Simulating intrinsic alignments without hydrodynamics

Jonathan Blazek

Northeastern University

YITP: Intrinsic alignments December 2022

Modeling galaxy observables

Modeling galaxy observables

nonlinear galaxy biasing

$$\delta_g = b_1 \delta_m + b_2 \delta_m^2 + b_s s^2 + b_{3\mathrm{NL}} \psi + \cdots$$

$$\gamma_{ij}^{I} = C_{1}s_{ij} + C_{2}(s_{ik}s_{kj}) + C_{\delta}(\delta s_{ij}) + C_{t}t_{ij} + \cdots$$

TATT or EFT model for intrinsic alignments

e.g. McDonald & Roy 2009; Baldauf+2012; JB+ 2015; 2019; Schmitz, Hirata, JB+ 2019; Vlah+ 2020

IA parameters

(DES Collaboration 2022)

DES Y3 Amplitude consistent with Y1 results, but notably lower.

How do we proceed?

- Observations on real data (direct and inferred)
- Analytic studies
- Hydrodynamic simulations

How do we proceed?

- Observations on real data (direct and inferred)
- Analytic studies
- Hydrodynamic simulations
- Gravity-only simulations with an additional IA "model"

Simulating IA with gravity-only information

- Semi-analytic modeling with halo information (e.g. Joachimi+ 2013)
- IA infusion based on simulated tidal fields and an analytic model (e.g. Harnois-Déraps+ 2022, Singh+ in prep)
- AI/ML model trained on hydro sims (e.g. Jagvaral+ 2022)

Why use gravity-only sims with added IA modeling?

Complementary approach!

- Hydro sims are computationally expensive;
 IA behavior can depend on sub-grid assumptions
- Nonlinear model with physically-motivated parameters
- Can rapidly produce large volumes: realistic mock catalogs, modeling, covariances
- Compare to observations, hydro sims, and analytic modeling

Simulating IA with gravity-only information

Method 1 (genIAL):

Kai Hoffman developer K. Hoffman, M. Crocce, JB+ 2022

- Realistic galaxy properties
- Based on MICE and Euclid Flagship
- Relatively slow: designed for highly realistic mocks

Method 2 (Halotools-IA):

N. Van Alfen, JB, D. Campbell, F. Lanusse,

- D. Leonard, A. Hearin+
- Fewer galaxy properties (right now)
- Modular, flexible. Applying to DESC SkySim5000
- Fast: can make mocks or models

Halo Occupation Distribution (HOD) and Subhalo Abundance Matching (SHAM)

Halo Occupation Distribution (HOD) and Subhalo Abundance Matching (SHAM)

Halo Occupation Distribution (HOD) and Subhalo Abundance Matching (SHAM)

Halotools-IA

Nick Van Alfen

- Start with any dark matter halo catalog (with or without subhalos)
- Apply HOD/SHAM
- Choose galaxy shape and alignment based on halo and/or galaxy properties
- Calculate desired statistics

Van Alfen, Campbell, JB, Lanusse, Leonard, Hearin+ in prep

Halotools-IA

Example: changing satellite alignment strength impacts positionorientation and orientation-orientation correlation functions.

Halotools-IA

- Built on Halotools (Hearin+ 2015; part of Astropy)
- Modular, flexible, extendable
- Fast! ~10 seconds to create a galaxy catalog (~100k galaxies)
- -few seconds to apply galaxy orientations
- -few seconds to calculate correlation functions
- Can generate mock catalogs for model tests (e.g. LSST-DESC project)
- Can be directly used to make model predictions or to train an emulator

Van Alfen, JB, Campbell, Lanusse, Leonard, Hearin+ in prep

Consistent with Hydro Sims

Importance of halo ellipticity

Need for environmental dependence?

radial alignment to match subhalos

Need for environmental dependence?

Need for environmental dependence?

Developing the model (in progress)

- include information on environment and merger history.
 c.f. "decorated HOD" (Hearin+ 2016)
- operate with limited halo/subhalo information
- tidal field information
- merge with ML model (e.g. graph NN: Jagvaral+ 2022)

genIAL: Testing IA in MICE

Hoffman, Crocce, JB, Secco+ (2022)

- Incorporate observational constraints (and DES galaxy properties)
- Produce realistic IA catalogs
- Measure IA parameters and impact of analysis choices

genIAL: Testing IA in MICE

Hoffman, Crocce, JB, Secco+ (2022)

Publicly available tools and catalogs

- github.com/astropy/halotools
- E README.rst

Halotools

<section-header>

README.md

github.com/flediak/genIAL

[IA modules coming soon!]

Beyond "nx2"

- Higher n-point correlations
- Treat IA and biasing as probes of physics rather than contaminants

Testing the Equivalence Principle

e.g. **Dark matter - aether interaction** (Blas+ 2012) Horava-Lifshitz Quantum Gravity (Horava 2009) Einstein-aether model (Jacobsen & Mattingly 2001)

Testing the EP with galaxy shapes

P. Martens, JB, S. Sibiryakov in prep.

$$\gamma_{ij}^{I} = \underbrace{C_{\text{EPV}}(v_{i}v_{j})}_{\sum i \in V_{i}} + C_{1}s_{ij} + C_{2}(s_{ik}s_{kj}) + C_{\delta}(\delta s_{ij}) + C_{t}t_{ij} + \cdots$$

$$\nabla_{i}\Phi \sim v_{i}$$

Preliminary results

- *C_{EPV}* can be well-constrained with future data sets (e.g. ggl bispectrum)
- Can be related to range of models with EP violation
- Complementary information to gravitational waves
- Future work: Simulate this effect using Halotools-IA.

Conclusions

- We need multiple approaches to understand and model intrinsic alignments.
- Generating realistic IA with gravity-only simulations is an important tool, and there are several promising methods.
- Halotools-IA and genIAL allow us to test IA modeling and are able to match hydro and observational results.
- These simulation tools can be adapted to include new physics to use IA as a powerful new probe.

