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PGI(k) ∼ −C1Pδδ(k) (31)

PII(k) ∼ C2
1Pδδ(k) (32)

PGI(k, z) ∼ −A(z, L)Pδδ(k, z) (33)

PII(k, z) ∼ A2(z, L)Pδδ(k, z) (34)

δg = b1δ + b2δ
2 + · · · (35)

γI = C1s+ C2s
2 + · · · (36)

δg = b1δ + b2δ
2 + bss

2 + · · · (37)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (38)

δg = b1δ + b2δ
2 + bss

2 + bvv
2
s + · · · (39)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (40)

δg = b1δ + b2δ
2 + bss

2 + · · · (41)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + · · · (42)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + Cttij + · · · (43)

(44)

〈δg|δg〉 (45)

〈δg|γ〉 (46)

〈γ|γ〉 (47)

〈δg|δg〉 ∼ wgg (48)

〈δg|γ+〉 ∼ wg+ (GI) (49)

〈γ+|γ+〉 ∼ w++ (II) (50)

(51)
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measured for a given sample. Historically, these parameters have been rescaled to capture the expected amplitude and
redshift evolution. As we intend this work to be useful for implementing models in upcoming weak lensing analyses,
we will briefly outline these conventions and describe one reasonable set of choices. While these conventions would
not impact a fully general IA analysis (where the amplitude and redshift dependence are allowed complete freedom),
in practice, parameterizations typically limit the redshift evolution to follow Eq. 40 below or a variant thereof (e.g.
with an additional power law in redshift).
Several conventions exist for this normalization rescaling. Early works [22, 24] used the ellipticity variance between

individual galaxies to set the scale of the amplitude, assuming that these deterministic IA expansions were responsible
for (nearly) the entire observed variance. By assuming that stochasticity from smaller scale physics (i.e. terms
not captured in this perturbative expansion) is negligible, this approach sets an upper limit on the IA amplitude
parameters. An additional issue with such an approach is that the value can be highly dependent on the minimum
scale of fluctuations considered when calculating the variance (i.e. the relevant smoothing scale, whether it is implicit
or explicit) – see [11, 41] for further discussion. To partially avoid these issues, [9] used the variance of galaxies
smoothed on large angular windows, analogous to how density fluctuations are normalized using the �8 parameter.
The particular measurements used in that work, from the low-redshift SuperCOSMOS survey [42], are not particularly
well-matched to modern lensing surveys. However, this normalization convention, formalized in [10], has become fairly
standard, and as recent observations have shown, it provides roughly the correct scale for observed IA correlations
(up to an order-unity parameter).
Note that [9] assumed redshift evolution corresponding to the “primordial alignment” scenario, in which the tidal

field at high redshift, around galaxy formation, was responsible for the observed IA at late times. Outside of the
redshift dependence, the choice of “primordial” or “instantaneous” alignment can be thought of as the Lagrangian or
Eulerian description, respectively. In the context of a complete e↵ective theory at a given order, these two approaches
should be equivalent. We note that our current treatment emits one term at O(�2), the velocity shear tij , and will
revisit this topic in upcoming work [34].

1. Tidal alignment

Synthesizing these results, the tidal alignment convention has become (see [21] for further discussion):

C1(z) = �A1(z)
�
C̄1⇢crit

�
⌦mG(z)�1 . (40)

The minus sign enforces the expected behavior that galaxies (and their host halos) will tend to be oriented towards over-
dense regions rather than tangentially aligned as results from lensing shear. The number C̄1 = 5⇥10�14h�2M�1

� Mpc3,
corresponding to C̄1⇢crit ⇡ 0.014, was determined from the windowed ellipticity variance in SuperCOSMOS and as-
suming the NLA model (i.e. the nonlinear matter power spectrum used with the linear IA model; [10]). The growth
factor G(z), normalized to unity at z = 0, is included to cancel the linear growth of the density field and yield a
constant amplitude in the primordial alignment scenario.4 The fractional matter density ⌦m is factored out to reflect
the fact that a larger density increases the amplitude of the tidal field, while the combination A1C̄1 captures the
response to the tidal field.
The remaining free parameter A1(z) is now expected to be an order-unity parameter that describes the particular

galaxy samples and captures potential deviations from the assumed redshift dependence. Current constraints on A1

from cosmic shear measurements (e.g. [18]) are consistent with A1 ⇠ 1 for typical lensing sources (although there is not
yet a strong detection), while direct IA measurements with massive elliptical galaxies (e.g. [14–16]) find A1 ⇠ 3� 10,
depending on the redshift and luminosity.
As discussed above, if C1� is assumed to come purely from density weighting e↵ect, at one-loop order it will take

the value C1� = b1C1. More generally, we can define an analogous scaling:

C1�(z) = �A1�(z)
�
C̄1⇢crit

�
⌦mG

�1(z) . (41)

2. Tidal torquing

Conventions for setting the expected amplitude of tidal torquing, C2, have typically relied on assuming that this
quadratic term is responsible for the full variance between individual galaxy ellipticities (e.g. [24, 41]). Instead, we

4
The original treatment in [9] normalized the growth function di↵erently, which would lead to a roughly 30% di↵erence with the current

convention. The value of C̄1 quoted here was determined by [10] using our convention for G(z).
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propose following a similar procedure as for C1 in Eq. 40, namely that the fiducial pre-factor is set by matching to
the observed variance in large angular windows. In this case, we can write:

C2(z) = A2(z)

✓
5C̄1⇢crit
⌦m,fid

◆
⌦2

mG(z)�2 . (42)

We have multiplied the factor C̄1⇢crit by 5 to account for the approximate di↵erence in windowed variance produced
by the di↵erent (unnormalized) IA power spectrum in the pure tidal alignment and tidal torquing cases. Under
this convention, the C2

1 and C2
2 contributions to the II term produce approximately the same windowed ellipticity

variance at z = 0, for |A1| = |A2|. This correction factor is mildly dependent on cosmology, but we choose to
apply an approximate and cosmology-independent value for simplicity. Because the quadratic term has two powers
of the tidal field, there are two factors of both ⌦m and G(z), although we divide by a fiducial ⌦m,fid to maintain the
correct numerical value.5 The overall di↵erence in sign compared to C1 is to maintain the convention that positive Ai

corresponds to galaxy shape alignment with overdense regions (i.e. a negative GI contribution). In the case of tidal
alignment, a positive A1 corresponds to both the theoretical expectation and what has been widely observed in both
real galaxies and simulations. However, the expected sign of A2 is less clear, with some hydrodynamic simulations (e.g.
[43]) finding tangential alignment between the major axes of spiral galaxies and matter overdensities, corresponding
to negative A2, and other simulations (e.g. [44, 45]) finding the opposite. There is not yet strong evidence for A2 in
galaxy observations, although the recent analysis of [18] found hints of A2 < 0. In the absence of a strong indication
for either sign, we assume a fiducial A2 = 1 in the following forecasts.
While Eq. 42 sets a scaling for C2 that is consistent with the motivation for the established convention in Eq. 40, it

does not necessarily correspond to an equivalent level of overall IA contamination. This scaling is determined using
windowed ellipticity variance, a measure of the II term. However, the GI term is often the dominant IA contribution,
and this term di↵ers significantly between the linear and quadratic IA contributions. Indeed, because there is no
leading-order C2 contribution to GI, the overall IA impact from C2 is suppressed compared to a C1 model with
equivalent windowed variance.

Finally, we emphasize that these proposed scalings are somewhat arbitrary, although they are useful in establishing
a standardized approach to compare results between surveys. However, given the particular assumptions made in
these scalings, care must be taken when limiting the allowed redshift dependence of IA in an analysis.

F. Smoothing

In several earlier works on IA modeling, a smoothing filter was explicitly applied to the tidal field to remove
fluctuations below the halo or galaxy scale (e.g. [9, 11, 21, 46]). Following the typical treatment in galaxy bias, we
instead choose to treat the smoothing of the tidal (and density) fields as an implicit element of the model, considering
correlations only on scales much larger than the smoothing scale (k ⌧ ksm) and incorporating contributions to these
correlations from small scales into the e↵ective (renormalized) IA bias parameters Ci. As discussed in [27, 47], the
e↵ect of non-local contributions, such as smoothing, can be incorporated through higher derivative operators which
will scale as powers of (k/ksm)2 and thus become significant on small scales (including where a perturbative expansion
will begin to break down). The inclusion of such terms can be similarly motivated by considering a Taylor expansion
of a Fourier-space Gaussian smoothing filter. We do not include such terms here but note that they are generically
present and may reflect the small-scale physics of galaxy and halo formation relevant to IA correlations. Accounting
for these terms will be especially important when attempting to extend a perturbative expansion to smaller scales
and including the impact of the one-halo term.

G. Renormalized contributions

1. IA bias parameters

As seen above, we absorb the cuto↵-dependent contributions (i.e. those proportional to �2 or �4) into the definitions
of the e↵ective IA parameters. This process is identical to the renormalization of bias parameters (e.g. [25, 26, 48]),
which was inspired by the renormalization of coupling constants in quantum field theory. The underlying principle

5
In practice, without a precise prediction for the shape response to the tidal field, IA contains no usable information on ⌦m, which can

be equivalently absorbed into the pre-factor. The recent analysis in [18] treats both C1 and C2 as scaling linearly with ⌦m.
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2. Tidal torquing

Conventions for setting the expected amplitude of tidal torquing, C2, have typically relied on assuming that this
quadratic term is responsible for the full variance between individual galaxy ellipticities (e.g. [24, 41]). Instead, we

4
The original treatment in [9] normalized the growth function di↵erently, which would lead to a roughly 30% di↵erence with the current

convention. The value of C̄1 quoted here was determined by [10] using our convention for G(z).
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We know (roughly) IA for luminous, 
red (elliptical) galaxies

1 10 100
rp [h

-1 Mpc]

0.01

0.10

1.00

w
g+

 [h
-1
 M

pc
]

Figure 1. Measurements of [30] and LA model prediction for wg+. The black dashed line is calculated
using the linear theory Pδ(k), and the red solid line uses the Halofit model.
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Figure 2. Measurements of [29] and model predictions for w++ (left panel) and w×× (right panel).
The measurements have been projected along the line-of-sight. Open circles, indicating the original
measurements without the (1 + ξg(r)) correction, are only shown for w++ and on small scales where
there is an appreciable difference. For clarity, these points have a small horizontal offset. Line
convention is the same as in figure 1. A linear y-axis is used for w××. The normalization of the LA
prediction for both statistics is set from the fit to w++.

3.3 Autocorrelation E- and B-modes

The w×× and w++ statistics can be written in terms of curl-free (E) and divergence-free (B)
modes. Lensing by matter produces only E-modes, making such a decomposition a useful
diagnostic in studying the effects of intrinsic alignment and other systematics [49]. As shown
below, only E-modes are produced in the LA model, and thus B-modes could indicate the
presence of separate alignment mechanisms [43].

Following [50], we can express the E- and B-components of the auto-correlation func-

– 8 –

Test C1ρcrit χ2
red. p(> χ2) Comments

wg+ 0.125 ± 0.007 2.3 0.05 NL corrections improve fit below 10 h−1Mpc
w++ 0.123 ± 0.014 0.43 0.79 NL corrections improve fit below 10 h−1Mpc
w×× Use w++ fit 2.4 0.03 —
wE Use w++ fit 2.8 0.02 —
wB — 0.68 0.64 LA prediction is wB = 0

C̃1ρcrit
w̃g+ 0.71± 0.02 1.8 0.12 Calculated without weighting by γ0
w̃++ 0.74± 0.07 0.24 0.91 Calculated without weighting by γ0

wg(rp, θ) 0.16− 1.55 — — Luminosity dependent - see section 3.4

Table 1. Summary of tests of LA model, including measured model parameter and reduced χ2 for
the fit. All measurements use the SDSS LRG catalog except for wg(rp, θ), which uses the SDSS main
sample. The upper section contains statistics that are weighted by the ellipticity magnitude while the
lower section contains unweighted statistics.

On large scales, the LA mechanism should dominate ellipticity correlations, which will
scale linearly with the matter power spectrum, Pδ(k). Spiral galaxies are supported by an-
gular momentum, and thus a distinct alignment mechanism, based on the tidal torquing
theory of protogalaxies, may be relevant. Models based on tidal torquing can be categorized
as “quadratic alignment models,” since the tidal field enters quadratically at lowest order
rather than linearly [20, 34, 42], suppressing large-scale correlations because δ " 1. Predic-
tions of intrinsic alignment effects from quadratic models are qualitatively different from the
linear model. For example, quadratic models predict a divergence-free (B-mode) component
to the ellipticity at leading order [43] but a vanishing lowest-order correlation between matter
density and ellipticity. Nonlinearities in the density field could potentially allow quadratic
alignment effects to contribute at linear order in Pδ(k) [34]. Recent observations [27, 28, 44]
have split galaxies by color into “red” and “blue” sub-samples, finding qualitative differences
in intrinsic alignment, suggesting the possibility of different alignment mechanisms. Blue
samples exhibit weaker intrinsic alignment on large scales, supporting the theory that LA
effects are less prominent in spirals.

3 Measuring intrinsic alignment

There are numerous probes of galaxy intrinsic alignment. We consider several alignment
statistics in real space (for both GI and II correlations) and compare measurements with LA
model predictions. Table 1 provides a summary of these statistics, which are described in
the following subsections.

3.1 Galaxy samples

To test the predictions of the linear alignment model, we compare with existing measure-
ments of intrinsic alignment statistics. Catalogs from large, deep surveys have allowed recent
measurements of these correlations with better precision and at larger separations than was
previously possible. In [29, 30], the authors used the catalog of Luminous Red Galaxies
(LRGs) from DR6 of the Sloan Digital Sky Survey (SDSS; [45]) to measure both II and GI
correlations. LRGs, which are among the most luminous elliptical galaxies, are expected to be

– 5 –

SDSS LRGs: Okumura & Jing 2009; JB+ 2011



More “typical” lensing sources?
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Figure 3. The measured values of γ̄IA using three different techniques are shown (with each panel
showing the results for a different source color sample). Black squares indicate that the original boost
measurements have been used in eq. 4.5. Blue circles indicate the use of “extended boosts.” Green
triangles indicate that the IA contamination in the background sample was assumed to be zero. All
three methods yield results consistent within the statistical uncertainty, although assuming that the
background sample has no IA slightly biases the magnitude of γ̄IA to lower values.

IA is an ongoing theoretical challenge, made more complicated by the heterogenous nature
of source samples used in lensing studies. For this reason, we aim to make fairly minimal
assumptions and show the resulting constraints for two cases: a generalized power-law model
and a model motivated from IA measurements of LRGs.

The 1000 bootstrap realizations are combined to construct a full covariance matrix for
the IA measurement:

Ĉij =
1

Nboot − 1

Nboot∑

k=1

[γ̄IA(ri)kγ̄IA(rj)k − 〈γ̄IA(ri)〉〈γ̄IA(rj)〉] , (5.3)

where angled brackets indicate an average over the realizations. We then use this covariance
matrix to find best-fit parameters for a particular model for each bootstrap realization. At
every value of rp, a confidence interval is constructed using the Nboot predictions from the
model fits. Thus, in the case of a model with multiple parameters or one that does not
monotonically change with its parameter, the resulting confidence region envelopes may have
a shape different from the model itself. Because it is calculated from bootstrap realizations,
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Extrapolation with power laws

Joachimi+ 2011

B. Joachimi et al.: Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample
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Fig. 13. Projected correlation function wg+ as a function of comoving
transverse separation rp for the MegaZ-LRG subsamples with the cut
0.2(g − i) > 1.7 imposed. Top panel: Shown is wg+ for the MegaZ-LRG
sample with the full range in redshifts. The black solid curve corre-
sponds to the best-fit model when only varying the amplitude A, without
contributions by galaxy-galaxy lensing and magnification-shear cross-
correlations. The dotted line represents the best-fit model to the full
sample shown in Fig. 9. Bottom panel: Same as above, but for the cut
MegaZ-LRG sample split into the two photometric redshift bins, where
results for z < 0.529 are shown in black, and for z > 0.529 in red.
Dotted lines again indicate the best-fit model for the full MegaZ-LRG
samples, respectively. Note that the red points have been slightly offset
horizontally for clarity, and that the error bars are correlated. Only the
data points outside the grey region have been used for the fits.

exclude more and more of the red sequence. In contrast, for this
paper, we want to keep all of the red sequence without regard for
matching the luminosity ranges (indeed, we would like to study
samples on a wide luminosity baseline in order to measure the
variation of intrinsic alignments with luminosity). Thus, we wish
to define a minimum 0.2(g − i) that corresponds roughly to that
for the SDSS spectroscopic LRGs and our revised definition of
the SDSS Main L3 and L4 red samples. The best choice in this
context appears to be a cut at 0.2(g − i) > 1.7, which should en-
sure consistency with the other samples within the limits of our
uncertainty in k + e-corrections.

To illustrate this cut, we present Fig. 12, which shows two-
dimensional projections of the relationship between redshift,
colour, and absolute rest-frame magnitude of the samples. As
shown, they span a wide range of redshifts (0.05 < z < 0.7) and
of luminosities (four magnitudes), and with the imposition of
this new colour cut, the colour ranges are quite similar. MegaZ-
LRG shows the largest scatter to redder colours; however, this is
expected given that, as the highest redshift sample, they have the

largest photometric errors which significantly widens the colour
distribution at the red end where the g band flux is often only
weakly detected, especially once the 4000Å break moves from
g to r band. The result of this cut is to reduce the MegaZ-LRG
sample to 70 % of its original size. The typical sample redshift
does not change, and the mean luminosity increases marginally
by 2 % compared to the values of the full MegaZ-LRG sample,
see Table 3.

We repeat the intrinsic alignment amplitude fits of Sect. 5.3
for the cut MegaZ-LRG samples, including the contributions by
galaxy-galaxy lensing and magnification-shear correlations. We
continue to use the relation between photometric and spectro-
scopic redshifts from the 2SLAQ verification sample of Sect. 2.4
because we do not observe any significant effect by the colour
cut on this relation, e.g. neither the mean nor the scatter of
the distribution of differences between photometric and spectro-
scopic redshifts change beyond the 1σ level. The resulting cor-
relation functions with the best-fit models are plotted in Fig. 13,
and the corresponding best-fit values for A listed in Table 3.
For comparison we also show the best-fit models to the uncut
MegaZ-LRG samples in the figure. Since the cut and uncut sam-
ples have the same redshifts and luminosities to high accuracy,
we can ascribe any difference in the signals to a dependence of
intrinsic alignments on galaxy colour.

For both the high- and low-redshift MegaZ-LRG samples as
well as the full sample we find an increase in A for the cut sample
which has higher 0.2(g−i), thus being in line with the expectation
that redder galaxies have stronger intrinsic alignments. The in-
crease amounts to 11 % for the low-redshift sample and 28 % for
the high-redshift sample (the corresponding error bars feature
a similar increase), suggesting a stronger colour dependence at
higher redshift. However, it should be noted that all observed
changes due to the colour cut in g− i remain within the 1σ errors
and are therefore not statistically significant.

5.5. Intrinsic alignment model fits to combined samples

Having addressed the question of the compatibility of the sam-
ples, we repeat the fits to wg+ for different combinations of
galaxy samples, now allowing for an additional redshift and lu-
minosity dependence according to the extended model

Pmodel
gI (k, z, L) = A bg PδI(k, z)

(
1 + z
1 + z0

)ηother ( L
L0

)β
, (19)

where z0 = 0.3 is an arbitrary pivot redshift, and L0 is the pivot
luminosity corresponding to an absolute r band magnitude of
−22 (passively evolved to z = 0). The matter-intrinsic power
spectrum PδI is given by the NLA model with the modified red-
shift dependence discussed in Appendix B, including the nor-
malisation to SuperCOSMOS. This model contains three free
parameters {A, β, ηother}, and, as before, has a fixed dependence
on transverse scales.

The amplitude parameter A and the luminosity term can be
taken out of all integrations leading to wg+ because they neither
depend on redshift nor comoving distance, so that the parameters
A and β can be varied in the likelihood analysis with low com-
putational cost. The extra redshift term containing ηother depends
on the integration variable in (5) though. To facilitate the like-
lihood analysis for the MegaZ-LRG samples with photometric
redshifts, we assume that this term can be taken out of the inte-
gration and is evaluated at the mean z̄m = (z̄1 + z̄2)/2 of the two
redshifts entering (5). This approximation holds to fair accuracy
because the corresponding redshift probability distributions are
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Fig. 14. Constraints by the joint fit to MegaZ-LRG and SDSS spectroscopic samples on the amplitude A of the intrinsic alignment model, the
extra redshift dependence with power-law index ηother, and the index β of the luminosity dependence. In the lower left panels, the two-dimensional
1σ and 2σ confidence contours are given, marginalised in each case over the parameter not shown with flat priors in the range A ∈ [0; 20],
ηother ∈ [−10 : 10], and β ∈ [−5; 5]. The upper right panels display the constraints on A, ηother, and β, each marginalised over the two remaining
parameters. Red lines are obtained via fits to the six SDSS LRG samples, green lines for the SDSS LRG and Main samples, yellow lines via fits
to the MegaZ-LRG and SDSS Main samples, blue lines for MegaZ-LRG and SDSS LRGs combined, and black lines result for the joint fit to the
MegaZ-LRG, SDSS LRG, L4, and L3 samples.

sufficiently narrow, given the small photometric redshift uncer-
tainty for the MegaZ-LRG sample.

The additional redshift dependence is then integrated over
in the averaging process in (12) and (14) for photometric and
spectroscopic samples, respectively. As also the luminosity dis-
tributions of the galaxy samples under consideration are com-
pact and narrow, we use the mean luminosity in the luminosity
term in (19) instead of integrating (L/L0)β over the full distribu-
tion. This is a good approximation even for the full MegaZ-LRG
sample, which features the broadest luminosity distribution, the
deviation being below 2 % close to the best-fit values for β that
we determine below.

We consider joint fits to several combinations of the six
SDSS LRG subsamples, the two MegaZ-LRG low- and high-
redshift samples with the colour cut, and the two SDSS Main

L4 and L3 samples. The resulting two-dimensional marginalised
confidence contours and marginal one-dimensional posterior
distributions for the parameter set {A, β, ηother} are shown in
Fig. 14. The corresponding marginal 1σ errors on these parame-
ters and the goodness of fit are given in Table 4. In the computa-
tion of marginalised constraints we assumed by default flat priors
in the ranges A ∈ [0; 20], ηother ∈ [−10 : 10], and β ∈ [−5 : 5].
For the combination of the MegaZ-LRG and SDSS Main sam-
ples, which yields weak and degenerate constraints, we extend
the prior range of ηother to ±20. Note that in this case the poste-
rior has not yet decreased very close to zero at β = 5, but still we
expect the influence of the β-prior on the marginal constraints to
be negligible.

Combining all SDSS LRG samples we can constrain β well,
i.e. the power-law slope of the luminosity evolution of the in-
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Table 4. Left: Fiducial, minimum and maximum values (flat priors) for the intrinsic alignment parameters. Right: Fiducial values and range of the Gaussian
priors for the nuisance parameters describing photo-z uncertainties (optimistic and pessimistic scenario) and uncertainties in the luminosity function. See text
for details.

A0 β η ηz

Fid 5.92 1.1 -0.47 0.0
Min 0.0 -5.0 -10.0 -3.0
Max 10.0 5.0 10.0 3.0

biasph σph ∆LFα ∆LFP ∆LFQ ∆LFredα ∆LFredP ∆LFredQ
Fid 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0
σ (Gaussian Prior) 0.002 0.003 0.05 0.5 0.5 0.1 0.5 0.5
σ (Gaussian Prior) 0.005 0.006 0.05 0.5 0.5 0.1 0.5 0.5
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Figure 3. The impact of IA on WL constraints (68% confidence region) from LSST assuming the NLA Halofit scenario. We consider different luminosity
functions i.e. GAMA (red/dashed) and DEEP2 (green/long-dashed) and for the GAMA LF we also consider the case for which blue galaxies have a mild NLA
IA contribution (blue/dot-dashed). The LSST statistical errors are shown in black/solid. Orange/dot-long-dashed contours show results when using the most
extreme of these cases, i.e. the data vector corresponding to the blue contours, as input and including the CosmoLike IA mitigation module in the analysis.
The marginalized likelihood is obtained by integrating over a 11-dimensional nuisance parameter space (see text for details).

Alignment of blue galaxies While measurements of the position–
shape correlation for blue galaxies indicate that the NLA signal
of blue galaxies is consistent with zero (e.g., Hirata et al. 2007;
Mandelbaum et al. 2011), the statistical uncertainty in these non-
detections is substantial and does not rule out noticeable contami-
nation. Hence in Fig. 3 we also illustrate the impact of NLA con-
tamination for blue galaxies with an amplitude based on the 68%
upper limit for the NLA amplitude of WiggleZ and blue, low-
redshift SDSS galaxies in Mandelbaum et al. (2011). Assuming the
same redshift and luminosity scaling of the blue galaxy IA ampli-
tude as in our fiducial model for red galaxies, in our notation this
corresponds to an amplitude A(L0, z)blue = 0.25 × A(L0, z)red. The

blue/dot-dashed contours in Fig. 3 correspond to a scenario where
both red and blue galaxies are affected by IA, and the total IA am-
plitude is calculated by

Atot(mlim, z) = fredAred(mlim, z) + (1 − fred)Ablue(mlim, z) . (31)

This analysis again assumes the NLA Halofit scenario with the
GAMA luminosity function, the IA model for red galaxies de-
scribed in Sect. 2, and the blue galaxies NLA model motivated
above. Equation 24 for blue galaxies hence uses A(L0, z)blue =
0.25 × A(L0, z)red, and we approximate φ(L,Z)blue with φ(L,Z)all.
We note that a more realistic IA model for blue galaxies involves

c© 0000 RAS, MNRAS 000, 000–000
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for the full sample, without splitting in red and blue galaxies and
without considering any luminosity dependence - so with only one
free parameter, the amplitude �IA; in the second case we introduce
a power law to capture the redshift evolution of the signal due to the
IA dependence on the galaxy sample:

%XI (: , I) =
✓

1 + I

1 + I0

◆ [
%NLA
XI (: , I) (28)

and

%II (: , I) =
✓

1 + I

1 + I0

◆2[
%NLA

II (: , I), (29)

where we choose I0 = 0.3. We refer to this model as NLA-I.
To do so, we generate a data vector of angular correlation functions

b±(\) with the setup discussed in Sect. 5 and analyse it assuming the
NLA and NLA-I as typically done in most of the Stage-III analyses.
In this way, we have perfect knowledge of the signal injected and we
can isolate the impact of marginalisation.

We perform the analysis in real space, using the projected corre-
lation functions b±, which we derive from the angular power spectra
⇠ (✓) using the implementation available in C����SIS (Kilbinger
et al. 2009). The minimum and maximum angular scales adopted in
this analysis are, respectively: \min

+ = 30, \max
+ = 720, \min

� = 60 and
\max
+ = 1530, based on the KV450 (Hildebrandt et al. 2020) cosmic

shear analysis.
We limit our interest to the cosmological parameters to which

lensing is most sensitive, ⌦<, f8 and F. Instead of f8, we sam-
ple the logarithm of the scalar amplitude ln(1010�B), so our final
parameter vector is _ = {⌦<, ln(1010�B),F} and one (two) nui-
sance parameter(s), �IA (�IA, [). We adopt uniform priors ⌦< =
[0.1, 0.8], ln(1010�B) = [1.5, 5], F 2 [�5.0, 0.33], �IA = [�6, 6]
([ = [�5, 5]). To sample the parameter space we make use of the
E���� sampler (Foreman-Mackey et al. 2013). The same analysis is
performed for both scenarios; we only change the IA recipe while
generating the data vector.

Our results show that for Stage-III surveys the NLA model provides
an adequate description. For both scenarios the redshift dependence
of the IA signal caused by the variation of the galaxy sample is
not large enough to induce a bias in the cosmological parameters,
with only marginal shifts in both (8 and F for our case (ii). The
recovered IA amplitudes are instead, as expected, di�erent. In our
case (i) we find a �IA, (i) = 0.14 ± 0.14, while for our case (ii) we
find �IA, (ii) = 0.44 ± 0.13.

When adopting the NLA�I model as the reference, in both cases
the cosmological parameters are correctly recovered, but the [ pa-
rameter remains unconstrained in our case (i) and it is very weakly
constrained in our case (ii).

Our low IA amplitude for case (i) is in line with the best fit NLA
amplitude found in J19 for the full GAMA sample, while their best fit
value for the joint GAMA+SDSS Main has an amplitude of �IA ⇠ 1,
compatible with the fact that SDSS Main contains a larger fraction
of red galaxies and fewer satellites to lower the signal at large scales.
The comparison is, however, complicated by the fact that J19’s re-
sults are based on the gI correlations. Compared to the KV450 IA
amplitude, �IA = 0.981+0.694

�0.678, we find our case (i) to provide a lower
value for a similar galaxy sample. However, di�erent redshift distri-
butions are adopted in the two works. We note that the full shape of
the =(I) is critical for the accurate modelling of the IA contribution
(see Appendix D). The redshift distributions of KV450 are more
peaked and with more prominent tails, which increase the impact of
the II in real data: as a consequence, since II and GI have opposite
contributions, the IA balance changes. The way this e�ect can couple
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Figure 10. Constraints on the cosmological parameters ⌦<, (8 =
f8

p
⌦</0.3 and F , marginalising over the IA amplitude, for a Stage-IV

survey. We inject the IA signal as predicted by the full halo model formalism
assuming at larger scales a steep luminosity dependence (i: indigo) or a bro-
ken power law with constant amplitude for faint galaxies (ii: plum) - Table 3
lists the IA parameters used for constructing the data vectors. We perform the
analysis assuming a NLA model with no distinction between red and blue
galaxies. The orange lines and the square markers indicate the fiducial values
of the cosmological parameters.

with the IA sample dependence is not obvious, as calibration errors
in the final =(I) can be absorbed by the �IA amplitude during the fit
(Li et al. 2020). In addition to this, a luminosity dependence of the
signal reduces the presence of IA in the data (Joachimi et al. 2011;
Krause et al. 2016): if the faint end of the luminosity dependence
of red central galaxies is significantly shallower than what we as-
sumed in our case (i), the final amplitude would increase, as already
suggested by our case (ii) setup. Similarly, our predictions are based
on the assumption that the blue central galaxy population does not
significantly contribute to the signal (�blue

IA = 0.21), a constraint that
su�ers from large uncertainties. Our results (i) and (ii) point toward
a lower amplitude to what is preferred by the cosmic shear analysis
in DES data, for both their results with the NLA and NLA�I models
(Troxel et al. 2018), although we observe the same increase of the
overall IA amplitude as a function of redshift. Samuro� et al. (2019)
find a lower IA amplitude in DES galaxies when simultaneously fit-
ting for the cosmology and the IA amplitude in a 3x2pt statistics
(WW + X6W + X6X6, �NLA = 0.49+0.15

�0.15), which is in closer agreement
with our findings. We want to stress that the aim of these compar-
isons is only to provide a sense of the ranges of the IA amplitudes
currently constrained by lensing analyses: we should not interpret the
IA amplitudes as stand-alone quantities, without taking into account
the best fit cosmological parameters and the exact =(I).

6.2.1 Stage-IV

Given our results on a Stage-III setup, we investigate whether in the
case of a Stage-IV survey we still recover the right cosmological
parameters. We leave our setup unchanged, and only replace the
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Figure 5. Overview of di�erent estimates of the IA amplitude as a function
luminosity. The best-fit relation from Joachimi et al. (2011) (blue line) for the
MegaZ, SDSS L3 and L4 and SDSS LRG samples (blue downward facing
triangles); Singh et al. (2015) best-fit (red line) on LOWZ (red circles) and the
revised best-fit to GAMA+SDSS Main from J19 reported in the text (green
line). The three individual samples used by J19 are shown as green squares
(GAMA) and limegreen (SDSS Main sample). The yellow diamond indicates
our best fit amplitude for the GAMA red central galaxies.

for which we can obtain an estimate of the fraction of satellites
through the GAMA Group Catalogue6.

GAMA (⌘ = 0.7) data-points from J19 must be shifted in the
log(!/!0) axis by a factor ⌘�2 in order to align conventions for the
pivot luminosity !0 with SDSS (⌘ = 1); a re-analysis of the J19
luminosity dependence, with !0 convention homogenised for all of
their samples, does not significantly change the slope of their best-fit
relation7. Here, we follow the ⌘ = 1 convention, such that all the
ratios reported are assuming !0 = 4.69 ⇥ 1010!�⌘�2. Interestingly,
this means that the measurements from J19 cover a region of the
parameter space di�erent from Joachimi et al. (2011) and Singh
et al. (2015).

As mentioned in Section 3, satellite galaxies tend to randomly
orient their shapes at large scales, not contributing to a alignment
signal. At the same time, they preferentially lie along the major
axis of their central galaxy, contributing to the satellite position -
central shape correlation. In a halo model fashion, we can think of
any possible contribution to sum up linearly (i.e. central position -
central shape, central position - satellite shape, satellite position -
central shape, satellite position - satellite shape), weighted by the
fraction of galaxies that contribute to each term, together yielding
the final signal that we measure.

The individual fits to the alignment signals of the Z1 and Z2
samples in J19 show roughly a similar amplitude (�Z1 = 3.63+0.79

�0.79,

�Z2 = 3.55+0.90
�0.82) corresponding to galaxies of di�erent luminosity

(h!/!0i/1 = 0.25, h!/!0i/2 = 0.72), compatible with their finding
of no luminosity dependence. However, at low redshift the fraction
of satellite galaxies in their red population is roughly 0.36, which
decreases to 5sat ⇠ 0.27 in the second redshift bin.

6 http://www.gama-survey.org
7 We also note that the fiducial f8 in J19 was misquoted as 0.8, and should
in fact be 0.73. Their IA model constraints are una�ected, though their best-
fit galaxy biases should be rescaled by 0.73/0.8 ⇠ 0.91 to compare with a
f8 = 0.8 cosmology.

We have seen in Sect. 3.2 that the net e�ect of satellites is to lower
the measured amplitude. To get a sense of how this might a�ect our
data points, we up-weight the signal by the fraction 5sat in each given
bin: this increases the signal, which maintains the same flat relation,
without significant tilts. We note that this up-weighting procedure
is not quite correct and therefore should not be considered as the
underlying true shape signal, because the gI correlation contains two
terms that suppress the amplitude (i.e. those for which the satel-
lites act as shape tracers) and two where they contribute positively
to the final amplitude (the central-central correlation and the satel-
lite position - central shape correlation). Our re-weighting does not
consider the positive contribution of the satellite position - central
shape correlation and thus overestimates the suppression induced by
the satellites. Nevertheless, it gives us a sense of the overall shift
and can be considered as an upper-limit to the expected central-only
alignment amplitude.

To further explore the role played by the satellites, we measure
the IA amplitude of the red central sample only in GAMA (22 cor-
relation). The mean luminosity of this sample is h!/!0i = 0.46, for
which we find a best fit amplitude �GAMA,22 = 5.08+0.97

�0.95, with a

reduced j2 = 2.0 (#dof = 4).
This measurement does not agree with the curve predicted by

MegaZ and LOWZ, which would correspond to 2.40+0.59
�0.47 at that

given luminosity (assuming MegaZ best-fit parameters), as illus-
trated in Fig. 5. Our new measurement is displayed as a yellow
diamond, while the predicted best fit luminosity dependent IA am-
plitude measured by MegaZ and LOWZ are shown as blue and red
curves, respectively. Note that the MegaZ best fit curve also includes
a I�dependent power law that was poorly constrained in that work.
We do not include it here, as recent studies have not found evidence
for an intrinsic I-dependence of alignment strength, so the curve
reported in Fig. 5 is only the luminosity dependent part of their fit.

3.4.2 A central-only luminosity dependent signal

The complexity of the arising picture does not allow for a direct
interpretation of the role of satellites in the context of the luminosity
dependence, but we can at least identify two main scenarios.

(i) Central galaxies follow a single power law as observed in
Joachimi et al. (2011) and Singh et al. (2015) on MegaZ and LOWZ
galaxies. The lack of such luminosity dependence detection in J19
can be accounted by the non-negligible presence of satellites in their
sample. The fact the measurement of the central-central galaxy align-
ment from GAMA does not coincide with the MegaZ/LOWZ predic-
tions can point towards a shallower relation than what was measured
by those samples. This can be a consequence of satellites also con-
taminating the MegaZ and LOWZ samples.

(ii) Bright central galaxies follow the luminosity dependence in
Joachimi et al. (2011) and Singh et al. (2015), while faint galaxies are
characterised by a di�erent slope, in a double power law scenario.
Given the current measurements in this part of the parameter space,
the most extreme case is a flat luminosity dependence for ! < !0
(V!<!0 = 0).

In all of these cases, we are restricting the IA luminosity depen-
dence at large scales to central galaxies, a choice that finds a natural
theoretical frame in the context of the linear alignment mechanism,
where the intrinsic shear power spectrum can be expressed as a power
of the mass of the hosting halo (Piras et al. 2018). This can in turn be
related to the luminosity of its central galaxy. In the rest of the paper,
we assume that in the 2-halo regime, the luminosity dependence is

MNRAS 000, 1–19 (2020)
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Figure 11. Joint parameter constraints on the amplitude of the intrinsic alignment model A and the matter density parameter ⌦m from CFHTLenS combined
with WMAP7, BOSS and R11. In the left panel the constraints can be compared between two galaxy samples split by SED type, (early-type in red and late-type
in blue). In the right panel we present constraints from a optimised analysis to enhance the measurement of the intrinsic alignment amplitude of early-type
galaxies (pink). The full sample, combining early and late-type galaxies, produces an intrinsic alignment signal that is consistent with zero (shown purple). A
flat ⇤CDM cosmology is assumed.

values of A are preferred. For flat cosmologies, A is negative at
the 1.4� level when the CFHTLenS data are combined only with
WMAP7 and R11 (see table 3 for constraints on A for the full
galaxy sample for different cosmologies and data combinations).
Whilst we emphasize that this result is not statistically significant
it is however worth commenting on what this finding could mean.
In the conventional intrinsic alignment model the GI signal is neg-
ative and scales with A. The II signal is positive and scales with
A

2. Finding A < 0, however, implies the data prefer a GI+II sig-
nal that is more positive than the conventional model would pre-
dict. This suggests that future surveys with lower statistical errors,
should aim to fit independent amplitudes to the GI and II signals as
the interplay between the two effects may be more complex than
the linear tidal field alignment model suggests.

It is also interesting to comment on the decrease in the ampli-
tude of the best-fit intrinsic alignment signal when early and late
type galaxies are combined. If detected in future surveys at higher
significance, this would indicate a complex interplay between the
two galaxy types. It has long been thought that the reason for the
difference between the intrinsic alignments of early and late type
galaxies lies in the different mechanisms at play during galaxy for-
mation. The intrinsic alignment model we use in this analysis is
based on linear theory. A more traditional galaxy formation sce-
nario for late-type galaxies, however, is tidal-torque theory where
it is the angular momentum of the dark matter field that induces
galaxy spin and hence intrinsic galaxy alignments (see Schäfer
2009, and references therein). The simple hypothesis, presented in
Heymans et al. (2006), is that the intrinsic alignment of early-type
galaxies is a result of ellipticity deformations due to the linear tidal
field, in contrast to late-type galaxies whose alignment results from
angular momentum induced ellipticity alignments (van den Bosch
et al. 2002). This hypothesis is in good agreement with recent ob-
servations of galaxy-type dependence in the intrinsic alignment sig-
nal, as halo angular momentum is proportional to the square of the

tidal shear, and the induced galaxy alignments therefore correlate
over much shorter ranges compared to alignments directly caused
by the linear tidal shear (Catelan et al. 2001).

In addition to the linear model used throughout this paper, Hi-
rata & Seljak (2004) also investigate the GI signal expected from
an intrinsic alignment model where the galaxy ellipticity is pro-
portional to the square of the tidal field. In this case the GI sig-
nal is expected to be zero. As our galaxy sample is dominated by
late-type galaxies, the majority of correlated galaxy pairs in our
analysis from different redshift bins will include a late-type fore-
ground galaxy. Combining the findings of Hirata & Seljak (2004)
with our simple hypothesis that late-type intrinsic galaxy align-
ment is caused by halo angular momentum induced alignments,
leads to an expected zero GI measurement on average. In auto-
correlated tomographic bins however, the stronger galaxy cluster-
ing of early-type galaxies will mean that at small angular scales,
there is a higher proportion of close early-type galaxy pairs in the
measurement, compared to the numbers of early-type and late-type
foreground galaxies that contribute to the GI signal. This therefore
boosts the true II signal in auto-correlated bins over the amplitude
that would be predicted from GI-only constraints from a mixed
galaxy population.

The linear tidal field alignment model used in this analysis
could compensate for these different galaxy-type contributions to
the II and GI signal by favoring a small but negative value for A.
In this case the GI signal in the cross-correlation bins is positive
but sufficiently weak to provide a reasonable fit to the GI=0 model
signal expected from the dominant late-type galaxy population. In
the auto-correlated bins, the additional true positive II signal from
the clustered early-type galaxies is then represented in the model
fit, not by the model II signal, but the positive GI signal. If A was
positive and less than unity, there would still be a reasonable weak
but now negative fit to the GI=0 model in the cross-correlation bins.
In the auto-correlated bins, however, there would not be sufficient

c� 0000 RAS, MNRAS 000, 000–000
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Figure 11. Joint constraints on the amplitudes of the IA spectrum in four
tomographic bins for the �� + �g� + �g�g combination. In each case, the
red dashed contours show early-type galaxies, the dot-dashed blue show
late-types and the shaded contours show the mixed Y1 cosmology sample.

see Table 1 for reference), this model allows for no explicit redshift
evolution, with both the indices ⌘1 and ⌘2 in equations 17 and 18
fixed to zero. We show the resulting split-sample IA constraints in
the upper panal of Figure 12 (filled red/blue contours). The equiva-
lent parameter fits using the unsplit Y1 shape catalogue are shown
in Figure 13 (filled dark blue).

There are a number of points worth remarking on here. First,
the best fitting A1 values are consistent with those from the NLA
fits previously, with A1 ⇠ 2.5 for early-types and A1 ⇠ 0 for
late-types. In the split colour samples we report no statistically sig-
nificant constraint detection of non-zero A2. The mixed Y1 sample,
by contrast, favours a negative A2 amplitude at the level of several
�. Interestingly, the comparison in Figure 13 also suggests that the
constraint is driven by the cosmic shear data (compare the dark blue
contours in the upper and lower right-hand panels).

The standard physical interpretation of non-zero A2 is as an
IA contribution due to tidal torquing. Under the sign convention
in equation 18, A2 < 0 implies intrinsic shapes of galaxies are
oriented tangentially relative to matter overdensities. This picture
is consistent with recent results from hydrodynamical simulations
(Chisari et al. 2015), although it is worth bearing in mind that there
is still disagreement between simulations (e.g. Hilbert et al. 2017
and Tenneti et al. 2016 report null detections of a GI correlation
in disc galaxies in the Illustris and MassiveBlack-II simulations re-
spectively). There are a number of other facts to note here, however.
As ever, mapping IA parameter constraints onto physical processes
is non-trivial, as they can very easily absorb features in the data due
to residual systematics. We also re-iterate that, even in the absence
of systematics, possible non-zero values of both A1 and A2 in the
late-type and mixed samples are not straightforward to interpret.
As mentioned above, even in a pure TT scenario, the presence of
A2 6= 0 can generate an effective non-zero A1 amplitude.

We also note that, as in Troxel et al. (2017), the best fitting S8

using the TATT model is shifted down slightly relative to the NLA
fits; this shift is seen to persist in the full 3 ⇥ 2pt combination.
We echo Troxel et al. (2017), however, in warning that this is not
necessarily a sign of bias in the NLA results, but could also be a

Figure 12. Joint constraints on tidal alignment and tidal torque amplitudes
in the TATT model. The three sets of filled contours (dotted red, dashed
blue and solid purple) show the results of fitting the baseline TATT model
to each of the fiducial early-type, late-type and mixed samples used in this
analysis. The unfilled black contours show the same, but with additional
power laws in redshift ⌘1 and ⌘2, which are also marginalised.

MNRAS 000, 000–000 (0000)
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FIG. 7. Summary of marginalized constraints (mean and 68% CL) and maximum posterior values (crosses) on S8, ⌦m, and �8 in ⇤CDM.
‘Ext. Low-z’ data consists of external SNe Ia, BAO, and RSD, while ‘All Ext.’ data consists of external SNe Ia, BAO, RSD, and Planck
CMB with lensing. The top section shows constraints using only DES data, the middle section only external data, and the bottom section
combinations of DES and external data.
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FIG. 8. Constraints on the galaxy bias (bg) and effective intrin-
sic alignment (IA) amplitude from tidal alignment (a1) and tidal
torquing (a2) are shown per redshift bin. Constraints using both lens
samples (MagLim and redMaGiC) are shown. The galaxy bias is
expected to be different for both lens samples, but the IA amplitude
constraints, which are a property of the source galaxy sample, are
consistent. We do not necessarily expect a1 and a2 to be consistent
with one another. We sample over a power-law evolution of the IA
amplitude, so the redshift evolution is forced to be smooth in ai.

and 6 caused a very poor model fit to both models, with
p ⇡ 5⇥10

�4. Based on this criterion, we applied a high-z cut
to limit the MagLim sample to approximately the same red-
shift range of redMaGiC post-unblinding. This change is dis-
cussed further in App. D. The two lens samples are compared
and further details of this are discussed in Sec. V C, but all
issues that have been uncovered appear to be mostly orthog-
onal to the 3⇥2pt ⇤CDM parameter dimensions — that is,
they do not significantly impact the inferred cosmological pa-
rameters, and the cosmological parameters inferred from the
two lens samples are consistent. This resilience of the 3⇥2pt
combination of data and its ability to self-calibrate potential
systematics in a subset of the two-point functions is one of
the main motivations for pursuing this cosmological probe for
large-scale structure.

We find that the DES Y3 3⇥2pt analysis is able to add in-
formation beyond the prior for 15 parameter dimensions in
the model, three of which are cosmological. The cosmologi-
cal modes that DES 3⇥2pt most improves with respect to the
prior are obtained with the Karhunen-Loève decomposition of
the posterior and prior covariance, and are:

p1 = �8⌦
0.77
m = 0.317

+0.015
�0.014,

p2 = ⌦m�
�1.16
8 = 0.49

+0.16
�0.15,

p3 = hn
1.24
s ⌦

�0.39
b = 2.11

+0.45
�0.42.

(18)

The combined 3⇥2pt data is also able to simultaneously con-
strain a variety of ‘astrophysical’ parameters that encode how
galaxies are connected to the underlying dark matter perturba-
tion field, namely the linear and nonlinear bias parameters and
intrinsic alignment of galaxies. Constraints for these model
parameters are shown in Fig. 8. We find slightly higher galaxy
bias constraints for redMaGiC galaxies than in the DES Y1

Amplitude consistent with Y1 results, but notably lower. 
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IA Model (free parameters) j
2/d.o.f log Evidence ' (w.r.t. TATT) ' (w.r.t. above) 01 [1 02 [2 1TA

No IAs 240.6 / 225 3215.79 ± 0.11 9.48 ± 1.66 N/A - - - - -

NLA no I-evo. (01) 238.6 / 224 3213.89 ± 0.12 1.42 ± 0.30 0.18 ± 0.03 0.34+0.25
�0.23 - - - -

NLA (01, [1) 238.3 / 224 3214.07 ± 0.13 1.70 ± 0.36 1.19 ± 0.24 0.36+0.43
�0.36 1.66+3.26

�1.05 - - -

TA (01, [1, 1TA) 238.8 / 224 3213.87 ± 0.13 1.38 ± 0.25 0.81 ± 0.14 0.27+0.35
�0.31 2.10+2.89

�0.71 - - 0.83+0.31
�0.82

No I-evo. (01, 02, 1TA) 238.6 / 223 3211.81 ± 0.14 0.17 ± 0.03 0.12 ± 0.02 0.18+0.21
�0.30 - 0.10+0.55

�0.57 - 0.80+0.29
�0.78

No 02 I-evo. (01, [1, 02, 1TA) 238.2 / 223 3212.09 ± 0.14 0.23 ± 0.04 1.32 ± 0.26 �0.02+0.71
�0.31 2.17+2.82

�0.70 �0.27+0.59
�0.50 - 0.87+0.38

�0.83
TATT (01, [1, 02, [2, 1TA) 233.1 / 222 3213.54 ± 0.13 1 4.28 ± 0.83 �0.24+0.98

�0.41 2.38+2.62
�0.61 0.63+1.93

�1.89 3.11+1.77
�0.31 0.87+0.38

�0.84

TABLE III: Marginalized constraints on IA parameters, best-fit j2 and evidence ratio ' metrics for IA models of increasing
complexity on b±(\) without including the shear ratio likelihood. In each row, the evidence ratios assume TATT & the model in

the row above are in the denominator (so ' > 1 implies preference for the model defined in the corresponding row).
Marginalized constraints are defined here as the mean of posteriors and their 68% uncertainties. Empty values in the table

correspond to parameters that are fixed to zero.

FIG. 10. A summary of marginalized 1D constraints on (8 shown in this paper. In the upper-most panel we show the main cosmological
results of this paper: the DES Y3 cosmic shear constraints using fiducial and ⇤CDM Optimized scale cuts. The panel below (marked “model
variations", rows 1-7) shows a range of modified analyses, designed to test the robustness of the fiducial result, which are detailed in Sec.s VI
& VII). In the lower two panels we show equivalent constraints on (8, both from external data (rows 8-13), and DES Y1 (rows 14-15). With
the exception of KiDS & HSC (rows 11-13), for which we report the points and error bars correspond to the marginal posterior mean and
68% confidence interval on (8. Rows 1-10 are obtained using DES Y3 analysis choices (including the fiducial cosmic shear scale cuts), while
external lensing and DES Y1 rows 11-15 are not re-processed to match exactly the Y3 model, prior and scale cuts.

• Simpler IA models are sufficient in Y3 data. 
• What is going on (compared to previous results)? 
Photo-z? Fluctuation or projection?
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KiDS 450 cosmic shear: 
Hildebrandt+2017; Wright+ 2020
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Fig. D.2. Marginal and 2D posterior distributions for a subset of the cosmological, nuisance, and derived parameters used in our
cosmological model. We restrict this figure to only the ‘KV450-DIR �z’ (purple), ‘SOM-Gold Fidicial �z’ (gold), and ‘SOM-Gold
noDEEP2 �z’ (green) analyses, as these three analyses encompase the range of posteriors in all of our gold sample analyses (and
show similar degeneracies). The joint posterior of AIA and S 8 demonstrates that, were a stronger prior on AIA justifiable, agreement
between the various gold samples would be even higher.
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Fig. E.1: Marginalised posterior distributions for the extended set of cosmological parameters shown in Fig. 6, comparing the
fiducial 3 ⇥ 2pt analysis (red) to a selection of our sensitivity test analyses where we ignore the impact of baryon feedback (the ‘No
baryon’ case, sea-green), limit the analysis to a linear galaxy bias model (the ‘No higher order GC’ case, lime-green), and remove
individual tomographic bins from our weak lensing observables (orange, purple and pink).

this toy model. The absolute difference, |�| has the cumulative
distribution function, CDF,

CDF(x) = erf
 

x

��
p

2

!
, (F.4)

and an expectation value E[|�|] = p2/⇡��.
We now compare the actual KV450 and KiDS-1000 S 8 con-

straints, given the effective areas AKV450 = AX = 341.3 deg2

and AKiDS�1000 = AZ = 777.4 deg2. Using the marginal S 8 con-
straints from the two-point shear correlation function analysis,

comparing Wright et al. (2020b, KV450: S 8 = 0.716+0.043
�0.038) with

Asgari et al. (2020b, KiDS-1000: S 8 = 0.768+0.016
�0.020), we find

|�| = 0.052 = 1.6��, which can be compared against the ex-
pected offset of E[|�|] = 0.026. We expect to find an offset of
this, or a larger magnitude, 10% of the time.

This simple model analysis is sufficient to conclude that the
increase in S 8 that we find between KV450 and KiDS-1000 is
consistent with the expectation from simple statistical fluctua-
tions. A complete assessment could be conducted by analysing a
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Fig. E.1: Marginalised posterior distributions for the extended set of cosmological parameters shown in Fig. 6, comparing the
fiducial 3 ⇥ 2pt analysis (red) to a selection of our sensitivity test analyses where we ignore the impact of baryon feedback (the ‘No
baryon’ case, sea-green), limit the analysis to a linear galaxy bias model (the ‘No higher order GC’ case, lime-green), and remove
individual tomographic bins from our weak lensing observables (orange, purple and pink).

this toy model. The absolute difference, |�| has the cumulative
distribution function, CDF,

CDF(x) = erf
 

x

��
p

2

!
, (F.4)

and an expectation value E[|�|] = p2/⇡��.
We now compare the actual KV450 and KiDS-1000 S 8 con-

straints, given the effective areas AKV450 = AX = 341.3 deg2

and AKiDS�1000 = AZ = 777.4 deg2. Using the marginal S 8 con-
straints from the two-point shear correlation function analysis,

comparing Wright et al. (2020b, KV450: S 8 = 0.716+0.043
�0.038) with

Asgari et al. (2020b, KiDS-1000: S 8 = 0.768+0.016
�0.020), we find

|�| = 0.052 = 1.6��, which can be compared against the ex-
pected offset of E[|�|] = 0.026. We expect to find an offset of
this, or a larger magnitude, 10% of the time.

This simple model analysis is sufficient to conclude that the
increase in S 8 that we find between KV450 and KiDS-1000 is
consistent with the expectation from simple statistical fluctua-
tions. A complete assessment could be conducted by analysing a
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Fig. 6: Marginalised posterior distributions for an extended set of cosmological parameters covering the matter density parameter,
⌦m, the matter fluctuation amplitude parameter, �8, the structure growth parameter, S 8, the spectral index, ns, the dimensionless
Hubble parameter, h, the baryon feedback amplitude parameter, Abary, the intrinsic alignment amplitude, AIA, and the linear bias
parameters for the low and high BOSS redshift bins, b1. The KiDS-1000 cosmic shear results (pink), can be compared to the
BOSS galaxy clustering results (blue), the combination of cosmic shear with BOSS and 2dFLenS galaxy-galaxy lensing (GGL,
purple), and the full 3 ⇥ 2pt analysis (red). The combination of cosmic shear with galaxy clustering (orange) is only distinguishable
from the 3 ⇥ 2pt result in the Abary and AIA panels. For parameters constrained by the CMB, we also include constraints from
Planck Collaboration et al. (2020, grey).

of the galaxy-galaxy lensing observable to galaxy bias (shown to
be relatively weak in the purple cosmic shear + GGL contours).
Instead, in this analysis, it is a result of the degeneracy break-
ing in the �8-⌦m plane, tightening constraints on �8 which, for
galaxy clustering, is degenerate with galaxy bias. The improved
constraints on galaxy bias do not, however, fold through to im-

proved constraints on h, which the weak lensing data adds very
little information to.

For our primary cosmological parameter, S 8, our constraints
are uninformed by our choice of priors. This statement cannot
be made for the other ⇤CDM parameters, however, as shown
in Fig. 6. The most informative prior that we have introduced
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Fig. 10. Marginalized one-dimensional posterior distributions of astrophysical and systematics parameters in the fiducial flat ΛCDM model. For the cases of

AIA and ηIA, the horizontal axis range corresponds to the flat prior range (−5<x< 5), whereas for the other cases Gaussian priors are shown by the dashed

curves. In the top left panel, vertical lines represent the approximate 68% confidence interval of AIA.

2σ higher compared to our derived value. Given this, we

will examine the impact of the IA modeling on our cosmo-

logical inference below.

In order to test the robustness of the cosmological con-

straints against the uncertainty of the intrinsic galaxy

alignment, we perform two cosmological inferences with

different IA modeling. In one case, the IA contribution

is completely ignored i.e., AIA is fixed to 0, and in the

other case ηIA is fixed to 3 (See section 5.4 of Hikage et al.

2019) while AIA is treated as a free parameter. The results

from these settings are compared with the fiducial ones in

Figure 6 (panels (a) and (b)) and Figure 7. We find that

the corresponding changes in cosmological constraints are

not significant. For instance, the shift of the mean S8 value

is found to be 0.16 σ for the “IA ηIA = 3” case.

Finally, we examine how the IA contribution affects the

constraints in the Ωm-σ8 plane. As shown in panel (a) of

Figure 6, the inclusion of the IA contribution moves the

posterior contour toward higher Ωm and lower σ8, and as

we have seen, slightly reduces S8. This behavior may ap-

pear somewhat counter-intuitive, because the IA contribu-

tion, mostly given a negative GI term, suppresses TPCFs,

leading to a larger S8 to compensate. A plausible expla-

nation for this is as follows. Since the negative redshift

dependence of IA contribution, which is preferred as seen

in Figure 10, suppresses TPCFs at lower redshifts more

strongly than at higher redshifts, larger matter fluctuations

at lower redshifts are required to compensate the redshift-

dependent suppression. This requires more rapid growth

of matter fluctuations at lower redshifts, leading to the

higher Ωm along with the lower σ8 to adjust the overall

amplitude of tomographic TPCFs.

6.2.2 Baryonic feedback

In our fiducial setup, we do not include the effect of the

baryonic feedback, but instead remove the angular scales

where its impact is not negligible (see Section 5.1). It

is therefore expected that the baryonic feedback effect

does not strongly affect our cosmological constraints. We

check this expectation explicitly by employing an empiri-

cal “AGN feedback model” by Harnois-Déraps et al. (2015)

(as described in Section 4.1.1). Specifically we consider two

cases; the original AGN feedback model by Harnois-Déraps

et al. (2015), which corresponds to fixing the baryon feed-

back parameter AB = 1, and a more flexible model in

which AB is allowed to vary with a flat prior in the range

−5<AB < 5.

Since the baryonic feedback suppresses the amplitude

of the matter power spectrum on scales we are probing,

it leads to a higher values of S8 to compensate. This is

indeed seen in the “AB = 1” case, as shown in Figure 7.

However the shift of the mean S8 value is not significant,

0.1σ, as expected.

In the “AB varied” case, Figure 5 shows that the con-

28 Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0

Fig. 11. Joint constraints and marginalized one-dimensional posteriors for
the amplitude of the intrinsic alignment AIA, the power-law index of the
redshift evolution, ⌘eff , and S8 in our fiducial four tomographic redshift bin
analysis are compared with those from non-tomographic cosmic shear anal-
ysis. The contours represent 68% and 95% credible levels. It clearly demon-
strates that the lensing tomography helps break the degeneracy between
AIA and S8.

constraint on the IA amplitude is more sensitive to the photo-z
uncertainty than that on S8.

Together with derived constraints on the redshift depen-
dence, ⌘e↵ , we derive AIA amplitudes and their 1� errors for
individual tomographic bins as

AIA(z) = AIA((1 + hzi)/(1 + z0))
⌘eff (40)

where hzi is the weighted average of source redshifts in each
bin. Figure 10 shows the results of AIA(z) derived from our
nested sampling. We do not find significant redshift evolution
of AIA. We compare this redshift evolution with the extrapola-
tion of IA amplitudes from the luminosity-dependent IA signals
of bright red galaxies (Joachimi et al. 2011; Singh et al. 2015).
We consider two cases, one in which only red galaxies have IA
signals and the other in which all galaxies including blue galax-
ies have comparable IA signals. The details of the model are
given in Section 5.4. Figure 10 shows that our results are more
consistent with the former model. This result is consistent with
the idea that blue galaxies do not make a significant contribu-
tion to the overall amplitude of the observed IA signal. While
tidal torquing aligns blue galaxies with large-scale structure, the
IA of blue galaxies has not yet been detected in observations
(Joachimi et al. 2015). In either case, more accurate measure-
ments of cosmic shear signals are necessary for further analysis
of the IA. Our conclusion here is that the IA signals from our
fiducial analysis appear to be reasonable. We will discuss the IA
result when combining HSC first year cosmic shear with Planck

in Section 6.4.

Finally, we show that the tomographic analysis helps break
the degeneracy between S8 and the IA parameters. Figure 11
shows the joint constraints on the amplitude parameter of intrin-
sic alignment AIA, the power-law index of the redshift evolution
⌘e↵ , and S8 with and without tomography. It clearly demon-
strates the power of lensing tomography to break the degeneracy
between AIA and S8.

6.2.6 Internal consistency among different redshift and
multipole bins

In our fiducial analysis, we adopt four tomographic bins to con-
strain the redshift dependence of cosmic shear power spectra.
The comparison of our cosmological results among these tomo-
graphic bins serves as an important internal consistency check7

(e.g., Efstathiou & Lemos 2018; Köhlinger et al. 2018). For this
purpose, we exclude one photo-z bin at a time and see whether
the results are consistent with the fiducial one as shown in the
bottom-left panels of Figures 8 and 9. We find that the results
of S8 are consistent within 0.3� when any one of the four to-
mographic bins is excluded (see e.g., Table 7). This indicates
that our S8 results do not significantly rely on the cosmic shear
power spectrum at any specific redshift bin. In contrast, we find
that the shift of the best-fit ⌦m value is relatively larger than S8.
In particular, when the measurement at mid-lower redshift bin
is excluded, the best-fit ⌦m value shifts to a value ⇠ 1� higher,
although the error on ⌦m also increases by 60%. This suggests
that the constraint on ⌦m is driven by the relative amplitudes of
cosmic shear power spectra between low and high redshift bins.

As done in Section 6.1, we can use the HSC mock shear cat-
alogs to see whether the large shift in the best-fit ⌦m value when
excluding a single redshift bin is simply explained by a statis-
tical fluctuation. We find that 9 out of 100 mock realizations
show more than a 1� shift of the best-fit ⌦m value by excluding
the measurement at the mid-lower redshift bin. Thus we con-
clude that the observed large shift of ⌦m value can be explained
by a < 2� statistical fluctuation.

We also check the internal consistency among different mul-
tipole bins. We first split the fiducial multipole range (300 <

` < 1900) into half, i.e., 300 < ` < 800 (a lower-half bin) and
800 < ` < 1900 (a higher-half bin) as shown in the middle-right
panels of Figures 8 and 9. We find no significant shift of either
S8 or ⌦m. Although the measurements at the higher-half ` pre-
fer higher values of ⌦m, once the larger statistical error is taken
into account the significance is less than 1�. Next we extend
the upper limit of the ` range from 1900 to 3500 and repeat the
nested sampling analysis. We find that neither best-fit values
of S8 and ⌦m change significantly, although this modification

7 For these exercises, we will merely examine the amount of shift of the
best fit values in terms of our statistical errors. When excluding certain
parts of the data set, the resultant measurement is quite correlated with the
entire measurement, so the shifts should not be interpreted as measures
of statistical significance.
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Figure 8. 1� and 2� confidence contours from our NLA (top) and TATT
(bottom) model fits to various hydrodynamic simulations at z = 0. Shown
are ILLUSTRISTNG (purple, solid), ILLUSTRIS-1 (green, dotted) and
MASSIVEBLACK-II (blue, dashed). Note that the MASSIVEBLACK-II and
ILLUSTRIS-1 samples here are weighted, such that the distributions of host
halo masses match between the simulations, in order to allow meaning-
ful comparison with ILLUSTRISTNG (see Section 3.2). The three horizon-
tal lines in the NLA panel show the A1 values of the respective posterior
peaks; these best-fitting values are ATNG

1
= 1.63, AMBII

1
= 2.11 and

AIll

1
= 1.52. The three simulations are consistent in the NLA space to ∼ 1�,

although some mild disagreement is seen in the case of the more complex
model.

plitudes can be thought of as controlling the strength of different
IA contributions, which are linear and quadratic in the tidal field
respectively. Note that the TATT fits also include additional pa-
rameters (bTA and linear galaxy bias bg), which are marginalised
in this 2D representation (see Sec 4.1.2 and Table 3). In this lim-
ited parameter space we do not believe our marginalised results
to be significantly affected by prior volume effects (e.g. the dis-
cussion in Joachimi et al. 2020). We confirm that rerunning the
TATT chains with a reduced bTA prior U[0,6] does not qualita-
tively change the TATT posteriors. In the case of MASSIVEBLACK-
II and ILLUSTRIS-1, the constraint is degraded relative to ILLUS-
TRISTNG, to the extent that quite different TATT IA scenarios are
allowed within 1�. That ILLUSTRIS-1 offers little-to-no constraint
on the extended model is unsurprising; indeed we are fitting a small
handful of relatively noisy points in the > 6h−1Mpc range, which

provide no real information on the shape of the correlation func-
tion. Unlike in the NLA case, we now see some level of disagree-
ment between the different simulations; that is, whereas ILLUS-
TRISTNG favours a region of parameter space that resembles NLA
(i.e. A2 ∼ 0), MASSIVEBLACK-II prefers A2 < 0 at 3�. While
this could be a sign of a real alignment signal, generated by the
physics models of MASSIVEBLACK-II, it is worth being cautious
here; the TATT model will respond to any structure in the data,
regardless of physical origin, and MASSIVEBLACK-II has known
limitations9. Inspecting the data vector (Figure 5) more closely, it
seems that the A2 < 0 is driven by the gradual rise in power be-
tween 10−1h−1Mpc. This feature is seen in both wg+ and w++, and
it does indeed seem to be relatively well fit by the quadratic align-
ment contribution. It is also notable that there is no corresponding
feature at around the same scale in wgg , which is somewhat reas-
suring that this is a real signal, and not an artifact of the simulations.

In all cases we note that the data favour low values of bTA,
albeit with relatively large uncertainties. The region of parameter
space where one could reasonably interpret the TATT tidal align-
ment bias as a pure physical galaxy bias are disfavoured at ∼ 1�,
with bTNG

TA = 0.26±0.82, bMBII

TA = 0.25±0.73. Interestingly, in the
upper redshift bins MASSIVEBLACK-II prefers a weakly negative
bTA (Table B1), the physical interpretation of which is not imme-
diately clear. Given the sample selection, and the limitations of the
simulations, it is not obvious that the low bTA values transfer to
real lensing data, but it is interesting, in the sense that the data are
(mostly) showing a preference for the simpler IA scenario.

From the ILLUSTRISTNG fits, the final posterior mean TATT
parameter values at z = 0 are:

ATNG

1 = 1.27±0.48, ATNG

2 = 0.43±0.63, bTNG

TA = 0.26±0.74.
(29)

The A1 constraint here is consistent with the equivalent NLA am-
plitude from the two-parameter fits (A1 = 1.71±0.17), a conclusion
that largely holds across the three simulations. That is, switching to
TATT leads to a degradation in the uncertainty on A1 (by roughly
50% for ILLUSTRISTNG at z = 0), but no significant shift in the
favoured value. Remarkably, although MASSIVEBLACK-II favours
negative A2 = −2.3 ± 1.0 at the level of ∼ 2 − 3�, ILLUSTRIS-
1 and ILLUSTRISTNG are consistent with zero across the redshift
range. The small A2 values differ slightly from recent studies on
DES data (Troxel et al. 2018, Samuroff et al. 2019), which report a
preference for A2 < 0 (although our ILLUSTRISTNG constraint is
still at most ∼ 2� from the DES Y1 mixed sample; Samuroff et al.
2019 Figure 12). Note however that in such analyses on photomet-
ric data like the studies cited above, where the two-point functions
are measured in broad redshift bins as a function of angular scale,
a significant amount of mode-mixing can occur. That is, one can-
not cleanly separate physical scales. In addition to this, it is worth
bearing in mind that no analysis on real data can ever be perfect;
despite various robustness tests and validation carried out for DES
Y1, we cannot altogether rule out the leakage of other modelling
errors (e.g. in the photometric redshift distributions) into the IA

9 In particular, there is a lack of realistic spiral type galaxies, and a rela-
tive over-abundance of diffuse elliptical objects compared with data. Due
to relatively weak AGN feedback, MASSIVEBLACK-II produces an over-
predicts the number of massive galaxies at low redshift (Khandai et al.
2015). Another manifestation of this is seen in the ipact of baryons on the
nonlinear matter power spectrum, which is significantly different from that
in any other hydrodynamic simulation (Huang et al. 2019’s Figure 1).
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Figure 8. Left: two-point correlation functions o�set by 1-dex for clarity Middle: ellipticity-direction (ED) correlation function Right: ellipticity-ellipticity
(EE) correlation function. In each panel, the points with error bars are measurements made on the Illustris TNG300-1 simulation with error bars estimated
using jackknife re-sampling of the box. The lines with shaded regions are halo model predictions made by populating a DMO simulation with mock galaxies
where the shaded region shows the variation from random realizations of the model. The three colors are for three stellar mass threshold samples.

Figure 9. corner plot of central and satellite alignment posteriors by fitting
EE and ED.
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log("thresh) log("0) log("1) log("min) U

9.0 11.55 12.35 11.37 1

9.5 11.80 12.60 11.61 1

10.0 12.05 12.85 11.93 1

10.5 12.68 13.48 12.54 1

Table C1. HOD parameters for TNG300-1

MNRAS 000, 1–8 (2018)

Figure 5: Results from a simulated galaxy catalog produced with our HOD-IA method (solid lines
with shaded variance) are compared to Illustris-TNG (data points) for galaxy clustering (left panel)
and the ellipticity-position correlation function (right panel). Di↵erent colors indicate di↵erent
stellar mass threshold samples, and vertical o↵sets have been added for clarity. IA and HOD
parameters have been chosen to approximately match Illustris-TNG results. Reproduced from [56].

Alternatively, with tidal field information from a dark-matter-only simulation, we can create an
IA field which can be used to assign alignments to galaxies. The DAFF simulation technique will
augment the halo-based approach, providing an IA estimate even if some halo information is not
available (e.g. in low resolution simulations). Similarly, we will use DAFF to better understand the
connection between the simulated IA properties and analytic models based on the tidal field.

In addition to developing this method and making it publicly available with Halotools, we will
generate large mock galaxy catalogs with IA, based on the SkySim5000 simulated catalog. The
current version of SkySim5000 is an updated version of the DESC CosmoDC2 simulated catalog
from the Outer Rim simulation [62]), providing a state-of-the-art catalog of dark matter halos
populated with realistic galaxies across 5000 sq. deg. (roughly 30% of the area LSST will cover).
All generated galaxy catalogs will be made available to DESC using the Generic Catalog Reader
tool (GCRCatalogs), allowing seamless integration into all relevant analyses. These catalogs will
enable a range of modeling and analysis validation for DESC during the critical “Science Readiness”
period. In the second year of this project, an updated version of SkySim5000, based on the new
Last Journey simulation [63] will be available. We will provide updated simulated catalogs and will
use this version as the basis for detailed studies on IA as a cosmic probe (discussed in Sec. 3.3).

3.3 Objective 3: Novel probes of galaxy formation and the dark sector

To maximize the scientific return and discovery potential for future data sets, we must look beyond
the current core statistics and standard cosmological model. To do so in a systematic way, we are
guided by the perturbative modeling framework for galaxy intrinsic alignments and bias, described
in Eqs. 1-2. This framework is determined by the cosmological quantities that can impact galaxy
observables and is subject to the required symmetries of the system. Measuring the associated
parameters allows us to determine the astrophysical response of galaxies (i.e. their location and
shape) to cosmological conditions. Similarly, these models were constructed by making important
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Figure 4: The halo-based method for creating galaxy catalogs with realistic IA is shown for two
scenarios. On the left is the preferred strategy when both main and sub-halo shapes are available,
allowing both central and satellite shapes to reflect their local environment, parameterized by the
misalignment angle (✓MA) between the galaxy and halo orientations. On the right is an alternative
strategy for when only the main halo shape is available: the orientation of the satellite galaxy can
be parameterized with respect to its separation from the central galaxy. Reproduced from [56].

Bolshoi simulation [59] to demonstrate its e↵ectiveness and have shown that it can reproduce
galaxy clustering and alignment statistics measured from IllustrisTNG with an appropriate choice
of HOD and IA parameters – see Figure 5. After the initial method is validated, the corresponding
IA modules will be made publicly available with Halotools. As we develop new functionality, we
will make further public releases.

One noteworthy benefit of this approach for simulated IA is its speed. As an approximate
benchmark for our preliminary code, which has not yet been optimized, we used a single core to
generate a catalog of 50,000 galaxies with IA properties. The initialization of the Halotools model
took ⇠ 10 seconds. This step must only be done once, even if multiple realizations are produced and
the HOD and IA parameters are changed. The recurring time to produce a new galaxy catalog was
⇠ 1-10 seconds, depending on which IA prescription was used. Using Halotools internal methods,
we are able to calculate the shape correlation functions on this catalog in ⇠ 2 seconds.

This impressive speed enables multiple new applications. Large-volume N-body simulations can
be quickly populated with realistic galaxies, and this procedure can be done for many di↵erent IA
and HOD scenarios. Similarly, multiple galaxy realizations can be generated with the same starting
halo catalog, allowing the estimate of covariances for any statistic that can be computed from the
simulated galaxy catalogs (including those without simple analytic forms). Finally, the method is
fast enough to directly use as a model in data analysis. For instance, we are able to constrain HOD
and IA parameters by generating a new realization of galaxies at each point in parameter space.
The few seconds of recurring time required for this “model” is feasible for inference with MCMC,
even in high-dimensional parameter spaces. Indeed, by incorporating this IA methodology into
the Halotools package, we will enable a broader range of simulation-based modeling, including the
creation of model emulators (e.g. [60, 61]).

To allow additional model flexibility and to enable the use of simulations where some halo
information is unavailable, we will augment the halo-based model with tidal field information. This
approach is inspired by the TATT e↵ective perturbative model developed by PI Blazek [28] and
builds on our recent work on the Direct Alignment Field Fitting (DAFF) technique [39]. DAFF
connects the measured tidal field from a cosmological simulation with the galaxy alignments using
the relevant response parameters (Eq. 2). This mapping can be performed in either direction. With
a hydrodynamic simulation, we can constrain the IA parameters as a function of galaxy properties.
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echoIA 
Enabling Cosmology with Homogenized 

Observations of IA

• Remote workshop organized with Benjamin Joachimi 
for Stage-IV preparations 

• Feb 7-9, half-day sessions 
• Common modeling framework, galaxy properties, etc 
• Joint analysis of new and recent measurements 
• Announcement soon!


