Weak Lensing Cosmology with Subaru Hyper Suprime-Cam

Hironao Miyatake Nagoya University On behalf of HSC Weak Lensing Working Group

© Subaru Telescope, NAOJ

Outline

- Large scale structure as a cosmology probe
- Subaru Hyper Suprime-Cam (HSC)
- HSC Y1 cosmology results
 - Cosmic shear
 - Galaxy-galaxy clustering x lensing (2x2pt)
- Ongoing HSC-Y3 cosmology analysis
- Summary

ACDM Model

- Cosmic evolution is governed by the cosmological constant Λ (or dark energy) and cold dark matter (CDM).
- ACDM model has been successful in explaining various cosmological observables such as CMB, distance measurements by type-la supernovae, and baryon acoustic oscillations.

Issues

- 26% of the Universe is unknown matter: dark matter
- 69% of the Universe is unknown energy: dark energy
- Thus 95% of the Universe contents is unknown.

New physics?

Detailed Investigations of ACDM model is one of the most important studies in modern physics

dark energy <mark>known.</mark>

Large Scale Structure (LSS) of the Universe

w/o dark matter

w/ dark matter

credit: N. Yoshida

- cosmic structure.
- we cannot directly observe it.

credit: ESA

• The nature of dark matter and dark energy is embedded in the growth of

Caution: dark matter makes up ~85% of the matter in the Universe, but

Weak Gravitational Lensing

Weak lensing enables us to map out dark matter distributions in the Universe

$D_A(z_a)$

Weak Lensing Measurement

Example: weak lensing by a galaxy cluster

- Weak lensing tangentially distorts galaxy shapes by γ .
- Intrinsic galaxy shapes are beaten down (this is not the case if intrinsic alignment prominent) by averaging shapes of a number of galaxies. $\sigma_{\gamma} = \frac{\sigma_{\gamma,\text{int}}}{\sqrt{N}}, \text{ where } \sigma_{\gamma,\text{int}} \sim 0.3.$
- To measure typical lensing signal ($\gamma \sim 0.01$) at 10 σ , one needs ~ 100,000 galaxies.

We need **so many galaxies** for weak lensing measurement

credit: J. Bosch

Galaxy Shape Measurement

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a shear (g)

Stars: Point sources to star image Point Spread Function (PSF)

Good PSF is essential for weak lensing measurement

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

Image also contains noise

Subaru Hyper Suprime-Cam (HSC)

- Superb image quality: PSF~0.6"
 - SDSS PSF~1.0"
- Large Field-of-View: 1.5° diameter
 - ~7 x full moon
 - ~500 x Hubble Space Telescope
- 8.2 m primary mirror
 - ~11 x light collecting power of SDSS or Hubble

Photo credit: NAOJ, Miyazaki et al. (2018), Komiyama et al. (2018)

HSC SSP Survey

- Survey started in 2014 and complete at the end of 2021.
- Three data releases were made.

Galactic Extinction E(B-V)

Wide Layer (~1,100 deg², grizy, i_{lim}~26) is designed for weak lensing cosmology (10⁸ galaxies). Overlaps with other major surveys (SDSS/BOSS, ACT, VIKING, GAMA, VVDS, etc...).

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Weak Lensing Surveys in 2010s

•	HSC has small survey area, but
	goes to high redshift.

- DES has large survey area, but observes nearby universe.
- KiDS has a companion nearinfrared survey.

These surveys are complementary

HSC-Y1 Results

HSC-Y1 Shape Catalog

- Wide Layer: 6 fields, ~170 deg²
- Full-depth, full-color
- PSF FWHM ~ 0.6"
- 10⁷ galaxies
- Number Density: ng~ 23 gal/arcmin²
 - DES: n_g~ 7 gal/arcmin²
 - KiDS: ng~ 10 gal/arcmin²
- Shapes were measured by the reGaussianization method
- Calibrated against image simulations $\hat{g} = (1+m)g^{\text{true}} + c_{\text{s}}$
- Publicly available

Mandelbaum, HM, et al. (2018a) Mandelbaum et al., (2018b)

Cosmic Shear Analysis

Cosmic Shear

- Auto-correlation of lensing shear (galaxy shapes). ullet
- Directly measure matter correlation lacksquarefunction: $\xi(r; \Omega_{\rm m}, \sigma_8) = \langle \delta_{\rm m}(r') \delta_{\rm m}(r'+r) \rangle_{r'}$

Matter energy density Amplitude of matter power spectrum

Fourier-space analysis

Parameter	symbols	prior
physical dark matter density	$\Omega_{ m c}h^2$	flat [0.03,0.7]
physical baryon density	$\Omega_{ m b}h^2$	flat [0.019,0.026]
Hubble parameter	h	flat [0.6,0.9]
scalar amplitude on $k = 0.05 Mpc^{-1}$	$\ln(10^{10}A_s)$	flat [1.5,6]
scalar spectral index	$n_{ m s}$	flat [0.87,1.07]
optical depth	au	flat [0.01,0.2]
neutrino mass	$\sum m_{ u} [\mathrm{eV}]$	fixed $(0)^{\dagger}$, fixed (0.06) or flat [0,1]
dark energy EoS parameter	w	fixed $(-1)^{\dagger}$ or flat $[-2, -0.333]$
amplitude of the intrinsic alignment	A_{IA}	flat [-5,5]
redshift dependence of the intrinsic alignment	$\eta_{ m eff}$	flat [-5,5]
baryonic feedback amplitude	A_B	fixed (0) [†] or flat $[-5,5]$
PSF leakage	ã	Gauss (0.057, 0.018)
residual PSF model error	\tilde{eta}	Gauss (-1.22, 0.74)
uncertainty of multiplicative bias m	$100\Delta m$	Gauss (0,1)
photo- z shift in bin 1	$100\Delta z_1$	Gauss (0, 2.85)
photo- z shift in bin 2	$100\Delta z_2$	Gauss (0, 1.35)
photo- z shift in bin 3	$100\Delta z_3$	Gauss (0, 3.83)
photo- z shift in bin 4	$100\Delta z_4$	Gauss (0, 3.76)

Intrinsic alignment Cosmology Baryonic effect PSF modeling error Photo-z uncertainties

Hikage et al. (2018)

Blind Analysis

- We adopt "Blind Analysis" to avoid unconscious biases.
- We perform cosmological constraints with 3 blinded shape catalogs.
- We unblind our analyses after systematic tests.

Hikage et al. (2018)

Cosmological Constraint

Hikage et al. (2018)

Real-space Analysis

Intrinsic Alignments

Fourier-space analysis

Hikage et al. (2018)

 $F[\chi(z)] = -A_{\text{IA}}C_1\rho_{\text{crit}}\frac{\Omega_m}{D_+(z)}\left(\frac{1+z}{1+z_0}\right)^{\eta_{\text{eff}}}$

Real-space analysis

Hamana et al. (2019, 2022)

Projected galaxy-galaxy clustering and galaxy-galaxy lensing (2x2pt)

Galaxy-galaxy Lensing x Galaxy-galaxy Clustering

Galaxy-galaxy clustering

$$\xi_{gg} = \langle \delta_g \delta_g \rangle \sim b^2 \langle \delta_m \delta_m \rangle = b^2 \xi_{mm}$$

$$\delta_g \sim b \delta_m \text{ at large scales}$$

Galaxy-galaxy lensing
$$\xi_{\rm gm} = \langle \delta_{\rm g} \delta_{\rm m} \rangle \sim b \langle \delta_{\rm m} \delta_{\rm m} \rangle = b \xi_{\rm mm}$$

Robust against systematics in lensing measurement (shapes and photo-z) compared to cosmic shear.

HSC x BOSS Measurement

SDSS-III/BOSS spec-z sample

- Area ~ 8300 deg²
- z = [0.15, 0.35], [0.47, 0.55], [0.55, 0.70]
- Luminosity cut is applied to obtain volume-limited sample.

Intrinsic Alignments

Since we use the spectroscopic sample for lens galaxies and our source galaxy selection is conservative,

 $dz_s P_i(z_s) \ge 0.99$ $z_{I,max}=0.7$ (highest redshift of the lens sample)

we do not have to care about intrinsic alignment.

DES needs to account for intrinsic alignment, since they use *photometric* galaxies for lens samples.

G-g lensing and clustering measurements by HSC-Y1 and BOSS

Galaxy-galaxy lensing

Projected Galaxy-galaxy clustering

G-g lensing and clustering measurements by HSC-Y1 and BOSS

Galaxy-galaxy lensing

Large scale analysis (same scale cut with DES-Y1; Sugiyama et al., 2021) →Less modeling systematics, less signal-to-noise Small scale analysis (Miyatake et al., 2021) →Challenges in modeling, more signal-to-noise

Galaxy-galaxy clustering

Modeling Small-scale Signals

Challenges

- Accurate modeling of non-linear regimes
- Proper treatment of uncertainties in galaxy-halo connection

dark matter dark matter halos galaxies

Dark Emulator: accurate non-linear model

- Run N-body simulations under 101 sets of cosmological parameters. $\overrightarrow{C} = (\omega_b, \omega_c, \Omega_\Lambda, A_s, n_s, w)$
- Run the Rockstar halo finder.
- Measure correlation functions, i.e., $\xi_{\rm hh}(r; \vec{C})$ and $\xi_{\rm hm}(r; \vec{C})$.
- Interpolate correlation functions across the cosmological parameter sets using PCA and Gaussian process.
- Achieved an accuracy for $\xi_{hh}(r; C)$ and $\xi_{\rm hm}(r; \vec{C})$ better than 2%.

T. Nishimichi (Kyoto)

Nishimichi et al. (2019)

Dark Quest Project Webpage

A suite of cosmological N-body simulations and a handy emulator to explore cosmological parameter space

pypi package 1.0.23 Downloads 9194 Anaconda.org 1.0.23 Install with conda downloads 69 total license MIT_License Last updated 29 Oct 2021

What's new?

Dark Emulator is now publicly available! (March 19, 2021)

Overview

Dark Quest is a cosmological structure formation simulation campaign by Japanese cosmologists initiated in 2015. The primary goal of the project is to understand the complex parameter dependence of various large-scale structure probes, and provide a versatile tool to make predictions for parameter inference problems with observational datasets. The first series of simulations, Dark Quest. I. (DQ1), was completed in 2018 and we are now in the second phase (DQ2). A Gaussian-Process based emulation tool, Dark Emulator, was developed with the DQ1 database.

Our Team

Takahiro NISHIMICHI

YITP, Kyoto U / Kavli IPMU, U of Tokyo

Pl of this project.

Masahiro TAKADA

Kavli IPMU, U of Tokyo

Participation in DQ1

Ryuichi TAKAHASHI

Hirosaki U

Taira OOGI

Chiba U

Participation in DQ1

Simulator

Hironao MIYATAKE

Nagoya U

Participation in DQ1

Development of HOD modules

Cosmology challend

~10000 downloads!

Yosuke KOBAYASHI

Kavli IPMU, U of Tokyo

Participation in DQ1 and DQ2

Mock galaxy database maintenance

Extension to redshift space

Naoki Yoshida

Kavli IPMU, U of Tokyo

Participation in DQ1

Galaxy-halo connection

- Use halo occupation distribution (HOD; 5 parameters) to distribute galaxies in a dark matter halo.
- Take into account the uncertainties in galaxy physics by marginalizing HOD parameters.

Cosmology challenge: Systematic tests with mocks

Compare

Miyatake et al. (2022a)

Cosmology challenge: Systematic tests with mocks

Y. Kobayashi (U. of Arizona)

Miyatake et al. (2022a)

Cosmology challenge: Systematic tests with mocks

physics

a DM halo

• Baryonic effect

Assembly bias

Incompleteness

SO vs FoF

Miyatake et al. (2022a)

Analyzing real data

Systematic checks were done **before unblinding**

analysis), our constraint prefers S_8 lower than Planck.

Baseline noisy mocks

realization 0, scale cuts: $(2, 3)$	
realization 0, scale cuts: $(8, 12)$	
realization 1, scale cuts: $(2, 3)$	
realization 1, scale cuts: $(8, 12)$	
realization 2, scale cuts: $(2, 3)$	
realization 2, scale cuts: $(8, 12)$	
realization 3, scale cuts: $(2, 3)$	
realization 3, scale cuts: $(8, 12)$	
realization 4, scale cuts: $(2, 3)$	
realization 4, scale cuts: $(8, 12)$	
realization 5, scale cuts: $(2, 3)$	
realization 5, scale cuts: $(8, 12)$	
realization 6, scale cuts: $(2, 3)$	
realization 6, scale cuts: $(8, 12)$	
realization 7, scale cuts: $(2, 3)$	
realization 7, scale cuts: $(8, 12)$	
realization 8, scale cuts: $(2, 3)$	
realization 8, scale cuts: $(8, 12)$	
realization 9, scale cuts: $(2, 3)$	
realization 9, scale cuts: $(8, 12)$	

Photo-z Self-calibration

Measurement

$$\Delta \Sigma(R) = \sum_{\rm cr} (z_{\rm l}, z_{\rm s}; \Omega_{\rm m}) \gamma(R)$$

- Lensing kernel and growth rate have different redshift and Ω_m dependence.
- If we have multiple robust z_1 and a single z_s , we can calibrate z_s .

Theory

$$\Delta\Sigma(R) = \bar{\rho}_{m0} \int_{0}^{\infty} \frac{k^2 dk}{2\pi^2} P_{gm}(k; \sigma_8, \Omega_m) J_2(z_{m}) \int_{0}^{\infty} \int_{0}^{\infty} \frac{k^2 dk}{2\pi^2} P_{gm}(k; \sigma_8, \Omega_m) J_2(z_{m})$$

Oguri & Takada et al. (2013)

Photo-z Self-calibration

Comparison with other HSC-Y1 cosmology analyses

- Consistent with the 2x2pt large scale analyses (Sugiyama et al., 2022).
- Combining with cosmic shear (3x2pt), we can get more stringent constraints.

Miyatake et al. (2022b)

S₈ Tension

Late universe probes (weak lensing, galaxy clustering, cluster count, RSD) consistently yield S8 smaller than an early universe probe (CMB).

HSC-Y3 Analysis

HSC-Y3 Shape Catalog

- Construction of Y3 shape catalog is done.
 - Seeing remains ~0.6"
 - Area: $170 \text{deg}^2 \rightarrow 430 \text{ deg}^2$.
 - 10⁷ galaxies \rightarrow 3x10⁷ galaxies

Li, HM, et al. (2022)

VVDS

dec [deg]

XMM

HSC-Y3 Cosmology Analysis

- Cosmic shear in real space (Xiangchong Li)
- Cosmic shear in Fourier space (Roohi Dalal)
- 3x2pt (2x2pt + cosmic shear) analysis
 - Measurements (Surhud More)
 - Large-scale analysis (Sunao Sugiyama)
 - Small-scale analysis (Hironao Miyatake)

Weak Lensing Surveys: Now and Future

KiDS (Europe)

2.6

Primary Mirror [m]

Galaxy **Number Dénsity** [arcmin⁻²]

4.0

DES (USA)

8.2

Survey Area [sq. deg] ,500 5,000 1,400

2010

Inspired by E. Krause Credit: ESO, Fermilab/Reidar Hahn, NAOJ, ESA/C. Carreau, Rubin Obs/NSF/AURA, NASA

Summary

- HSC-Y1 cosmology results
 - Cosmic shear
 - Galaxy-galaxy clustering x lensing (2x2pt)
 - Used down to small scales using robust model by dark emulator x HOD.
 - S₈ tension exists?
- HSC-Y3 cosmology analysis
 - Cosmic shear x galaxy-galaxy clustering x lensing (3x2pt) analysis is going on!
- Combining 3D galaxy-galaxy clustering (full-shape and IA) with galaxy-galaxy lensing will have much more constraining power.

Subaru HSC is one of the best telescopes to carry out weak lensing cosmology.

Backup Slides

Fourier-space CS σ_8 - Ω_m

Real-space ξ -

frequency

$$S_{8} = 0.775_{-0.045}^{+0.053}$$

$$0.04$$

$$0.04$$

$$0.04$$

$$0.04$$

$$-0.04$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

