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Types of IA constraints

We can (broadly) class IA studies into a few different categories:

● Simultaneous constraints on real data - where IAs are part of a larger model 
space, typically designed to constrain cosmological parameters

● Simulation based constraints - typically involves evaluating/fitting IA 2pt 
correlations using hydrodynamic simulations

● Direct constraints on real data - evaluating/fitting IA 2pt correlations using 
real galaxy data

● Miscellaneous other - various techniques using data including self 
calibration
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Simultaneous IA constraints

● Recent cosmological lensing 
analyses have all used an IA model 
of some sort, although the details 
differ between surveys

● DES Y3 (most recent DES results) 
used a relatively complicated model 
known as TATT

● KiDS & HSC went with slightly 
simpler variations of the NLA 
model 
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Simultaneous IA constraints

Figure from Secco & Samuroff et al 2021

● We can compare results from various 
surveys - all show roughly comparable 
IA amplitudes in the A1~0-1 range

● However detailed comparison is 
difficult as the parameter spaces differ

● Selection function, and so the 
composition of the samples (colour, 
luminosity, redshift), are potentially 
different

● And the shape measurement methods 
also differ, which further complicates 
things 
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Simulation based constraints

Figure credits: IllustrisTNG collaboration

● We can infer IA parameters from hydro 
sims without messiness of real data

● Methodology is similar to with direct 
IA measurements - construct 2pt 
measurements, fit using models, and 
look at trends with galaxy properties
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Simulation based constraints

Figures from Samuroff et al 2021 and Chisari et al 2016 

● Various studies have been carried out along 
these lines, using different simulations

● It is, however, quite difficult to ensure a 
realistic galaxy sample

● Hydro sims are also typically fairly small, 
meaning statistical uncertainties are large - 
especially on large scales 

● The constraints are slightly limited by the 
extent to which we can trust the baryonic 
physics of the simulations (which is a 
notoriously difficult problem)
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Simulation based constraints

● A number of other techniques using 
simulations exist. Typically instead of using 
hydro sims, these seek to imprint IAs onto 
DMO sims

● There are a few different ways to do this, but 
the key idea is to start with the properties of 
dark matter (tidal field, halos etc), and relate 
them to the properties of galaxy IAs

● See, for example: Harnois-Deraps et al 2021, 
Hoffmann et al 2021, Joachimi et al 2013, 
Yagvaral et al 2022 
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Direct IA constraints - intro

● Basic idea is to construct a measurement 
that is primarily sensitive to IAs

● We do this by dividing galaxies into bins of 
transverse and perpendicular separation rp 
and 𝚷

● Normally we would then project in 𝚷 
● This gives us three observables, roughly 

analogous to the standard 3x2pt probes: 
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Direct IA constraints - intro
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wgg(rp)             wg+(rp)                  
w++(rp)  

galaxy-galaxy: can’t tell 
us anything about IAs on 

its own, but useful for 
constraining galaxy bias

galaxy-shape: our 
primary probe of IAs. 

Sensitive to GI, but can 
also pick up GGL  

shape-shape: in 
principle also sensitive to 
GI and II, but in practice 
typically much lower S/N 

than wg+ and wgg



Direct IA constraints - some examples from the literature
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Direct IA constraints - so why is this hard?
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● We need both precise redshifts and shapes to construct our correlation 
functions - this somewhat limits the samples we can use

● This is the reason almost all of the direct IA measurements in the 
literature have incorporated at least some SDSS data

● It also means we are limited to certain samples - which tend to be red and 
bright compared with what people would typically use for 
lensing/cosmology 

● To date we have only covered a corner of redshift/colour/luminosity space 
(though this is likely to change with DESI + new photometric surveys)
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DES x eBOSS
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DES x eBOSS
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DES Y3 eBOSS SGC



Five samples:
● Y3 redMaGiC high-z  

○ 4143 sq. deg., z~0.8
● Y3 redMaGiC low-z  

○ 4143 sq. deg., z~0.45
● CMASS

○ 600 sq. deg., z~0.5
● eBOSS LRGs 

○ 600 sq. deg., z~0.75
● eBOSS ELGs 

○ 600 sq. deg., z~0.8

each of which are matched to DES Y3 for shapes.

For each sample, we measure the projected 
correlations wg+, w++ and wgg, as a fn. of rp, and fit 
simultaneously

DES x eBOSS
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Modelling IAs
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● Like most methods for learning about IAs, direct 
measurements are model dependent

● That is, we must choose a model with which to fit the data
● The choice of which to use depends somewhat on the scales 

one is fitting, and the questions one is interested in



Modelling IAs
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● We fit two different IA models to our data: NLA & TATT

See Hirata et al 2014; Blazek et al 2017

1 free 
amplitude

3 free 
amplitudes



Modelling IAs - some equations

20See Hirata et al 2014; Blazek et al 2017



Direct measurements with photometric surveys
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● In the cross-correlations with eBOSS, 
we effectively know the redshifts 
exactly - this makes the modelling 
very easy

● With the redMaGIC samples, 
however, the redshifts come with 
some uncertainty, which scatters 
galaxies and so alters the measured 
correlation functions

● Rather than try to calibrate this at the 
data level, we instead incorporate it 
into our model

Figure from Porredon et al 2021



Direct measurements with photometric surveys
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Direct measurements with photometric surveys
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● Fortunately, we can model this (see Fortuna 
et al 2021 and Joachimi et al 2010)!

● The net effect is to suppress the dominant gI 
signal slightly (+ boost the lensing and 
magnification terms)

● Overall for our redMaGiC samples we found 
a ~10-15% effect (though this will depend on 
the redshift precision of the sample) 



Modelling wg+

Various terms that we need to keep track of, 
which contribute to wg+
● gI - our main IA signal, and typically 

dominant
● gG - galaxy-galaxy lensing. Small for 

spectroscopic samples, but significant 
for redmagic

● mI - magnification-intrinsic. Again, 
sensitive to the product g(z)*n(z), so 
should be bigger for RM

● mG - magnification-lensing. This one 
is a pure lensing correlation, so it will 
be present regardless of the quality of 
the redshifts and the size of the IA 
signal.
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Modelling wg+
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● Lensing & magnification 
terms appear in our data at 
the level of ~ a few percent

● GGL-like contributions 
tend to dominate, but 
magnification-lensing cross 
term is also non-vanishing 
in some cases

● Significant for photometric 
samples (redmagic), but 
also potentially 
spectroscopic ones 



Outline

1. Background and setup 
a. IA constraints from other sources
b. Direct IA measurements

2. DES x eBOSS: a direct IA measurement
3. Results: What can these data tell us about IA?
4. Conclusions

26



eBOSS ELGs: a null detection
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● ELGs measurement is consistent 
with a null signal on large scales 
(>6 Mpc/h)

● This remains true at rp>2 Mpc/h 
(and even all the way down to 0.1 
Mpc/h) - we get a decent null 𝛘2 in 
each case

● No sign of a discernable 1-halo 
alignment signal above noise



Comparing with blue galaxies in the literature
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● All “blue” samples to 
date have been 
consistent with 0 
alignments

● Although the 
selections differ quite 
a bit, so the 
comparison is not 
exact



Exploring the luminosity dependence of red galaxies
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● Divide our red 
samples into bins in 
r-band luminosity

● We have 13 bins in 
total, across 4 
samples

● Fit each one 
independently for 
bias + A1 on large 
scales
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Luminosity dependence: overview 
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● Given these samples, we can 
plot best fitting A1 vs the mean 
luminosity in each bin (right)

● Solid points are new samples 
from our DES x eBOSS work

● Qualitative picture is consistent 
with a broken power law, 
although the picture is 
somewhat more complicated 



Redshift dependence 
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● Fit redshift dependence in red 
galaxies 

● We split samples into two bins 
of luminosity (upper/lower 
panel in Figure) to avoid 
selection effects

● Consistent with no z evolution



Luminosity dependence: the faint end
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● Quite significant improvement in 
S/N of the fainter end of the A1-L 
relation

● Again, we see a slightly flatter 
trend than predicted from 
extrapolating the bright end slope

● → more alignment signal even in 
relatively faint red populations



Luminosity dependence: the bright end
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● However, things start to look 
more complicated as we next 
look at our brighter samples

● Although eBOSS and redMaGiC 
high-z are ~ consistent with the 
trend from previous surveys, 
CMASS is systematically lower

● It also follows a slightly 
shallower trend

● so… why is this?



Luminosity dependence: impact of colour differences
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Luminosity dependence
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● We see differences in the large scale IA amplitude between 
broadly defined “red” galaxy samples at similar luminosities

● Likely that colour differences between (and potentially 
within) samples are playing a role in this

● This points towards the need for a more sophisticated 
approach to modelling, which accounts for more than 
luminosity…

● Particularly as data sets get bigger and more constraining
● It’s also true that different analyses in the literature have 

many different assumptions -> homogenisation is needed 
(echo-IA :) )   



Pushing to smaller scales with TATT
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● NLA does a good job 
describing all of our 
samples on large scales

● If we extrapolate the fit 
down <6 Mpc/h, however, 
we start to see deviations

● Fortunately we have a 
model designed to work in 
exactly this regime

● → analyse these data with 
TATT including (slightly) 
smaller scales



Pushing to smaller scales with TATT
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● We see non-zero TATT 
params in both redMaGiC 
samples at ~ a few σ

● Mostly absorbed by the TA 
amplitude, but with opposite 
signs

● Note that these samples differ 
by more than their mean 
redshift, and so differences 
are not necessarily surprising
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Conclusions
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● Direct IA measurements on real data are one of relatively few 
methods available to us to learn about IAs

● We’ve carried out a direct measurement analysis using DES and 
eBOSS, which significantly improves S/N of results, particularly at 
high(ish)-z and in fainter galaxies

● We find no detectable IA signal in eBOSS ELGs, on any scales
● We also see no evidence for redshift dependence in the red-galaxy IA 

signal
● What we do see is potential colour-driven differences, beyond what a 

simple red/blue split can capture
● Also see some deviation from NLA on intermediate scales, which can 

be modelled fairly well with extra TATT parameters
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Thank you!



Validation - 
reanalysis of LOWZ

● BOSS LOWZ is our main 
benchmark for validating our 
measurement/analysis 
pipelines 

● We recover the published 
(Singh et al 2015) result quite 
nicely

● When we fit for TATT 
parameters, A2 and bTA are 
consistent with zero to ~1 
sigma
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Defining scale cuts - robustness to baryon feedback

42



Choice of bias model

● Simple linear bias is seen to fail, even on 
large-ish scales for several of our samples

● We thus use a 2 parameter nonlinear bias 
model, following Pandey et al 2020
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