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1. Relativistic effects on the observed redshift
Observed redshift : cosmological redshift (Hubble flow) + Doppler effect

zobs = zcosmological + zDoppler

© S.Alam et al. CMU

gravitational redshift effect

l’énergie photons du FDC, avec un gain lors de la traversée d’une surdensité et
une perte lors du passage dans un vide ; l’amplitude et les propriétés de l’e+et
dépende naturellement des caractéristiques de l’énergie sombre. L’e+et iSW a
par conséquent une influence directe, mais qui se trouve être ténue, sur le spec-
tre de puissance des fluctuations de températures du FDC. Cette contrainte
a obligé les cosmologistes à utiliser des données externes pour détecter l’e+et
iSW. La première approche développée et toujours classiquement utilisée con-
siste à corréler le FDC avec un relevé de galaxies qui trace la distribution de
la matière dans l’Univers, et donc les potentiels gravitationnels sous-jacents.
Cette méthode est au coeur d’un pan de ma thèse et est traitée dans la section
suivante.

Figure 1 – Illustration graphique de l’e+et Sachs-Wolfe intégré subi par les
photons du FDC, ici lors de la traversé d’une surdensité de matière (un amas
de galaxies). Dans le cas d’un Univers dominé par la matière, l’e+et en question
est nul (chemin vert) du fait que les potentiels gravitationnels soient constant
dans ce type de cosmologie. À l’inverse dans un Univers dominé par l’énergie
sombre, les photons du FDC (chemin bleu) gagnent de l’énergie au moment de
remonter et de sortir du potentiel, car ce dernier a été étiré et est devenu moins
profond.

2 La corrélation FDC-matière pour la détection
de l’e%et iSW

En faisant appel à la théorie des perturbations, il est possible de calculer
la corrélation théorique existante entre un relevé de galaxies donné projeté
sur le ciel (caractérisé par sa fonction de sélection, i.e. la distribution en red-
shift des galaxies qu’il contient) et les anisotropies du FDC dans lesquelles se
cachent les variations de température induite par l’e+et iSW. Simultanément,
cette corrélation croisée galaxies-CMB peut être mesuré sur des données réelles,
sous la forme d’une fonction de corrélation dans l’espace de son choix (réel, har-
monique, ondelettes). Deux principaux tests sont alors possibles : confronter les
prédictions aux résultats obtenus avec les données (pour tester la validité d’un
modèle), ou plus simplement commencer par chercher si cette corrélation existe
bien réellement (prouvant ainsi l’existence de la matière sombre).

3

integrated Sachs-Wolfe
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gravitational lensing

+ zgrav + zISW + zShapiro + …

(θlens, φlens)

Shapiro time delay

https://www.cmu.edu/physics/news-events/news-archive/2017/croft-general-relativity.html


2. Redshift space distortions T.Matsubara [ApJ 537 L77 (2000)], 
A.Challinor and A.Lewis [1105.5292], 
C.Bonvin and R.Durrer [1105.5280], 
J.Yoo [1409.3223], and many worksPerturbed FLRW metric: ds2 = [−(1 + 2Φ)dt2 + a2(1 − 2Ψ)dx2]
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Redshift space ↔ real space

Doppler term other relativistic contributions
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Redshift-space density ↔ real-space density

conservation law:  (1 + δ(s)(s)) d3s = (1 + δ(r)) d3r
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Observed redshift including all effects: 1 + z =
(kμuμ)S

(kμuμ)O

http://arxiv.org/abs/1105.5292
http://arxiv.org/abs/1105.5280
http://arxiv.org/abs/1409.3223


3. Recalling the Doppler effect

real space redshift space

observer

line-of-sight

Large scales: coherent infall

Kaiser effect

(line-of-sight vector)2

Kaiser formula 

(constant line-of-sight vector)

symmetric distortions along the line-of-sight direction

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

even multipole anisotropies in RSD

δ(s)(k) = (b + f (k̂ ⋅ ̂z)2) δL(k)



4. Relativistic contributions
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(line-of-sight vector)odd in relativistic effects ⇒ odd multipoles

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

Relativistic effects induces the asymmetric distortions along the LOS direction



5. Lowest-order odd multipole: dipole (l = 1)

ξℓ(s, d) = 2ℓ + 1
2 ∫

1

−1
ξ(S)(s, d, μ) Pℓ(μ) dμ

( )P1(μ) = μ = ̂s ⋅ ̂d

cos−1 μ

From linear theory, the dipole moment is ...

• observed only when cross-correlating different biased objects 

• induced by the Doppler term beyond the plane-parallel limit 

(wide-angle correction ξg ~ O((s/d)n)) 

• proportional to

O

s1

s2

s = s2 - s1

d=(s1+s2)/2

bX

bY

A.Challinor and A.Lewis [1105.5292], C.Bonvin and R.Durrer [1105.5280], J.Yoo [1409.3223], and many works

ξ1(s) ∝ Δb = (bX − bY)

⟨δ(S)
X (s1)δ(S)

Y (s2)⟩ = ξ(S)(s, d, μ)

http://arxiv.org/abs/1105.5292
http://arxiv.org/abs/1105.5280
http://arxiv.org/abs/1409.3223


6. Beyond linear regime: RayGalGroupSims (RayGal)

• storing gravitational potential data on light cone 

• tracing back the light ray to the source by direct 

integration of geodesic equation 

• the observed (angular) position and redshift

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, S.Saga [1803.04294] 
Y.Rasera, M-A.Breton, ..., S.Saga, A.Taruya, ... [2111.08745]

1 + z =
(gμνkμkν)source

(gμνkμkν)observer

http://arxiv.org/abs/1803.04294
http://arxiv.org/abs/2111.08745


7. Measurements in RayGalGroupSims (z=0.34)
16 Breton et al.

Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-

MNRAS 000, 1–21 (2018)

16 Breton et al.

Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-

MNRAS 000, 1–21 (2018)

16 Breton et al.

Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-

MNRAS 000, 1–21 (2018)

16 Breton et al.

Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-

MNRAS 000, 1–21 (2018)

Relativistic e↵ects: correlation-function dipole 17

Figure 13. Full dipole of the cross-correlation function between
data H1600 and data H100. The deviation from linear theory is
governed by the potential contribution and the “residual” (mostly
related to the coupling between potential and velocity terms). The
dipole is a sensitive probe of the potential well beyond the virial
radius of haloes.

over as we have seen the residual (i.e all the cross terms
and non-linearities of the mapping) is of the same order as
the gravitational potential contribution and should be taken
into account properly. At small scales the pairwise velocity
PDF is also highly non-Gaussian, leading to high peculiar
velocities and Finger-of-God e↵ect. Coupled to gravitational
potential and possibly wide-angle e↵ect we expect this to be
a non-negligible contribution to the dipole. To fully under-
stand and probe cosmology or modified theories of gravity at
these scales using the cross-correlation dipole we therefore
need a perturbation theory or streaming model which takes
into account more redshift perturbation terms and relaxes
the distant observer approximation. This will be the focus
of a future paper.

There are multiple possible extensions to this work. At
large Gpc scales current analysis are limited by the volume
of the simulation as well as gauge e↵ect. At smaller scales
the baryons as well as the finite resolution e↵ect might play
a role. Extension of this work in these two directions can
open interesting perspectives. When analysing future sur-
veys, it is also important to consider observational e↵ects.
One possibility would be to populate haloes with galaxies
and to incorporate e↵ects such as magnification bias, ab-
sorption by dust, redshift errors, alignment of galaxies, etc.
Another straight-forward extension is to explore the influ-
ence of cosmology, dark energy, dark matter and modified
gravity on the dipole of the halo cross-correlation to shed
light on the nature of the dark sector with future large scale
surveys.
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Figure 10. Dipole of the cross-correlation function normalised by the bias, at large scales, for di↵erent perturbations of the observed
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right panel Doppler only, middle
left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel weak lensing only, and finally bottom right panel
the residual where we subtract all the previous e↵ects to the full dipole taking into account all the e↵ects at once. In black we have the
averaged prediction using linear theory at first order in H/k.
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Figure 11. Full dipole of the cross-correlation function nor-
malised by the bias. The dipole is dominated by the Doppler
contribution.

highlighted by Zhao et al. (2013). However it was restricted
to the region r < 2 Rvir inside or close to the virial ra-
dius Rvir ⇠ 1 � 2 h

�1Mpc of the clusters. Interestingly, the
transverse-Doppler contribution to the dipole (middle-left)
is non-zero even at very large radii (r > 2 Rvir). It remains
positive of order ⇠1 ' 2�6⇥10�5 at radii 14 < r < 30 h

�1Mpc.
At smaller scales there is strong increase from ⇠1 = 2 ⇥ 10�4

at 14 h
�1Mpc to ⇠1 = 5⇥ 10�4 at 6 h

�1Mpc. The ratio to the
potential contribution to the dipole is of order �10 at this
scale.

The ISW contribution (middle right) and lensing contri-
bution (bottom left) are consistent with zero at small scales.
The size of the error bars provide an upper limit for the sig-
nal of ⇠1 < 5 ⇥ 10�5 for ISW and ⇠1 < 10�4 for lensing. It is
still in agreement with the linear prediction which is of the
same order of magnitude, however the fluctuations are too
important to measure the signal.

Surprisingly, the residual (bottom right) is of the same
order as the potential contribution (from ⇠ �10�4 at
30 h

�1Mpc to ⇠ �6 ⇥ 10�3 at 6 h
�1Mpc). This is an im-

portant result of this paper. It means that at these scales
and especially below 15 h

�1Mpc, one cannot add up all the
contributions one by one. On the contrary, there are some
important contributions involving both potential terms and
velocity terms together.

5.3.2 Total dipole

The total dipole at non-linear scales is presented Fig. 13.
It remains slightly positive of order ⇠1 ⇠ 1 ⇥ 10�3 above
15 h

�1Mpc. As shown in the previous section, this is related
to the velocity contribution which remains positive in this
region. At smaller scales, the potential contribution dom-
inates over the velocity contribution. The total dipole is
then falling down quickly to ⇠1 ⇠ �1 ⇥ 10�2 at 6 h

�1Mpc.
Moreover within our simulated survey of 8.34 (h

�1Gpc)3, er-
ror bars (mostly related to the fluctuations of the velocity
field) are smaller than the signal at this scale. The dipole
of the group-galaxy cross-correlation function is therefore a
good probe of the potential far outside of the group virial

radii. Interestingly, deviations from linear theory are mostly
governed by the potential and by the residual. The interpre-
tation of the dipole is therefore non-trivial because of cor-
relations between potential and velocity terms. However the
dipole carries important information about the potential.

5.3.3 Mass dependence of the contributions

So far, we have focused on the cross-correlation between
haloes of mass ⇠ 4.5 ⇥ 1013

h
�1M� and haloes of mass

⇠ 2.8 ⇥ 1012
h
�1M�. In Fig. 14, we investigate the halo

mass dependence of the main dipole contributions (velocity,
potential). The mass dependence on the residual is shown
in Appendix C. We explore various configurations by
cross-correlating all the di↵erent halo populations with
the lightest halo population. At large linear scales the
variation of the dipole is mostly governed by the bias
di↵erence between the two halo populations, however at
small non-linear scales the evolution of the dipole is less
trivial. The velocity contribution to the dipole does not
evolve strongly with halo mass. It stays bounded in the
range 0 < ⇠1 < 1 ⇥ 10�3. On the other hand, the potential
contribution becomes more negative at larger mass from
⇠1 ' �5 ⇥ 10�4 to ⇠1 ' �1 ⇥ 10�2 at 6 h

�1Mpc. It means
that for massive enough haloes the potential contribution
dominates over the velocity contribution for a wide range
of scales (as seen previously). However for haloes lighter
than ⇠ 1013

h
�1M� the velocity-contribution dominates.

The residual also departs from 0 at larger radii for heavier
haloes. Interestingly it is mostly following the potential
contribution.

The prediction of the potential e↵ect from Eq. (41) (as-
suming spherical symmetry) reproduces the trend at a qual-
itative level. However the potential contribution is overesti-
mated. Taking into account the dispersion around the poten-
tial deduced from spherical symmetry as in Eq. (38) should
improve the agreement with the measured dipole (Cai et al.
2017). Note that we have checked (see Appendix B) that
our conclusions still hold for a very di↵erent halo definition
(i.e. linking length b = 0.1). The main di↵erence is a slightly
better agreement with the spherical predictions for the po-
tential contribution to the dipole.

6 CONCLUSIONS

In this work we explored the galaxy clustering asymmetry
by looking at the dipole of the cross-correlation function be-
tween halo populations of di↵erent masses (from Milky-Way
size to galaxy-cluster size). We took into account all the rel-
evant e↵ects which contribute to the dipole, from lensing to
multiple redshift perturbation terms. At large scales we ob-
tain a good agreement between linear theory and our results.
At these scales the dipole can be used as a probe of velocity
field (and as a probe of gravity through the Euler equation).
However one has to consider a large enough survey to over-
come important real-space statistical fluctuations. It is also
important to take into account the light-cone e↵ect and to
accurately model the bias and its evolution.

At smaller scales we have seen deviation from linear
theory. Moreover the gravitational redshift e↵ect dominates
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Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-
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Figure 10. Dipole of the cross-correlation function normalised by the bias, at large scales, for di↵erent perturbations of the observed
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right panel Doppler only, middle
left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel weak lensing only, and finally bottom right panel
the residual where we subtract all the previous e↵ects to the full dipole taking into account all the e↵ects at once. In black we have the
averaged prediction using linear theory at first order in H/k.
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The Doppler & gravitational redshift effects dominates 

the dipole signal at large & small scales, respectively.



8. Our model

  must be modified by the gravitational potential of haloes:  Φ Φ = ΦL + Φhalo

ΦNL

ΦL

(  is estimated by using the NFW profile)Φhalo(M, z)

s = r + 1 + z
H

(v ⋅ ̂r) ̂r − 1 + z
H

Φ

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

Doppler & gravitational redshift effects dominates the dipole signal at large & small 

scales, respectively.

+ minor relativistic terms

Our model for redshift-space density field

δ = δ(real) + δ(Doppler) + δ(grav) + δ(halo)

ΦL Φhalov

http://arxiv.org/abs/2004.03772


9. Our model

Analytical results : the dipole amplitude is proportional to

• Δb = (bX - bY) for Doppler & linear potential contributions 

• ΔΦ = (ΦX,halo - ΦY,halo) for halo potential contribution

O

s1

s2

s = s2 - s1

(bX, ΦX,halo)
(bY, ΦY,halo)

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

θ
d=(s1+s2)/2

http://arxiv.org/abs/2004.03772


10. Future detectability

Euclid (2023~)

Subaru-PFS (2022~)

DESI (2022~)

SKA2 (2030~)

c.f. o.pσ detection 

in BOSS galaxies
S. Alam et al. [1709.07855]

Cross-correlating two different targets  ⇒ non-zero dipole

(o) combining two surveys

(g) split a sample into at least two subsamples  

no unique way, for example, we assume 

galaxies follow the halo distribution

Detectability of the gravitational redshift 13

Figure 9. Expected number density of galaxies (top) and bias parameter
(bottom) for the surveys listed in Table 1. The plotted data are taken from
the tables summarized in Appendix D.

In our analytical treatment, one crucial assumption is that each
of the galaxies to cross correlate strictly reside at the halo centre, and
thus no virialized random motion is invoked. This is an idealistic
situation, and there are galaxies whose positions are away from
the halo center (e.g., Hikage et al. 2013). The o�-centered galaxy
positions lead to two possible systematics in the dipole signal. One is
the diminution of the non-perturbative halo potential contribution to
the gravitational redshift e�ect. Another is to introduce the virialized
random motion to the o�-centered galaxies. This can give a non-
negligible amount of the transverse Doppler e�ect as the second-
order special relativistic e�ect, which is known to produce the dipole
cross-correlation signal (Zhao et al. 2013; Kaiser 2013; Cai et al.
2017; Zhu et al. 2017; Breton et al. 2019). Note that there are
other relativistic e�ects that induce the dipole asymmetry in the
cross-correlation function, and their impacts on the detection of
gravitational redshift e�ect have been studied in both numerical
and analytical treatments (Zhu et al. 2017; Di Dio & Seljak 2019;
Breton et al. 2019; Beutler & Di Dio 2020). Below, we analytically
estimate the impacts of these two e�ects on the dipole signal.

Let us first discuss the suppressed gravitational potential. Fol-
lowing Hikage et al. (2013), we introduce the probability distribu-
tion function of the galaxy position inside each halo, ?o� , normal-
ized as follows:π Avir

0
4cA2?o� (A; 'o�) dA = 1 . (5.1)

We model it to be Gaussian distribution, i.e., ?o� (A; 'o�) /

Figure 10. Expected signal-to-noise ratio for the surveys listed in Table 1,
using the single galaxy population. (Top) Dividing the sample into two
subsamples to cross-correlate, we choose the threshold halo mass "⇤ so
that the signal-to-noise ratio is maximized at each redshift bin (see text in
detail in Sec. 4.3.1). (Bottom) Same as the top panel, but the threshold halo
mass "⇤ is chosen so that the CV⇥P (dashed lines) and P⇥P (dotted lines)
contributions are minimized by imposing the conditions, 12

X=X = 12
Y=Y

and =X = =Y, respectively. Note that accounting for the halo occupation
number, the signal-to-noise ratio for DESI-BGS would be optimistic (see
the main text, fourth paragraph in Sec. 4.3.1 for details).

exp
⇣
�(A/'o�)

2
/2
⌘

with 'o� being the o�set parameter. Using
the distribution function ?o� , the halo potential at the o�-centered
galaxy position can be estimated to be

qNFW (I," , 'o�) =
π Avir

0
4cA2qNFW (A, I,")?o� (A; 'o�) dA ,

(5.2)

where the explicit form of the NFW potential qNFW (A, I,") can
be found in Appendix D of Saga et al. (2020). Note that in the
limit of 'o� ! 0, the distribution function becomes ?o� (A) =
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Figure 11. Expected signal-to-noise ratio for the cross-correlation between two di�erent samples without creating subsamples. The target samples are obtained
either from di�erent surveys or single survey listed in Table 1. The top (bottom) panel summarizes the results for which the cumulative signal-to-noise ratio
combining multiple redshift slices, given by

qÕ
I (S/N)2, is greater (less) than 2. The estimated values of the cumulative signal-to-noise ratio are summarized

in the legend (see parentheses). Note that the signal-to-noise ratio may be optimistic for the cases including the DESI-BGS sample (see the fourth paragraph in
Sec. 4.3.1 for details).

XD (A)/(4cA2
), and we consistently reproduce qNFW (I," , 'o�) =

qNFW,0 (I,") . Adopting Eq. (5.2), we substitute q̄NFW into the
expression of nNL in Eq. (2.13), instead of the central potential
qNFW,0. Then the dipole cross-correlation with the suppressed halo
potential contribution is estimated through the analytical formulas
in Sec. 2.2.

Next consider the transverse Doppler e�ect from the o�-
centered galaxies. To estimate its qualitative impact, we compute
the velocity dispersion of galaxies, f2

E , which is expressed as a sum
of the two contributions (e.g., Sheth & Diaferio 2001):

f2
E (A, I,") = f2

vir (A, I,") + f2
halo (I,") . (5.3)

Here, the first and second terms at the right-hand side are originated
respectively from the virial motion within a halo and the large-scale
coherent motion of the host haloes. Note that the second term is
non-vanishing even if the galaxies reside at the centre of the haloes.
Although we include it for self-consistency, we confirmed that the
transverse Doppler e�ect is dominated by the virial motion.

To compute the velocity dispersion of the virial motion, f2
vir,

we adopt the halo model prescription and use the analytical formula
for the velocity dispersion of the NFW density profile (see Eq. (14)
of £okas & Mamon 2001):

f2
vir (A, I,") = U(A, I,")

⌧"

Avir
, (5.4)

with the function U(A, I,") given by

U(A, I,") =
3
2
226(2)G(1 + 2G)2

"
6Li(�2G) + c2

� ln (2G) �
1
2G

�
1

(1 + 2G)2
�

6
1 + 2G

+ 3 ln2
(1 + 2G)

+ ln (1 + 2G)

✓
1 +

1
(2G)2

�
4
2G

�
2

1 + 2G

◆#
, (5.5)

where the quantities 2, G, and function Li(G) respectively stand for
the concentration parameter (Bullock et al. 2001; Cooray & Sheth
2002), the radius normalized by the virial radius, G ⌘ A/Avir, and
the logarithmic integral function. The function 6(2) is defined as
6(2) ⌘ [ln(1 + 2) � 2/(1 + 2)]�1.

For the velocity dispersion, f2
halo, we estimate it using the

prediction of the peak theory based on the linear Gaussian density
fields (Bardeen et al. 1986; Sheth & Diaferio 2001):

f2
halo (I,") = (0� 5 ⇡+)

2f2
�1 (")

 
1 �

f4
0 (")

f2
1 (")f2

�1 (")

!
, (5.6)

where we define the function f= by

f2
= (") =

π
:2d:
2c2 :2=%L (:),

2
(:') . (5.7)

Here the function , (G) = 3 91 (G)/G is the Fourier transform of the
real space top-hat window function, and the radius ' is related to
the mass of the halo " through " = 4cd̄'3

/3, where the quantity
d̄ is the background matter density.

Given the velocity dispersion from the above analytical formu-
lae, the total impact of the o�-centering e�ects, including the trans-
verse Doppler e�ect, is estimated by replacing the nNL in Eq. (2.13)
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Figure 11. Expected signal-to-noise ratio for the cross-correlation between two di�erent samples without creating subsamples. The target samples are obtained
either from di�erent surveys or single survey listed in Table 1. The top (bottom) panel summarizes the results for which the cumulative signal-to-noise ratio
combining multiple redshift slices, given by

qÕ
I (S/N)2, is greater (less) than 2. The estimated values of the cumulative signal-to-noise ratio are summarized

in the legend (see parentheses). Note that the signal-to-noise ratio may be optimistic for the cases including the DESI-BGS sample (see the fourth paragraph in
Sec. 4.3.1 for details).
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), and we consistently reproduce qNFW (I," , 'o�) =

qNFW,0 (I,") . Adopting Eq. (5.2), we substitute q̄NFW into the
expression of nNL in Eq. (2.13), instead of the central potential
qNFW,0. Then the dipole cross-correlation with the suppressed halo
potential contribution is estimated through the analytical formulas
in Sec. 2.2.

Next consider the transverse Doppler e�ect from the o�-
centered galaxies. To estimate its qualitative impact, we compute
the velocity dispersion of galaxies, f2

E , which is expressed as a sum
of the two contributions (e.g., Sheth & Diaferio 2001):

f2
E (A, I,") = f2

vir (A, I,") + f2
halo (I,") . (5.3)

Here, the first and second terms at the right-hand side are originated
respectively from the virial motion within a halo and the large-scale
coherent motion of the host haloes. Note that the second term is
non-vanishing even if the galaxies reside at the centre of the haloes.
Although we include it for self-consistency, we confirmed that the
transverse Doppler e�ect is dominated by the virial motion.

To compute the velocity dispersion of the virial motion, f2
vir,

we adopt the halo model prescription and use the analytical formula
for the velocity dispersion of the NFW density profile (see Eq. (14)
of £okas & Mamon 2001):

f2
vir (A, I,") = U(A, I,")
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Avir
, (5.4)

with the function U(A, I,") given by
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where the quantities 2, G, and function Li(G) respectively stand for
the concentration parameter (Bullock et al. 2001; Cooray & Sheth
2002), the radius normalized by the virial radius, G ⌘ A/Avir, and
the logarithmic integral function. The function 6(2) is defined as
6(2) ⌘ [ln(1 + 2) � 2/(1 + 2)]�1.

For the velocity dispersion, f2
halo, we estimate it using the

prediction of the peak theory based on the linear Gaussian density
fields (Bardeen et al. 1986; Sheth & Diaferio 2001):

f2
halo (I,") = (0� 5 ⇡+)

2f2
�1 (")

 
1 �

f4
0 (")

f2
1 (")f2

�1 (")

!
, (5.6)

where we define the function f= by

f2
= (") =

π
:2d:
2c2 :2=%L (:),

2
(:') . (5.7)

Here the function , (G) = 3 91 (G)/G is the Fourier transform of the
real space top-hat window function, and the radius ' is related to
the mass of the halo " through " = 4cd̄'3

/3, where the quantity
d̄ is the background matter density.

Given the velocity dispersion from the above analytical formu-
lae, the total impact of the o�-centering e�ects, including the trans-
verse Doppler e�ect, is estimated by replacing the nNL in Eq. (2.13)
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Figure 11. Expected signal-to-noise ratio for the cross-correlation between two di�erent samples without creating subsamples. The target samples are obtained
either from di�erent surveys or single survey listed in Table 1. The top (bottom) panel summarizes the results for which the cumulative signal-to-noise ratio
combining multiple redshift slices, given by
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I (S/N)2, is greater (less) than 2. The estimated values of the cumulative signal-to-noise ratio are summarized

in the legend (see parentheses). Note that the signal-to-noise ratio may be optimistic for the cases including the DESI-BGS sample (see the fourth paragraph in
Sec. 4.3.1 for details).
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), and we consistently reproduce qNFW (I," , 'o�) =

qNFW,0 (I,") . Adopting Eq. (5.2), we substitute q̄NFW into the
expression of nNL in Eq. (2.13), instead of the central potential
qNFW,0. Then the dipole cross-correlation with the suppressed halo
potential contribution is estimated through the analytical formulas
in Sec. 2.2.

Next consider the transverse Doppler e�ect from the o�-
centered galaxies. To estimate its qualitative impact, we compute
the velocity dispersion of galaxies, f2

E , which is expressed as a sum
of the two contributions (e.g., Sheth & Diaferio 2001):

f2
E (A, I,") = f2

vir (A, I,") + f2
halo (I,") . (5.3)

Here, the first and second terms at the right-hand side are originated
respectively from the virial motion within a halo and the large-scale
coherent motion of the host haloes. Note that the second term is
non-vanishing even if the galaxies reside at the centre of the haloes.
Although we include it for self-consistency, we confirmed that the
transverse Doppler e�ect is dominated by the virial motion.

To compute the velocity dispersion of the virial motion, f2
vir,

we adopt the halo model prescription and use the analytical formula
for the velocity dispersion of the NFW density profile (see Eq. (14)
of £okas & Mamon 2001):
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where the quantities 2, G, and function Li(G) respectively stand for
the concentration parameter (Bullock et al. 2001; Cooray & Sheth
2002), the radius normalized by the virial radius, G ⌘ A/Avir, and
the logarithmic integral function. The function 6(2) is defined as
6(2) ⌘ [ln(1 + 2) � 2/(1 + 2)]�1.

For the velocity dispersion, f2
halo, we estimate it using the

prediction of the peak theory based on the linear Gaussian density
fields (Bardeen et al. 1986; Sheth & Diaferio 2001):
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Here the function , (G) = 3 91 (G)/G is the Fourier transform of the
real space top-hat window function, and the radius ' is related to
the mass of the halo " through " = 4cd̄'3

/3, where the quantity
d̄ is the background matter density.

Given the velocity dispersion from the above analytical formu-
lae, the total impact of the o�-centering e�ects, including the trans-
verse Doppler e�ect, is estimated by replacing the nNL in Eq. (2.13)
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11. Dipole in galaxy-galaxy cross-correlation
Dipole signal can be a new probe of gravity theory 

• S/N > gw−ow 

• test of equivalence principle 

• modified gravity

C.Bonvin, F-.O. Franco, P.Fleury [2004.06457] 

D. Sobral-Blanco, C.Bonvin [2102.05086] 

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2112.07727] 
C.Bonvin, L.Pogosian [2209.03614] 

and many works.

ξXY,1 ∼ (bX − bY) (⋯) + (ΦX,halo − ΦY,halo) (⋯)

O

s1

s2

s = s2 - s1

(bX, ΦX,halo)
(bY, ΦY,halo)

We need at least o samples to observe non-zero dipole 

• no unique way to split, contamination, uncertainty

http://arxiv.org/abs/2004.06457
http://arxiv.org/abs/2102.05086
http://arxiv.org/abs/2112.07727
http://arxiv.org/abs/2209.03614
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1. Galaxy density-ellipticity correlations
ξ = ⟨δ(s1)γ+/×(s2)⟩

Our model 
(Doppler + gravitational redshift)

Linear alignment model

2 S. Saga et al.

redshift e�ects (see e.g., Bonvin & Fleury 2018; Bonvin et al. 2020,
for the test of gravity from a viewpoint of equivalence principle).

In the GG correlations, cross-correlating two di�erent biased
objects plays an essential role to observe the non-vanishing dipole
moment to exploit it as the probe of the gravitational redshift e�ect.
Thus, given one galaxy sample in the future survey, we need to split
it into more than two subsamples. Depending on how we split the
sample, the detectability drastically changes (Saga et al. 2021), and
one needs to find the optimal way to measure the GG dipole at a
statistically significant level (see e.g., Bonvin et al. 2016; Lepori
et al. 2018). On the other hand, even if we have only one galaxy
sample, together with the information about the shape of galaxies,
the cross-correlation between galaxies and ellipticity fields, i.e., GI
correlation, can be expected to play the same role as the GG dipole.

Interestingly, recent observational analyses of the GI correla-
tion show the solid detections of the GI correlation (e.g., Mandel-
baum et al. 2006; Okumura et al. 2009; Singh et al. 2015; Johnston
et al. 2019; Samuro� et al. 2019; Yao et al. 2020, and Tonegawa &
Okumura 2021 at I > 1). Indeed, it has been shown that GI corre-
lations in combination with GG correlations can strongly constrain
the cosmological parameters (Taruya & Okumura 2020; Okumura
& Taruya 2021). With the above in mind, in this paper, we first
investigate the signal of the Gi dipole moment taking into account
both the Doppler e�ect without assuming the plane-parallel limit
and the gravitational redshift e�ect due to halo potentials. To this
end, we adopt our quasi-linear model of the observed density fluc-
tuations with the relativistic e�ects (Saga et al. 2020, 2021). The
covariance formulae used in GG correlations are extended by taking
proper account of the angular dependence so that it can be applied
in GI correlations, and we discuss the detectability by this formula.

This paper is organized as follows. In Sec. 2, we present our
analytical model of the GI correlation, incorporating the Doppler
e�ect and gravitational redshift e�ects due to the non-linear halo
potential. In Sec. 3, we introduce the estimator for the GI correlation
function. We present the covariance matrix for the GI correlation
function by using the spherical harmonics, to consistently describe
their angular dependence. Thus, we compute the signal-to-noise
ratio of the dipole moment for the representative parameters of
the upcoming surveys. Finally, Sec. 4 is devoted to the summary
of important findings. In Appendix A, we summarize the relevant
coe�cients involved in the expressions of our analytical model. The
detailed calculations of the covariance matrix for the GI correlation
function are presented in Appendix B.

Throughout this paper, we assume a flat Lambda cold dark
matter (⇤CDM) model. The fiducial values of cosmological param-
eters are chosen to match the seven-year WMAP results (Komatsu
et al. 2011), and we will work with units of 2 = 1.

2 PRELIMINARY

We are interested in the anisotropies of the cross-correlation func-
tion between the observed density and intrinsic ellipticity in redshift
space. As a preliminary to doing so, we devote Sec. 2.1 to the in-
troduction of the model of the intrinsic ellipticities and Sec. 2.2 to
the model of the observed density field.

2.1 Intrinsic ellipticity field

Throughout the paper, we adopt the linear alignment model (Catelan
et al. 2001; Hirata & Seljak 2004) that is commonly used and is a
simple model to relate the intrinsic ellipticity to linear density fields

(see Okumura et al. 2020 for the discussion on the validity of the
linear alignment model with #-body simulations). According to
the linear alignment model, we write the projected galaxy shape
function WI

8 9 (x) by

WI
8 9 (x) = 1K


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◆
48k ·xXL (k) , (2.1)

where the quantity 1K parametrizes the strength of the intrinsic
alignment. The functions XL (x) and XL (k) are the linear density
fields and its Fourier counter part, respectively. In the above, we
define the projection tensor by

P8 9 (x̂) ⌘ X8 9 � Ĝ8 Ĝ 9 , (2.2)

where x̂ = x/|x |.
The projected galaxy shape function is conventionally charac-

terized by two independent components, which we denote W+ and
W⇥. Let us define the two-dimensional orthogonal basis lying at the
tangent space of the sphere at x, ê1 (x̂), and ê2 (x̂), which satisfy
the following relations: x̂ · ê0 = 0 and ê0 · ê1 = X01 for 0, 1 = 1, 2.
Then, we define two components of the galaxy shape function by✓

W+(x)
W⇥ (x)

◆
=
✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆
WI
8 9 (x) , (2.3)

Substituting Eq. (2.1) into Eq. (2.3), the intrinsic ellipticity
fields can be written by✓

W+(x)
W⇥ (x)

◆
= 1K

✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆

⇥
π

d3:

(2c)3
eik ·x :̂8 :̂ 9XL (k) , (2.4)

The parameter of the strength of the intrinsic alignment 1K has
been investigated by many authors, e.g., Kurita et al. (2021); Akitsu
et al. (2021); Shi et al. (2021) using simulations, and Okumura et al.
(2009); Blazek et al. (2011) using luminous red galaxies from the
Sloan Digital Sky Survey. Throughout the paper, we set the redshift-
independent constant in the analysis: 1K = 0.1 (see e.g., Schmitz
et al. 2018; Kurita et al. 2021).

2.2 Density field in redshift space

It has been known that the observed galaxy distributions via galaxy
redshift surveys are apparently distorted due to the special and
general relativistic e�ects (e.g., Croft 2013; Yoo 2014; Tansella et al.
2018; McDonald 2009; Bonvin & Durrer 2011; Bonvin et al. 2014,
and references theirin). Recent our investigations have shown that
the appeared distortions are mainly induced by the Doppler e�ect
of the galaxy’s peculiar velocity at large scales and by gravitational
redshift e�ect arising from the halo gravitational potential at small
scales (Breton et al. 2019; Saga et al. 2020). Here, on the basis of
the analytic model developed in Saga et al. (2021), incorporating
these major relativistic e�ects, we briefly present the expression of
the observed density fields.

We start from the relation between the observed source position
referred to as redshift space (s) and real-space counter part (x) (Saga
et al. 2020, 2021):

s = x + 1
0�

(v · x̂) x̂ � 1
0�

qL (x)x̂ + nNL x̂ , (2.5)

MNRAS 000, 1–12 (2021)

γI
ij(x) = bK [Pik(x̂)Pjl(x̂) − 1

2 Pij(x̂)Pkl(x̂)] (
∂i∂j

∂2 − 1
3 δij) δL(x)

Pij(x̂) ≡ δij − ̂xi ̂xj

δ = δ(real) + δ(Doppler) + δ(grav) + δ(halo)

ΦL Φhalov

Galaxy shape projection onto a plane 

perpendicular to the non-fixed LOS:

Two independent components:

P.Catelan et al. (2001) 
C.M.Hirata & U.Seljak (2004)

ξ = ⟨δ(s1)γ+(s2)⟩ = ⟨δ(real)(s1)γ+(s2)⟩ + ⟨δ(Doppler)(s1)γ+(s2)⟩ + ⟨δ(grav)(s1)γ+(s2)⟩ + ⟨δ(halo)(s1)γ+(s2)⟩

≡ ξ(real) + ξ(Doppler) + ξ(grav) + ξ(halo)



z

x

y

̂s1̂s2̂e2( ̂s2)

̂e1( ̂s2)

φ

φ

2. Configurations

⟨δ(s1)γ×(s2)⟩ = 0φ = 0ξ(s, d, μ, φ) = ⟨δ(s1)γ+/×(s2)⟩

O

s1

s2

s = s2 - s1

(b, Φhalo)

δ γ+/×
bK

cos−1 μ
d=(s1+s2)/2

z-x plane



3. Analytical results

Non-zero multipoles even multipoles odd multipoles

(real) 
(Doppler)

plane-parallel 0

wide-angle 0

(grav) 
(halo)

plane-paralle 0

wide-angle 0

ξ ≡ ξ(real) + ξ(Doppler) + ξ(grav) + ξ(halo)We decomposed the contributions:

All terms are   → Sum of their multipoles vanishesξ ∝ (1 − μ2)

ξ(real)
0 + ξ(real)

2 = 0

ξ(Doppler)
0 + ξ(Doppler)

2 + ξ(Doppler)
4 = 0

ξ(real)
1 + ξ(real)

3 = 0

ξ(Doppler)
1 + ξ(Doppler)

3 = 0

ξ(grav)
1 + ξ(grav)

3 = 0

ξ(halo)
1 + ξ(halo)

3 + ξ(halo)
5 = 0

ξ(grav)
0 + ξ(grav)

2 + ξ(grav)
4 = 0

ξ(halo)
0 + ξ(halo)

2 + ξ(halo)
4 + ξ(halo)

6 = 0

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

T.Okumura & A.Taruya [1912.04118]

https://arxiv.org/abs/2207.03454
https://arxiv.org/abs/1912.04118


3. Analytical results

Non-zero multipoles even multipoles odd multipoles

(real) 
(Doppler)

plane-parallel 0

wide-angle 0

(grav) 
(halo)

plane-paralle 0

wide-angle 0

ξ ≡ ξ(real) + ξ(Doppler) + ξ(grav) + ξ(halo)We decomposed the contributions into four pieces:

All terms are   → Sum of their multipoles vanishesξ ∝ (1 − μ2)

ξ(real)
0 + ξ(real)

2 = 0

ξ(Doppler)
0 + ξ(Doppler)

2 + ξ(Doppler)
4 = 0

ξ(real)
1 + ξ(real)

3 = 0

ξ(Doppler)
1 + ξ(Doppler)

3 = 0

ξ(grav)
1 + ξ(grav)

3 = 0

ξ(halo)
1 + ξ(halo)

3 + ξ(halo)
5 = 0

ξ(grav)
0 + ξ(grav)

2 + ξ(grav)
4 = 0

ξ(halo)
0 + ξ(halo)

2 + ξ(halo)
4 + ξ(halo)

6 = 0

∑
ℓ=all

ξ(all)
ℓ = ∑

ℓ=even
ξ(all)

ℓ = ∑
ℓ=odd

ξ(all)
ℓ = 0

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

https://arxiv.org/abs/2207.03454


4. Multipoles

ξ(real)
ℓ ξ(Doppler)

ℓ ξ(grav)
ℓ ξ(halo)

ℓ

even multipoles odd multipoles

real 
Doppler

plane-parallel dominant at all scales 0

wide-angle 0 dominant at large scales

grav 
halo

plane-parallel 0 dominant at small scales

wide-angle subdominant 0

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

https://arxiv.org/abs/2207.03454


5. Dipole moment

w/ Φhalo

w/o Φhalo

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

https://arxiv.org/abs/2207.03454


6. Dipole covariance

Note: we treat carefully the angular 

dependence by using   in 

computing the covariance matrix.

Yℓ,m(θ, φ)

COV1(s1, s2) ∼ 1
V ∑

ℓ,ℓ′ 

(ξgg
ℓ × ξII

ℓ′ 
+ ξgI

ℓ × ξgI
ℓ′ )

+ 1
V ∑

ℓ′ 

( 1
ng

× ξII
ℓ′ 

+
σ2

shape

ng
× ξgg

ℓ′ )
+ 1

V
1
ng

σ2
shape

ng

cosmic variance x cosmic variance (CVxCV)

cosmic variance × Poisson (CVxP)

Poisson x Poisson (PxP)

Schematically...

ξ = ⟨δ(s1)γ+/×(s2)⟩ ∝ sin 2φ or cos 2φ

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

AIA = 23 

σshape = 0.2

bK = − 0.0134 AIAΩm0/D+(z)

https://arxiv.org/abs/2207.03454


7. Signal-to-noise ratio

( S
N )

2
=

smax

∑
s1,s2=smin

ξ1(s1)(COV1(s1, s2))−1ξ1(s2)

(smin, smax) = (1, 150) Mpc/h 

bias&number density: Sheth&Tormen (1999) 

AIA is chosen to match Kurita et al (2020)

SN reaches ~ 1−4 × [volume in (Gpc/h)3]1/2

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

w/ Φhalo

w/o Φhalo

bK = − 0.0134 AIAΩm0/D+(z)

https://arxiv.org/abs/2207.03454


Summary
Dipole anisotropy in galaxy-galaxy correlations 

• we need two populations (SN reaches ~ 10−25) 

Dipole anisotropy in galaxy-IA correlations 
• single galaxy populations + shape information 

• rough estimates suggest SN ~ 1−4 × [volume in (Gpc/h)3]1/2 

Future prospects 
• SN for specific surveys, systematic effects 

• galaxy-galaxy cross-correlation + galaxy-IA cross-correlation 

• test of gravity theory 

• measurements in RayGalGroupSims 

• dipole of another correlation?

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772] 
S.Saga, A.Taruya, Y.Rasera, M-A.Breton [2109.06012]

S.Saga, T.Okumura, A.Taruya, T.Inoue [2207.03454]

T.Inoue et al. [in prep.]

ξ = ⟨δ(s1) □ (s2)⟩

https://arxiv.org/abs/2004.03772
https://arxiv.org/abs/2109.06012
https://arxiv.org/abs/2207.03454

