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Intrinsic ellipticity auto correlation (II) of elliptical 
galaxies and the host halos

measurement for 
ellipticals of SDSS
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Galaxy density—intrinsic ellipticity (GI) correlation

measurement for 
ellipticals of SDSS

Projected pair separation rp [Mpc/h]
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Linear alignment (LA) model of galaxy/halo shapes

• Relates linear +dal field with galaxy/halo shape

• ΨP: (Linear) Newton potential
• C1 (= - 4πG bK) has to be 

determined by 
observation/simulation      
(this parameter absorbs 
misalignment and other 
uncertainties)

Catelan, Kamionkowski & Blandford (2001)
Hirata & Seljak (2004)

5

that the IA of the momentum correlation will vanish at
large scales.

Finally, assuming the Gaussian random fields, we can

derive for the density-weighted pairwise velocity disper-
sion,
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While we have angular dependences of cos (2✓), cos (4✓)
and cos (6✓), there is no linear-level contribution to IA in
the velocity dispersion.

C. Linear alignment model

One of the simplest models for the ellipticities/orienta-
tions of elliptical galaxies or halos is the linear alignment
(LA) model. In the LA model, the intrinsic ellipticity
(Eq. (1)) is assumed to follow the linear relation with
the Newtonian potential,  P , [4, 6],
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where G is the Newtonian gravitational constant and C1

parameterizes the strength of IA. S is a smoothing filter
that cuts o↵ fluctuations on halo scales. The x- and y-
axes are taken to be on the plane of the sky, and thus the
z-axis is along the line-of-sight. The potential is related
to the density field via the Poisson equation,
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where ⇢̄(z) is the mean density of the universe and
D̄(z) / (1 + z)D(z).

Denoting the density-weighted intrinsic ellipticity us-
ing tilde, e�(+,⇥) = (1 + �A)�(+,⇥), its Fourier transform
is described as,
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where �D(k) is the Dirac delta function. With this ex-
pression, the cross-correlation function between the den-

sity field and the ellipticity is given by:
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k). Likewise, the
velocity-ellipticity correlation is obtained as
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D. Linear theory limit

Under the linear theory, the density-density, density-
velocity, and velocity-velocity correlation functions are
given simply by:
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where ✓(x) = � r·v
aHf

is the velocity divergence, P✓✓ is
its power spectrum, and P�✓ is the cross spectrum of
the density and velocity divergence. In the linear theory
limit, P✓✓ = P�✓ = P��. bA is the linear bias parameter
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Intrinsic alignment contains cosmological information via 
dynamical and geometric distortions

• Linear theory in redshift space
• GG correlation :
• GI correlation :
• II correlation :

GR + Λ
Modified gravity

f (z)

Figure made by Ryu Makiya

3.3.3. Redshift-space distortions. The three-dimensional distributions of galaxies (or other

tracers, such as quasars) over the LSS observed by spectroscopic surveys are apparently

distorted due to the peculiar motions of galaxies. By the Doppler e↵ect of light emitted from

a galaxy, the observed redshift zobs di↵ers from its true value z = 1/a � 1 arising from the

homogeneous and isotropic expansion of the Universe:

zobs = z +
vLoS
a

, (125)

where vLoS is the line-of-sight component of the physical peculiar velocity of the galaxy.

This shift of redshift leads to that of the comoving coordinates, calculated from the observed

redshift:

s = x+
vLoS
aH(a)

êLoS, (126)

where H(a) is the Hubble parameter at the scale factor a, and êLoS is the unit vector along

the line-of-sight direction. This modulation induces an anisotropy along the line-of-sight in

the observed galaxy distributions, called the redshift-space distortions (RSDs) [489, 490].

Due to the RSD e↵ect, the galaxy-galaxy power spectrum observed in spectroscopic surveys

also becomes anisotropic. In linear theory, the galaxy power spectrum in redshift space

Pgg(k, µ) is related to the matter power spectrum Pmm(k) as [489]

Pgg(k, µ) =
�
b+ fµ2

�2
Pmm(k), (127)

where µ is the cosine of angle between k and the line-of-sight direction, b is the linear

galaxy bias and f is the linear growth rate of the structure formation given by Eq. (106).

Note that all of b, f, and Pmm(k) depend on redshift z. This model describes that the

redshift-space clustering is enhanced compared to its real-space counterpart by the coherent

motions of galaxies towards overdensity regions, which is called the Kaiser e↵ect. Since the

anisotropy due to the RSD e↵ect does not break the azimuthal symmetry of galaxy clustering

around the line-of-sight direction, it is common to expand this anisotropy with the Legendre

polynomials, L`(µ), as

Pgg(k, µ) =
X

`

Pgg,`(k)L`(µ), where Pgg,`(k) =
2`+ 1
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and these multipole moments are measured from the galaxy samples in spectroscopic surveys

[491, 492]. While the linear model given above is quite simple, it breaks down even on

large scales k . 0.1hMpc�1 [493, 494], due to the non-linearity of the density and velocity

correlations. Hence, in recent survey analyses, perturbation-theory-based models have been

used [495, 496].

We also measure the two-point correlation function in configuration space. It also has a

dependence on the line-of-sight direction, and hence the two-point correlation function in

redshift space is expressed as a function of the separation of two galaxies perpendicular to

and along the line-of-sight, i.e., ⇠(r?, rk). Figure 3 shows the two-point correlation function

of galaxies measured from the SDSS-III BOSS Data Release (DR) 11 [497], as a function of

(r?, rk). It clearly shows the anisotropic nature of the redshift-space clustering with respect

to the line-of-sight direction.

In galaxy spectroscopic surveys, we typically estimate the combination f(z)�8(z), as well

as the geometric parameters determined through the Alcock-Paczynski e↵ect [499, 500], and
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to the projected shape field in Fourier space as

E(k, n̂) ± iB(k, n̂) := ±2�(k, n̂)e
⌥2i�k , (135)

where

±2�(k, n̂) := mi
⌥(n̂)m

j
⌥(n̂)�ij(k), (136)

with m± := (1,⌥i, 0)/
p
2 and the line-of-sight direction n̂ being z-direction. Assuming the

LA model, we get

E(k, µ) = bK(1 � µ2)�(k), (137)

B(k, µ) = 0, (138)

where µ is the cosine between the line-of-sight and the wavevector. Note that here we have

projected shape field itself (�ij) but we do not have projected their positions (x); it is possible

to obtain the three-dimensional distribution of the shape field by combining photometric and

spectroscopic surveys. Notice also that for the LA model (i.e., the linear perturbation theory)

B-mode is zero while E-mode is nonzero since scalar perturbations can only contribute to

E-mode like in the CMB polarization. In fact, beyond linear order, there appears B-mode

from scalar perturbations, and vector and tensor perturbations can generate B-mode even

in linear order.

The factor (1 � µ2) in Eq. (137) implied that the mode parallel to the line-of-sight does

not have any impact on the observables. This makes sense because by the projection we lose

the information about the shape in the line-of-sight direction. This is in contrast to the RSD

case, where only the transverse mode contributes to the observables. In this sense, IA carries

complementary information to RSD.

Given the expression of E-mode, power spectra of IA in redshift space in the LA model

are given by [536]

PgE(k, µ) = bK(1 � µ2)(b+ fµ2)Pmm(k), (139)

PEE(k, µ) = b2K(1 � µ2)2Pmm(k), (140)

where PEE is the auto-power spectrum of E-mode and PgE is the cross-power spectrum of

E-mode and the galaxy density field. Their configuration-space counterparts, correlation

functions, have somewhat more complicated forms, as derived in Ref. [537]. The factor of

(b+ fµ2) in the first equation is induced by RSD (see Sec. 3.3.3). The factor does not appear

in PEE because the ellipticity field is not a↵ected by RSD in linear theory. The f parameter

is further parameterised as Eq. (107). In this way, one can expect the intrinsic alignment of

galaxies to be a sensible probe of gravity via the measurement of PgE and PEE is used to

constrain the amplitude of IA, bK .

To quantify the constraining power for the gravity models in future surveys, Refs. [536, 538]

used the Fisher matrix formalism. The analysis considered a set of five parameters, namely

the dynamical and geometric parameters (f�8, H,DA) and nuisance amplitude parameters

(b, bK), for the three power spectra, Pgg, PgE and PEE. For the forecast, the combination of

the Subaru HSC and PFS surveys is considered as an example [447].

The left panel of Fig. 5 shows the one-dimensional constraints on each of the dynamical

and geometric parameters after marginalising over all the other parameters. It shows that
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Formula(ng the IA sta(s(cs in redshi5 space

• Analytic formuale of redshift-space alignment statistics in linear theory
• GG correlation :                                                   ---> Kaiser multipoles (Hamilton 1992)
• GI correlation :                                 

--->

• II correlation :
---> 

3.3.3. Redshift-space distortions. The three-dimensional distributions of galaxies (or other

tracers, such as quasars) over the LSS observed by spectroscopic surveys are apparently

distorted due to the peculiar motions of galaxies. By the Doppler e↵ect of light emitted from

a galaxy, the observed redshift zobs di↵ers from its true value z = 1/a � 1 arising from the

homogeneous and isotropic expansion of the Universe:

zobs = z +
vLoS
a

, (125)

where vLoS is the line-of-sight component of the physical peculiar velocity of the galaxy.

This shift of redshift leads to that of the comoving coordinates, calculated from the observed

redshift:

s = x+
vLoS
aH(a)

êLoS, (126)

where H(a) is the Hubble parameter at the scale factor a, and êLoS is the unit vector along

the line-of-sight direction. This modulation induces an anisotropy along the line-of-sight in

the observed galaxy distributions, called the redshift-space distortions (RSDs) [489, 490].

Due to the RSD e↵ect, the galaxy-galaxy power spectrum observed in spectroscopic surveys

also becomes anisotropic. In linear theory, the galaxy power spectrum in redshift space

Pgg(k, µ) is related to the matter power spectrum Pmm(k) as [489]

Pgg(k, µ) =
�
b+ fµ2

�2
Pmm(k), (127)

where µ is the cosine of angle between k and the line-of-sight direction, b is the linear

galaxy bias and f is the linear growth rate of the structure formation given by Eq. (106).

Note that all of b, f, and Pmm(k) depend on redshift z. This model describes that the

redshift-space clustering is enhanced compared to its real-space counterpart by the coherent

motions of galaxies towards overdensity regions, which is called the Kaiser e↵ect. Since the

anisotropy due to the RSD e↵ect does not break the azimuthal symmetry of galaxy clustering

around the line-of-sight direction, it is common to expand this anisotropy with the Legendre

polynomials, L`(µ), as

Pgg(k, µ) =
X

`

Pgg,`(k)L`(µ), where Pgg,`(k) =
2`+ 1

2

Z 1
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and these multipole moments are measured from the galaxy samples in spectroscopic surveys

[491, 492]. While the linear model given above is quite simple, it breaks down even on

large scales k . 0.1hMpc�1 [493, 494], due to the non-linearity of the density and velocity

correlations. Hence, in recent survey analyses, perturbation-theory-based models have been

used [495, 496].

We also measure the two-point correlation function in configuration space. It also has a

dependence on the line-of-sight direction, and hence the two-point correlation function in

redshift space is expressed as a function of the separation of two galaxies perpendicular to

and along the line-of-sight, i.e., ⇠(r?, rk). Figure 3 shows the two-point correlation function

of galaxies measured from the SDSS-III BOSS Data Release (DR) 11 [497], as a function of

(r?, rk). It clearly shows the anisotropic nature of the redshift-space clustering with respect

to the line-of-sight direction.

In galaxy spectroscopic surveys, we typically estimate the combination f(z)�8(z), as well

as the geometric parameters determined through the Alcock-Paczynski e↵ect [499, 500], and
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LA model, we get

E(k, µ) = bK(1 � µ2)�(k), (137)
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where µ is the cosine between the line-of-sight and the wavevector. Note that here we have

projected shape field itself (�ij) but we do not have projected their positions (x); it is possible

to obtain the three-dimensional distribution of the shape field by combining photometric and

spectroscopic surveys. Notice also that for the LA model (i.e., the linear perturbation theory)

B-mode is zero while E-mode is nonzero since scalar perturbations can only contribute to

E-mode like in the CMB polarization. In fact, beyond linear order, there appears B-mode

from scalar perturbations, and vector and tensor perturbations can generate B-mode even

in linear order.

The factor (1 � µ2) in Eq. (137) implied that the mode parallel to the line-of-sight does

not have any impact on the observables. This makes sense because by the projection we lose

the information about the shape in the line-of-sight direction. This is in contrast to the RSD

case, where only the transverse mode contributes to the observables. In this sense, IA carries

complementary information to RSD.

Given the expression of E-mode, power spectra of IA in redshift space in the LA model

are given by [536]

PgE(k, µ) = bK(1 � µ2)(b+ fµ2)Pmm(k), (139)

PEE(k, µ) = b2K(1 � µ2)2Pmm(k), (140)

where PEE is the auto-power spectrum of E-mode and PgE is the cross-power spectrum of

E-mode and the galaxy density field. Their configuration-space counterparts, correlation

functions, have somewhat more complicated forms, as derived in Ref. [537]. The factor of

(b+ fµ2) in the first equation is induced by RSD (see Sec. 3.3.3). The factor does not appear

in PEE because the ellipticity field is not a↵ected by RSD in linear theory. The f parameter

is further parameterised as Eq. (107). In this way, one can expect the intrinsic alignment of

galaxies to be a sensible probe of gravity via the measurement of PgE and PEE is used to

constrain the amplitude of IA, bK .

To quantify the constraining power for the gravity models in future surveys, Refs. [536, 538]

used the Fisher matrix formalism. The analysis considered a set of five parameters, namely

the dynamical and geometric parameters (f�8, H,DA) and nuisance amplitude parameters

(b, bK), for the three power spectra, Pgg, PgE and PEE. For the forecast, the combination of

the Subaru HSC and PFS surveys is considered as an example [447].

The left panel of Fig. 5 shows the one-dimensional constraints on each of the dynamical

and geometric parameters after marginalising over all the other parameters. It shows that
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the dynamical and geometric parameters (f�8, H,DA) and nuisance amplitude parameters

(b, bK), for the three power spectra, Pgg, PgE and PEE. For the forecast, the combination of

the Subaru HSC and PFS surveys is considered as an example [447].

The left panel of Fig. 5 shows the one-dimensional constraints on each of the dynamical

and geometric parameters after marginalising over all the other parameters. It shows that
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(Landy & Szalay 1993) to measure it,

⇠
s
gg(r) =

(D � R)2

RR
=

DD � 2DR + RR

RR
, (1)

where DD, RR, and DR are the normalized counts
of galaxy-galaxy, random-random, and galaxy-random
pairs, respectively.

⇠
s
gg,`(r) = (2` + 1)

Z 1

0
dµ ⇠

s
gg(r, µ)L`(µ). (2)

2.2. Galaxy intrinsic alignment statistics

⇠
s
X(r) = h[1 + �g(x1)] [1 + �g(x2)] WX(x1,x2)i , (3)

where X = {g+, +, �} and r = x2 � x1.
The estimators for the IA statistics are obtained by

extending the Landy-Szalay estimator for the GG statis-
tics (Mandelbaum et al. 2006),

⇠g+(r) =
(D � R)S+

RR
=

DS+ � RS+

RR
, (4)

⇠±(r) =
S+S+ ± S⇥S⇥

RR
, (5)

3. DATA AND MEASUREMENTS

3.1. Shape

Bernstein & Jarvis (2002); Hirata & Seljak (2003)
Singh et al. (2015); Singh & Mandelbaum (2016)

3.2. Correlation functions

GG correlation functions in BOSS DR12 (Alam et al.
2017; Satpathy et al. 2017; Wang et al. 2017; Chuang
et al. 2017)

Singh et al. (2021)

3.3. Covariance matrix

We estimate the covariance matrix for the measured
correlation functions using the jackknife resampling
method by splitting the sample into 312 approximately
equal-area patches (212 North patches and 100 South
patches). While jackknife is considered a biased error
estimator (Norberg et al. 2009), it provides a reliable er-
ror estimate for the statistics whose error is dominated
by the shape noise Mandelbaum et al. (2005).

4. NONLINEAR THEORY

Theoretical models are naturally provided in Fourier
space. We present models for the power spectra in red-
shift space below, and then we obtain the corresponding
correlation function by a Fourier transform,

⇠
s
X(r) =

Z
d
3k

(2⇡)3
P

s
X(k)eik·r (6)

In this section we summarize the statistics of galaxy
clustering and IA used in this paper.

4.1. Galaxy density

Scoccimarro (2004)

P
S
gg(k) =

⇥
b
2
gP��(k) + 2bgfµ

2
P�⇥(k)

+f
2
µ
4
P⇥⇥(k)

⇤
D

2
FoG(kµ; �v), (7)

where ⇥ is the velocity field given by ⇥(x) = �r ·
v/(aHf). The quantities P�� and P⇥⇥ are the auto-
power spectrum of density and velocity fields, respec-
tively, and P�⇥ is the their cross-power spectrum. In
the linear theory limit, we have P�� = P�⇥ = P⇥⇥. f

is the linear growth rate (See Okumura et al. 2016,
for the summary of the growth rate constraints).
D

2
FoG(kµ; �v) = exp

�
�(kµ�v)2/2

 

Taruya et al. (2009)

4.2. Intrinsic alignment

The LA model assumes that there is a linear relation
between the intrinsic ellipiticty and tidal field (Catelan
et al. 2001),

�(+,⇥)(x) = � C1

4⇡G
(r2

x � r2
y, 2rxry) P (x) (8)

where C1 represents the strength of the intrinsic align-
ments and G is the gravitational constant. After trans-
ferring into Fourier space, equation (8) becomes

�(+,⇥)(k) = �C̃1(a)
(k2

x � k
2
y, 2kxky)

k2
�(k), (9)

where C̃1(a) ⌘ a
2
C1⇢̄(a)/D̄(a), a is the scale factor, , ⇢̄

is the mean mass density of the Universe, D(a) is the
linear growth factor, and D̄(a) _ D(a)/a.

P
S
g+(k) = �bK

�
bgP��(k) + fµ

2
P�✓(k)

 
DFoG(kµ; �v)

(10)
In Okumura & Taruya (2020), we presented analytic

formulas for the alignment statistics in linearized theory,
namely the �v ! 0 limit. We extend the formalism and
derive the analytic formulas for the alignment statistics
where �v > 0. We will present the full expressions in
our upcoming paper.

⌅(0)
XY,`(r) =

Z 1

0

k
2
dk

2⇡2
PXY (k)j`(kr), (11)

5. COSMOLOGICAL CONSTRAINTS

6. CONCLUSION

Taking into account the Alcock-Paczynski e↵ect (Al-
cock & Paczynski 1979), the constraints become roughly
looser by a factor of two

Baryon acoustic oscillations (BAO)
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2 IN T R I N S I C A L I G N M E N T STAT I S T I C S

In this section, we briefly describe the statistics used to characterize
IAs.

First, the two components of the ellipticity of each galaxy (or
cluster) are given as

γ(+,×)(x) = 1 − (β/α)2

1 + (β/α)2
(cos(2θ ), sin(2θ )), (1)

where β/α is the minor-to-major axial ratio, θ is the position angle
of the ellipticity defined on the plane normal to the line-of-sight
direction, and the ellipticity is also defined on the projected plane
(see fig. 1 of Okumura et al. 2019 for the illustration of these
quantities, and note θ #= cos −1µ). Sometimes the superscript I is
added to γ +, × to distinguish intrinsic ellipticities from the cosmic
shear components in weak lensing surveys. However, we omit it
because lensing is not considered in this Letter.

The II correlation of galaxies has four components, and one of
the four, ξ++, is defined as (Croft & Metzler 2000; Heavens et al.
2000)

1 + ξ++(r) =
〈
[1 + δg(x1)][1 + δg(x2)]γ+(x1)γ+(x2)

〉
, (2)

where r = x2 − x1. The other components, such as ξ× × and ξ+×,
are defined in the same way by replacing two and one γ + in
equation (2) with γ ×, respectively. By combining ξ++ an ξ× ×,
we can also define ξ±(r) as

ξ±(r) = ξ++(r) ± ξ××(r). (3)

The cross-correlation functions of density and ellipticity fields,
namely GI correlations, are defined as (Hirata & Seljak 2004)

1 + ξgi(r) =
〈
[1 + δg(x1)][1 + δg(x2)]γi(x2)

〉
, (4)

where i = { +, ×}. Since the distances to objects are measured
through redshift in galaxy surveys, the density field is affected by
their velocities, known as redshift-space distortions (RSDs) (Kaiser
1987; Hamilton 1998). Thus, the superscripts R and S are added
to ξ g + to denote the GI correlation in real and redshift space,
respectively.

We also consider the velocity alignment statistic corresponding
to the GI correlation, the density-weighted, velocity-intrinsic ellip-
ticity (VI) correlation (Okumura et al. 2019),

ξvi(r) =
〈
[1 + δg(x1)][1 + δg(x2)]v‖(x1)γi(x2)

〉
, (5)

where i = { +, ×} and v! denotes the line-of-sight component of
the velocity field, v‖(x) ≡ v(x) · x̂ (hat denotes a unit vector). As is
the case with the ellipticity field, the velocity field is not affected
by RSDs in linear theory, ξ S

v+ = ξR
v+ (Okumura et al. 2014, 2017).

All the statistics above are anisotropic even in real space because
observable shapes of galaxies are the line-of-sight projection.
Moreover, RSDs induce further anisotropies to the the GI corre-
lation function. Thus, we consider the multipole moments of the
correlation functions (Hamilton 1992):

X'(r) = 2' + 1
2

∫ 1

−1
dµX(r)P'(µ), (6)

where X is any of the statistics introduced above, and µ is the di-
rectional cosine between the vector r and the line-of-sight direction
x̂. Below, we use r⊥ and r! to express, respectively, the separations
perpendicular and parallel to the line-of-sight direction. These are
related to r and µ through r2 = r2

⊥ + r2
‖ and µ = r!/r. Throughout

this Letter, we assume the distant-observer approximation, and
particularly take z-axis to be the line-of-sight direction so that
x̂1 = x̂2 ≡ x̂.

3 L I N E A R A L I G N M E N T M O D E L

The most commonly used model for IA studies on large scales is
the LA model (Catelan et al. 2001; Hirata & Seljak 2004). In this
model, the intrinsic ellipticity (equation 1) is assumed to follow the
linear relation with the Newtonian potential, (P,

γ(+,×)(x) = − C1

4πG

(
∇2

x − ∇2
y , 2∇x∇y

)
(P (x), (7)

where G is the Newtonian gravitational constant, C1 parameterizes
the strength of IA. The observed ellipticity field is density weighted,
[1 + δg(x)]γ(+,×)(x) (Section 2). However, the density-weighting
term δg(x)γ (x) is sub-dominant on large scales and is usually ig-
nored. We also do not consider this term because we are interested in
the large-scale behaviours. In Fourier space, equation (7) becomes

γ(+,×)(k) = −C̃1

(
k2

x − k2
y, 2kxky

)

k2
δ(k), (8)

where C̃1(z) ≡ a2C1ρ̄(z)/D̄(z), ρ̄ is the mean mass density of the
Universe, D̄ ∝ (1 + z)D(z), and D(z) is the linear growth factor.

The three-dimensional cross-correlation function between the
density field and the ellipticity is given in the LA model as (Okumura
et al. 2019)

ξg+(r) = C̃1bg cos (2φ)
∫ ∞

0

k⊥dk⊥

2π2
J2(k⊥r⊥)

×
∫ ∞

0
dk‖

k2
⊥

k2
Pδδ(k) cos (k‖r‖), (9)

where k2
⊥ = k2

x + k2
y , k! = kz, φ is the azimuthal angle of the

projected separation vector on the celestial sphere, measured from
the x-axis, J2 is the Bessel function with second order, Pδδ is the auto
power spectrum of density and bg is the linear galaxy bias parameter.
Likewise, the II and VI correlation functions are expressed using
the Bessel function (see Blazek et al. 2011 and Okumura et al. 2019,
respectively). Here and in what follows, we keep the φ-dependence
explicitly for clarity and completeness when a statistic is newly
derived, and we set φ = 0 when the multipole moments are further
derived.

4 N E W F O R M U L A S F O R IA STAT I S T I C S W I T H
L I N E A R A L I G N M E N T M O D E L

In this section we present formulas of the IA statistics, namely the
GI, II and VI correlation functions in the LA model. We also show
the results of the numerical calculations at z = 0.3, for which we set
the parameter C̃1 to C̃1/a

2 = 1.5, as determined by Okumura et al.
(2019) for dark matter haloes with the mass greater than 1014 M*.

For later convenience, we newly introduce a quantity ,
(n)
XY,'(r)

defined by

,
(n)
XY,'(r) = (aHf )n

∫ ∞

0

k2−ndk

2π2
PXY (k)j'(kr), (10)

where XY = {δδ, δ-, --}, - is the velocity-divergence field
defined by -(x) = −∇ · v/(aHf ), H(a) is the Hubble parameter
and f is the linear growth rate, given by f ≡ dln D/dln a. The
quantities Pδ- and P-- are the cross power spectrum of density and
velocity divergence and the autospectrum of the latter, respectively.
In the linear theory limit, Pδδ = Pδ- = P--.

4.1 GI correlation

The conventional expression of alignment statistics in the LA model,
such as equation (9) for the GI correlation, was derived by adopting
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole

MNRASL 493, L124–L128 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/493/1/L124/5731881 by guest on 03 M
arch 2020

L126 T. Okumura and A. Taruya

cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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3. N -BODY SIMULATIONS

3.1. Halo catalogs

As in our earlier studies (Okumura et al. 2018, 2019),
we use a series of large and high-resolution N -body simu-
lations of the ⇤CDM cosmology, run as a part of the DARK
QUEST project (Nishimichi et al. 2019). We employ np =
20483 particles of mass mp = 8.15875 ⇥ 1010 h

�1
M� in

a cubic box of side Lbox = 2 h
�1 Gpc. In total, eight in-

dependent realizations are simulated and the snapshots
at z = 0.306 are used.
Subhalos are identified using the ROCKSTAR algorithm

(Behroozi et al. 2013). The velocity of the (sub)halo
is determined by the average particle velocity within the
innermost 10% of the (sub)halo radius. We use the stan-
dard definition for the halo mass, Mh ⌘ M200m, defined
by a sphere with a radius R200m within which the en-
closed average density is 200 times the mean matter den-
sity. We select subhalos with Mh � 1014h�1

M� and
label such massive halos as “clusters.” We also create
mock “galaxy” catalogs using a halo occupation distri-
bution (HOD) model (Zheng et al. 2005) applied for the
LOWZ galaxy sample of the SDSS-III Baryon Oscillation
Spectroscopic Survey obtained by Parejko et al. (2013).
We populate halos with central and satellite galaxies ac-
cording to the best-fitting HOD N(Mh). Our cluster
and galaxy samples have the linear bias of bc = 3.11 and
bg = 1.70, respectively. We assume halos to have triaxial
shapes (Jing & Suto 2002) and estimate the orientations
of their major axes using the second moments of the dis-
tribution of member particles projected onto the celestial
plane. See Okumura et al. (2019) for more detail of our
mock catalogs.
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Figure 1. Galaxy-cluster GI correlation function in real space
(right) and in redshift space (left).

3.2. Estimators

⇠g+(r) =
1

RR(r)

X

i,j|r=xj�xi

�+(xj) (13)

⇠g+,`(r) =
2`+ 1

2

1

RR(r)

X

i,j|r=xj�xi

�+(xj)P`(µ) (14)

⇠v+(r) =
1

RR(r)

X

i,j|r=xj�xi

vk(xi)�+(xj) (15)

⇠++(r) =
1

RR(r)

X

i,j|r=xj�xi

�+(xi)�+(xj) (16)

4. RESULTS

4.1. GI correlation

The left side of Figure 1 compares the measurement of
the GI correlation function in real space to the LA model
prediction.
The top panel of Figure 2 shows the comparison of

the multipole moments of the real-space GI correlation
function to the LA and NLA models. The bottom panel
presents the quadrupole-to-monopole ratio.

4.2. E↵ects of redshift-space distortions

In the bottom panels the red points show the ratio of
the GI correlation functions in redshift and real space.
The linear bias parameter of Sample A is determined
from bA(x) = (⇠RAA/⇠

R
m)1/2 on 20 < x < 80 [ h�1 Mpc]

where ⇠
R
m is the matter correlation function and here

we simply compute it using linear theory based on the
CAMB code (Lewis et al. 2000). The values of the bias
are shown in Table ??. The Kaiser prediction gives a
reasonable ratio around 1.2 for the density correlation on

Okumura, Taruya and Nishimichi (2020)

BAO scale

Anisotropic correlations of halo ellipticities 699

Figure 2. Multipole components of alignment statistics of subhaloes with mass Mh ≥ 1013 M", ξ (R,S)
h+," (upper left-hand set), ξ (R,S)

v+," (upper right-hand set), ξ (R,S)
+,"

(lower left-hand set), and ξ
(R,S)
−," (lower right-hand set). In each set, the left- and right-hand panels show the multipoles in real and redshift space, respectively.

While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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Figure 3. Quadrupole-to-monopole ratio of the GI correlation function of
subhaloes (upper row) and octopole-to-dipole ratio of the VI correlation
of subhaloes (lower row). The mass range of the subhalo sample is Mh ≥
1013 M". In each row, left- and right-hand panels show the results in real
and redshift space, respectively. The dotted and dashed curves in the upper
right-hand panel are the LA and NLA models, respectively, and in the other
panels both the LA and NLA models predict simply −1 (red horizontal line).

Figure 4. Ratios of intrinsic alignment (IA) multipoles in redshift and real
space for subhaloes with M ≥ 1013 M". We show those for GI (ξS

h+,"/ξ
R
h+,")

in the upper left-hand panel, for VI (ξS
v+,"/ξ

R
v+,") in the upper right-hand

panel, and for II (ξS
+,"/ξ

R
+," and ξS

−,"/ξ
R
−,") in the lower left- and lower

right-hand panels, respectively. The result for the VI correlation function is
shifted vertically by 0.5, so the horizontal dotted line denotes unity.

the GI multipole correlation functions in redshift and real space,
ξS

h+,"/ξ
R
h+,". The enhancement of the GI correlation functions due

to RSDs is suppressed for massive haloes by the RSD parameter,
f/bh.

Next, one of the two II correlations, ξ
(R,S)
+," , for haloes with mass

Mh ≥ 1014 M" is shown in the lower left-hand set of Fig. 5.
Although the amplitude becomes larger due to the factor of C̃2

1 ,
the measurement itself becomes much noisier. We thus do not focus
on the BAO features although they are detected by all the multipole
components of ξ

(R,S)
+," . The ratios of the II correlations in redshift and

real space are shown in the lower left-hand panel of Fig. 6. Again,
while the measurements are noisy, they are consistent with unity.
Another of the two II correlations, ξ

(R,S)
−," , is shown in the lower

right-hand set of Fig. 5. Because of the fact that the ellipticity is
the density-weighted field, the measurements significantly deviate
from the LA and NLA models compared to the case of lower mass
haloes. However, the ratios of the correlation functions in redshift
and real space are consistent with unity even on small scales, in
agreement with the LA/NLA models.

Finally, the multipoles of the VI correlation function, ξ
(R,S)
v+,"

are presented in the upper right-hand set of Fig. 5. Since just
like the II correlation functions, both the measured ellipticity and
velocity fields are density weighted, the VI correlation function is
significantly affected by the non-linearities. On the other hand, the
VI correlation function is severely suppressed in redshift space. As
shown in the upper right-hand panel of Fig. 6, the ratios of the dipole
and octopole in redshift space to those in real space are more or less
equivalent, and the behaviours are also the same as those for less
massive haloes. Although the non-linear behaviours of the II and
VI correlation functions are interesting, understanding these effects
are beyond the scope of this paper and we will investigate them in
future work.

5 C O N C L U S I O N S

The IA of galaxy images can be utilized as a powerful cosmological
probe. However, whether or not the IA statistics can be useful for
this purpose entirely depends on the accuracy of the theoretical
modelling of the relevant statistics. In this paper, we test analytical
predictions of the tidal alignment model for IA statistics derived in
Okumura & Taruya (2020), using a large set of cosmological N-body
simulations. We measured various alignment statistics, the GI, II,
and VI correlation functions, in real and redshift space with the full
two-dimensional plane (Fig. 1) and with the multipole expansions
(Fig. 2). We find that both anisotropies of BAOs and RSDs are
accurately predicted by the LA model. This demonstrates that the
IA encoded in the large-scale structure of the Universe can be
used as geometric and dynamical probes to constrain cosmological
parameters.

In a companion paper, Taruya & Okumura (2020), we considered
the observations of the BOSS and DESI galaxy surveys and
indeed showed that combining IA statistics to the conventional
galaxy clustering statistics allows us to significantly tighten the
cosmological parameter constraints. IAs of galaxies in the BOSS
surveys have already been detected (Li et al. 2013; Singh et al. 2015;
van Uitert & Joachimi 2017). However, all these studies focused
on the angular-averaged components of the GI and II correlation
functions. We will present the cosmological analysis of IA statistics
in redshift space using the higher order multipoles in future
work.

In order to extract more information from the IA statistics, one
needs to develop a model at quasi-non-linear scales. In this paper, we
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Figure 2. Multipole components of alignment statistics of subhaloes with mass Mh ≥ 1013 M", ξ (R,S)
h+," (upper left-hand set), ξ (R,S)

v+," (upper right-hand set), ξ (R,S)
+,"

(lower left-hand set), and ξ
(R,S)
−," (lower right-hand set). In each set, the left- and right-hand panels show the multipoles in real and redshift space, respectively.

While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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Short summary and the purpose of this study

• According	to	the	Fisher	forecast	study,	intrinsic	alignment contains
cosmological	information via dynamical	and	geometric	effects.
• And we can predict the full two-point statistics of intrinsic alignment in	
redshift	space	to	some	extent.	

• So, we are	ready	to	analyze	the real	data	to	see	actual	cosmological	
constraints.	
• As a first step, we consider only the dynamical constraint (RSD), but not
geometric	constraint	(Alcock-Paczynski and	BAO).	



SDSS-III BOSS DR12 galaxy data
• LOWZ	(0.16	<	z	<	0.43)	and	CMASS	(0.43	<	z	<	0.70)	samples
• 353804	LOWZ	galaxies
• 761567	CMASS	galaxies

• Adaptive	moments	are	adopted	for	the	shape	estimation	
• see	Bernstein	&	Jarvis	(2002)
• As	pointed	by	Hirata	&	Seljak	(2003),	the	PSF	systematics	are	not	properly	corrected.	
• It	affects	the	amplitude	of	the	IA	measurements	(namely,	bK or	AIA parameters)	that	
are	nuisance	parameters	for	cosmological	analysis
• Also,	it	affects	the	large-scale	shape	of	the	II	correlation	at	>	10Mpc/h	(See	Singh	&	
Mandelbaum	2016)	that	we	are	not	interested	in	because	they	are	noisy.	

𝑒!
𝑒" =

1 − 𝑞#

1 + 𝑞#
cos 2𝜃
sin 2𝜃

• Axis	ratio	q is	set	to	q =	0,	which	further	affects	the	value	
of	bK or	AIA.



Measurements of clustering and IA multipoles
(Exended) Landy-szalay 
estimators (Mandelbaum+ 2006)
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Conclusions and discussion
• Using the SDSS BOSS LOWZ and CMASS galaxy samples, we showed that the 

growth rate constraint can be improved by adding the measurements of galaxy 
intrinsic alignment to the conventional clustering measurement.
• The improvement largely depends on the amplitude of IA (bK).
• A new method of estimating the halo IA from ELG will be useful (Jingjing+ 2021).  
• Or consider the alignment of galaxy clusters (Jingjing’s and Ishikawa-san’s talks)
• We have not considered the Alcock-Paczynski (AP)                                               

and geometric distortion effect yet. Taking into                                               
account the AP effect would enhance the                                               
cosmological return from intrinsic alignment                                           
measurements. 


