# BAO mock measurement of three dimensional correlation function for photometric surveys

Keitaro Ishikawa (M1, Nagoya U.)

**Collaborators**:

Tomomi Sunayama (Nagoya U./ Arizona), Atsushi J. Nishizawa (Gifu Shotoku U.) 2022/12/05

# Outline

## 1. Introduction

- Galaxy observation methods
- Baryon Acoustic Oscillation
- Motivation

### 2. Setup & Method

- Simulation data we use
- 3D two-point correlation function for galaxies

### 3. Result

- In that case the magnitude of the photo-z error associated with data is known
- In the other case (Not known)
- Theoretical prediction for skewed non-Gaussian photo-z distribution

## 4. Summary

# Outline

## 1. Introduction

- Galaxy observation methods
- Baryon Acoustic Oscillation
- Motivation

### 2. Setup & Method

- Simulation data we use
- 3D two-point correlation function for galaxies

### 3. Result

- In that case the magnitude of the photo-z error associated with data is known
- In the other case (Not known)
- Theoretical prediction for skewed non-Gaussian photo-z distribution



# Two main observational methods

### Spectroscopic & Photometric

 Photon flux is broken down by wavelength to make Spectral Energy Distribution.

|       | area             | number<br>density | redshift<br>accuracy |
|-------|------------------|-------------------|----------------------|
| spec  | $\bigtriangleup$ | ×                 | $\bigcirc$           |
| photo | $\bigcirc$       | $\bigcirc$        | $\bigtriangleup$     |

Redshift accuracy of photometric is worse than one of spectroscopic.



Padmanabhan et al. 2007 Fig.1



# What is BAO?



as a sound wave.







# correlation function insensitive to LoS

#### different analysis methods





# Goal: Verify acceptable photo-z uncertainty

### The goal of this study We aim to show the level of photo-z error associated with photometric observations.

 It may improve statistical accuracy because of 3D box. • It's possible to constrain the Hubble para. by LoS information.

### In this presentation...

- We measure BAO using mocks of photometric observation with Line of Sight information to show the level of photo-z error.
- 0

We check the effect if the photo-z distribution is not Gaussian but skewed non-Gaussian.



7/22

# Outline

### 1. Introduction

- Galaxy observation methods
- Baryon Acoustic Oscillation
- Motivation

### 2. Setup & Method

- Simulation data we use
- 3D two-point correlation function for galaxies

### 3. Result

- In that case the magnitude of the photo-z error associated with data is known
- In the other case (Not known)
- Theoretical prediction for skewed non-Gaussian photo-z distribution



# Simulation data we use

- The property of mock
  - Real space
  - Box : 1 [Gpc/h]<sup>3</sup> × 112 realizations





- Redshift z = 0.251, 0.617, 1.03
- Stellar Mass Limit :  $10^{11} M_{\odot}$

Nishimichi T. et al. 2019 Sunayama T. et al. 2020 Ishikawa S. et al. 2021

# fitting model

#### **3D two-point correlation function for galaxies**





# We incorporate the photo-z distribution.

template model with photo-z effect

$$\xi^{\text{int}}(r,\mu) = \int_{r\mu-4(\sqrt{2}\sigma_{\text{photo}})}^{r\mu+4(\sqrt{2}\sigma_{\text{photo}})} dr_{\pi}G(r_{\pi},\sigma_{\text{photo}}) \xi_{m}(\sqrt{2}\sigma_{\text{photo}})$$

• 
$$\xi_m(r) = \int dk \frac{k^2}{2\pi^2} P_m^{NL}(k) j_0(kr)$$

$$P_m^{NL}(k) = [P_{lin}(k) - P_{smooth}(k)] e^{-k^2 \Sigma_{nl}^2/2} + P_{smooth(k)} [Mpc/k]$$

$$\Sigma_{nl} = \Sigma_a D(z)/D(0) [Mpc/h]$$

Eisenstein et al. 2007





# Fitting procedure: least chi square fit



$$\chi^2 = \sum_{ij} \left( \xi_{data}(r) - \xi_{fit} \right)$$

$$\operatorname{Cov}(r_1, r_2) = \frac{1}{N_{\text{mock}} - 1} \sum_{i} \left( \left[ \xi_i(r_1) - \overline{\xi}(r_1) \right] \left[ \xi_i(r_2) - \overline{\xi}(r_2) \right] \right)$$



 $_{t}(r))_{i} \operatorname{Cov}_{ij}^{-1} \left(\xi_{\text{data}}(r) - \xi_{\text{fit}}(r)\right)_{i}^{\iota}$ 

# $\xi(r) = \frac{DD(r) - 2DR(r) + RR(r)}{RR(r)}$

Landy & Szalay 1993



# Outline

### 1. Introduction

- Galaxy observation methods
- Baryon Acoustic Oscillation
- Motivation

### 2. Setup & Method

- Simulation data we use
- 3D two-point correlation function for galaxies

### 3. Result

- In that case the magnitude of the photo-z error associated with data is known
- In the other case (Not known)
- Theoretical prediction for skewed non-Gaussian photo-z distribution



# fitting result when photo-z error is known



For ease of viewing, the amplitude is rescaled appropriately.

14/22

# fitting result when photo-z error is known



For ease of viewing, the amplitude is rescaled appropriately.





# When photo-z error is known





# up to a photo-z error corresponding to about 50 Mpc/h

### incorrect cosmology check





# up to a photo-z error corresponding to about 50 Mpc/h

### incorrect cosmology check





# When photo-z error is <u>unknown</u>

### $\alpha$ parameter distribution

At *z* = 0.251,

fitting with the spec-z or the photo-z 1% template will not bias the BAO location

(although the statistical error will be larger).

When we fit photo-z 3% data using photo-z 2% template, the result was biased.





# up to a photo-z error corresponding to about 15 Mpc/h

### incorrect cosmology check





# nonGaussian photo-z data w/ Gaussian fit





# Summary & Future work

### Summary

- In the case that photo-z error is known, we could measure BAO until it becomes 50 Mpc/h. 0
- In the case that photo-z error is **unknown**, we could measure BAO until it becomes 15 Mpc/h 0 using spec-z or photo-z 1% template.
- Even if the photo-z distribution is skewed non-Gaussian, skewness does not affect the BAO 0 measurement.

### Future work

- Fitting parameterization of photo-z error  $\sigma_{\rm photo}$
- Comparison to MCMC

