Dark Quest II project and halo shapes

Takahiro Nishimichi (YITP, Kyoto U / Kavli IPMU, U of Tokyo)

w/ Satoshi Tanaka, and many others in HSC weak lensing working group

"New Frontiers in Cosmology with the Intrinsic Alignments of Galaxies", YITP Kyoto U, 9 Dec. 2022

See also:

TN+ ApJ **884** (2019) 29 Kobayashi+ PRD **102** (2020) 063504 Kobayashi+ PRD **105** (2022) 083517 Miyatake+ PRD **106** (2022) 083519 *Miyatake+ PRD* **106** (2022) 083520 Cuesta-Lazaro+ arXiv:2208.05218 for DQ I and its main applications

Disclaimer!

- I am not really seriously working on IA myself !
- But had the opportunities for some fruitful collaborations on shapes of halos and galaxies thanks to many (mostly young) people
 - w/ D. Suto/T. Okabe (U Tokyo) on halo shapes (pre DQ1) arXiv:1608.06494, arXiv:1611.05192, arXiv:1804.08843, arXiv:1911.04653, arXiv:2005.11469
 - w/ Ken Osato on projection effects (DQ1 data)
 - w/ Teppei Okumura on the configuration-space IA signal (DQ1 data)
 - w/ Toshiki Kurita on the Fourier-space counterpart (DQ1 data)
 - (see also Kazu Akitsu on non-Gaussianity)
 - w/ Shogo Ishikawa on cluster shapes traced by subhalos (DQ2 data)

Disclaimer!

- The "Dark Quest" simulation campaign was originally planned for
 - BAO, RSD, weak lensing (2x2 or 3x2 pt analyses)
- Given the many interesting science cases from galaxy (halo) shapes, I now am seriously thinking of adding them as a part of the standard outputs of the DQ2 products
- Super preliminary results on halo shapes are at the very end of the talk (I have to thank Satoshi Tanaka for his hard work!)

Suto+ arXiv:1608.06494

Halos acquire the current shape in a complicated manner

- Time dependence
- Radial dependence
- Mass dependence
- Weighting scheme

Suto+ arXiv:1611.05192

Horizon AGN simulation

Halos acquire the current shape in a complicated manner

- Impact of baryonic physics
- Dependence on what we actually observe

 $\theta_{\rm star} - \theta_{\rm CG} \, [\rm deg]$

0.5

DM o XSB A star

DM in H_{DM}

r₂₀₀

0.5

a₂ /

Horizon AGN simulation

- Halos acquire the current shape in a complicated manner
- Impact of baryonic physics
- Dependence on what we actually observe

Halos acqu
manner
Time evolu
Large scale

Okabe+ arXiv:1911.04653 Horizon AGN simulation Halos acquire the current shape in a complicated

Time evolution is like a random process due to mergers Large scale tides are the attractor

Orientation dependence of clustering

See also Sunayama *et al.* '20 (and Jingjing's talk)

- Osato+ arXiv:1712.00094 DQ1 simulations Angular clustering could be affected if clusters elongated along the line of sight are preferentially detected
 - Nothing but the IA signal

Our solution: Emulation

- Replace costly numerical simulations with a cheap statistical model making *"simulation-based inference"* possible
- Multi-input regression problem
- Key challenge: *curse of dimensionality*
- Introduced to cosmology by Heitmann+`06 (ApJL; "Cosmic calibration")
 - Early studies focused on the matter power spectrum (not biased tracers)

(c) Y. Kobayashi $\Omega_{\rm c}h^2$

Dark Quest Project (2015~)

 $\omega_b, \omega_c, H_0, A_s,$ n_{s}, W_{0}, \ldots

> Fast emulation ~100 millisecs

Cosmological model/params

Simulation ~days

Statistical analysis

T. Nishimichi (YITP, Kyoto U)

Fully investigate basic statistical properties of halos as a function of cosmological parameters

Halo clustering statistics

halo connection model (analytical)

Flexible galaxy-

Observational data (Galaxies)

DarkEmulator vs Subaru HSC

Internal consistency within HSC

Miyatake+ PRD **106** (2022) 083520

Comparison with other WL surveys

T. Nishimichi (YITP, Kyoto U)

SDSS BOSS "full shape"

Yosuke Kobayashi^{1,2},* Takahiro Nishimichi^{3,2}, Masahiro Takada²,[†] and Hironao Miyatake^{4,2}

Full-shape cosmology analysis of SDSS-III BOSS galaxy power spectrum using emulator-based halo model: a 5% determination of σ_8

Comparison with competitors (EFTofLSS)

Analyses on exactly the same power-spectrum data

Kobayashi+ (Emulator): $\sigma_8 = 0.786^{+0.036}_{-0.037}$ $\Omega_{\rm m} = 0.301^{+0.012}_{-0.011}$ $H_0 = 68.2 \pm 1.4$ Princeton (Philcox+21): $\sigma_8 = 0.737^{+0.040}_{-0.044}$ $\Omega_{\rm m} = 0.312^{+0.011}_{-0.012}$ $H_0 = 68.5^{+1.1}_{-1.3}$ $\sigma_8 = 0.738 \pm 0.048$ $\Omega_m = 0.305 \pm 0.01$ $H_0 = 68.5 \pm 1.1$

Roughly consistent with EFT-based analyses

- Better determination of σ_8
- No tension with Planck! ($\sigma_8 = 0.812 \pm 0.0073$)

Philosophy

- Gain cosmological info from t
- Our emulator is an update of halo model
- Our model automatically deal
 - Nonlinear gravitational growth
 - Complicated bias relation
 - nonlinear bias
 - tidal bias ...
 - Halo exclusion effect

Miyatake+ PRD **106** (2022) 083520 Kobayashi, TN+, PRD 105 (2022) 083517

he 2-halo term	
the classical	
s with	
h	

Parameter	Prior			
Cosmological parameters				
$\omega_{ m b}$	$\mathcal{N}(0.02268, 0.00038)$			
$\omega_{ m c}$	$\mathcal{U}(0.10782, 0.13178)$			
Ω_{Λ}	$\mathcal{U}(0.54752, 0.82128)$			
$\ln(10^{10}A_{\rm s})$	$\mathcal{U}(2.4752, 3.7128)$			
$n_{ m s}$	$\mathcal{N}(0.9649, 0.0042)$			
HOD parameters				
$\log M_{\min}$	$\mathcal{U}(12.0, 15.0)$			
$\sigma_{\log M}^2$	$\mathcal{U}(0.0001, 2.0)$			
$\log M_1$	$\mathcal{U}(12.0, 16.0)$			
$lpha_{ m sat}$	$\mathcal{U}(0.01, 5.0)$			
κ	$\mathcal{U}(0.01, 5.0)$			
Other nuisance parameters				
c_{vel}	$\mathcal{U}(0.01, 10.0)$			
P_{shot}	$\mathcal{U}(-10^4, 10^4) h^{-3} \mathrm{Mpc}^3$			
Derived parameters				
$\Omega_{ m m}$	—			
H_0	—			
σ_8				

T. Nishimichi (YITP, Kyoto U)

Philosophy

- We can try adding/reducing complete in the 1-halo term, which is anyway marginalized
 - Non-standard HOD parameterizatic (beyond Zheng's 5 parameter mode
 - Non-standard central/satellite distri both for positions and velocities
 - (off-centering, modified c-M relation velocity bias ...)

Miyatake+ PRD **106** (2022) 083520 Kobayashi, TN+, PRD **105** (2022) 083517

ovitv	Parameter	Prior		
CAILY	Cosmological parameters			
,	$\omega_{ m b}$	$\mathcal{N}(0.02268, 0.00038)$		
	$\omega_{ m c}$	$\mathcal{U}(0.10782, 0.13178)$		
	Ω_{Λ}	$\mathcal{U}(0.54752, 0.82128)$		
	$\ln(10^{10}A_{\rm s})$	$\mathcal{U}(2.4752, 3.7128)$		
	$n_{ m s}$	$\mathcal{N}(0.9649, 0.0042)$		
วท	HOD parameters			
	$\log M_{\min}$	$\mathcal{U}(12.0, 15.0)$		
പ)	$\sigma_{\log M}^2$	$\mathcal{U}(0.0001, 2.0)$		
	$\log M_1$	$\mathcal{U}(12.0, 16.0)$		
ibution	$lpha_{ m sat}$	$\mathcal{U}(0.01, 5.0)$		
ibution	κ	$\mathcal{U}(0.01, 5.0)$		
	Other n	uisance parameters		
	$c_{ m vel}$	$\mathcal{U}(0.01, 10.0)$		
	P_{shot}	$\mathcal{U}(-10^4, 10^4) h^{-3} \mathrm{Mpc}^3$		
ns,	Derived parameters			
	$\Omega_{ m m}$	_		
	H_0	_		
	σ_8	_		

Philosophy

$$P_{gg}^{S,1h}(\mathbf{k}) = \frac{1}{\bar{n}_{g}^{2}} \int dM \frac{dn}{dM} (M) \langle N_{c} \rangle (M) \left[2\lambda_{s}(M)^{2} \tilde{\mathcal{H}}^{S}(\mathbf{k};M)^{2} \right],$$

and

$$P_{gg}^{S,2h}(\mathbf{k}) = \frac{1}{\bar{n}_{g}^{2}} \int dM_{1} \frac{dn}{dM} (M_{1}) \Big[\langle N_{c} \rangle (M_{1}) + \langle N_{c} \rangle (M_{1}) + \langle N_{c} \rangle \Big] \\ \times \int dM_{2} \frac{dn}{dM} (M_{2}) \Big[\langle N_{c} \rangle (M_{2}) + \langle N_{s} \rangle (M_{2}) + \langle N_{s} \rangle (M_{2}) \Big]$$

with the mean number density of galaxies, d

$$\bar{n}_{g} = \int dM \, \frac{dn}{dM} (M) \left[\langle N_{c} \rangle (M) + \langle N_{s} \rangle (M) \right].$$

Miyatake+ PRD **106** (2022) 083520 Kobayashi, TN+, PRD 105 (2022) 083517

 $\mathcal{U}(-10^4, 10^4) \, h^{-3} \, \mathrm{Mpc}^3$

~ ~	Parameter	Prior		
$_{\rm s}(M)\mathcal{H}^{\rm s}({\bf k};M)$	Cosmol	Cosmological parameters		
	$\omega_{ m b}$	$\mathcal{N}(0.02268, 0.00038)$		
	$\omega_{ m c}$	$\mathcal{U}(0.10782, 0.13178)$		
(20)	Ω_{Λ}	$\mathcal{U}(0.54752, 0.82128)$		
	$\ln(10^{10}A_{\rm s})$	$\mathcal{U}(2.4752, 3.7128)$		
	$n_{ m s}$	$\mathcal{N}(0.9649, 0.0042)$		
	HO	HOD parameters		
$\langle N_{\rm s} \rangle (M_1) \tilde{\mathcal{H}}^{\rm S}({f k}; M_1) \Big]$	$\log M_{\min}$	$\mathcal{U}(12.0, 15.0)$		
	$\sigma_{\log M}^2$	$\mathcal{U}(0.0001, 2.0)$		
	$\log M_1$	$\mathcal{U}(12.0, 16.0)$		
	$lpha_{ m sat}$	$\mathcal{U}(0.01, 5.0)$		
$\langle (M_2) \tilde{\mathcal{H}}^{\mathrm{S}}(\mathbf{k}; M_2) \Big]$	κ	$\mathcal{U}(0.01, 5.0)$		
	Other n	Other nuisance parameters		
(01)	c_{vel}	$\mathcal{U}(0.01, 10.0)$		
(21)	P_{shot}	$\mathcal{U}(-10^4, 10^4) h^{-3} \mathrm{Mpc}$		
	Derived parameters			
lefined as	$\Omega_{ m m}$	—		
	H_0	_		
	σ_8	_		

(22)

Sorry, please just wait until we post papers on arXiv...

Summary

- cosmological inference
 - Quick and accurate
 - **DarkEmulator** from DQ1 successfully applied to real data!!
 - Use 2-halo term, discard 1-halo term
- Halo shapes complicated and interesting
 - Trying to incorporate in DQ2 as a standard entry of the halo catalog
 - "Emulator for IA" in the near future (?)

Emulation is an efficient way to prepare theoretical templates in

