

the \overrightarrow{J} of z = 0 and N Gyrs before.

Orange: host halo

Blue: subhalo

Host halo:

Spin direction has not changed over time.

Subhalo:

Spin direction is changing over time.

Result : History of host/subhaloes J/M

This figure shows history of J/M[*J/M* : specific angular momentum]

Orange: host halo

Blue: subhalo

Host halo:

J/M is growing over time

Subhalo:

J/M is constant over time

Result: History of host/subhaloes spin

	Spin direction	J/M
Host halo	Not Changing	Growing
Subhalo	Changing	Not Growing

Summary

- The direction of \vec{J}_{sub} subhalo spin
 - \vec{J}_{sub} and \vec{J}_{host} are aligned at the central region of host haloes
 - This tendency depends on direction of subhalo's position
- Evolution of \vec{J}_{sub} and \vec{J}_{host}
 - The spin of host halo is changing for J/M, but not for the direction
 - The spin of subhalo is changing for the direction, but not for J/M(specific angular momentum)
- Discussion
 - The mechanism for which the spin of the subhalo changes is not yet understood, and is currently under analysis.