Cosmology Dependence of the Transition Mass of Dark Halo Spins

Jounghun Lee (Seoul Nat'l Univ.)

- Lee & Libeskind (ApJ, 2020, 902, 22)
- Lee et al. (ApJ, 2021, 922, 6)
- Lee, Moon, & Yoon (submitted to ApJ, arXiv:2111.13831)

Halo Spin Transition (HST)

If $M \leq M_t$, then $\langle \cos \theta \rangle \ge 0.5$

Previous Results

- Numerically, the occurrence of HST confirmed.
 - Sensitive dependence of M_t on how the filaments are identified (e.g., Kraljic et al. 2020).
 - Its occurrence in the sheet environments (e.g., Lee et al. 2020)
- Observationally, a weak signal of the morphologydependent transition (e.g., Tempel & Libeskind 2013).
- Theoretically, no consensus established.
 - It should be closely linked with the evolution of the halo angular momentum in the cosmic web (Codis et al. 2015).

Directions of Improvements

- Considering all of 3 tidal principal directions.
- Finding a more rigorous definition of M_t
- Testing M_t as a cosmological diagnostics.
- Exploring the galaxy stellar spin transitions.

Simulation Data

LARGE SET OF UNIVERSE VOLUMES (+ 25 SIMULATIONS)

HIGH SPATIAL RESOLUTION AND MASS: 2.5 h⁻¹ kpc to 10.4 h⁻¹ Gpc, 2.5 10⁸ h⁻¹ M^O to 10¹⁶ h⁻¹M^O INITIAL REDSHIFT DEEP IN LINEAR REGIME

Box Size	Force Resolution	Mass Resolution	Number of Particles	Initial Redshift	Cosmologic al Models	Supercomputer (Nb of Proc)
162 h ⁻¹ Mpc	2.5 h ⁻¹ kpc	~2. 10 ⁹ h ⁻¹ M⊛	512 ³	~90	ACDM, SUCDM, RPCDM	Titane (64)
162 h ⁻¹ Mpc	2.5 h ⁻¹ kpc	~2.5 10 ⁸ h ^{·1} M _◉	1024 ³	~130	ACDM, SUCDM, RPCDM	Blue Gene/P(4096)
648 h ⁻¹ Mpc	20 h ⁻¹ kpc	~1.5 10 ¹¹ h ⁻	512 ³	~55	ACDM, SUCDM, RPCDM	
648 h ⁻¹ Mpc	10 h ⁻¹ kpc	~1.75 10 ¹⁰ h ⁻¹ M⊛	1024 ³	~90	ACDM, SUCDM, RPCDM	Blue Gene/P(4096)
648 h ⁻¹ Mpc	5 h ⁻¹ kpc	~2. 10 ⁹ h ⁻¹ M _☉	2048 ³	~90	ACDM, RPCDM	Blue Gene/P(32768)
1296 h ^{`1} Mpc	40 h ⁻¹ kpc	~1. 10 ¹² h ⁻¹ M _☉	512 ³	~40	ACDM, SUCDM, RPCDM	-
2592 h ⁻¹ Mpc	40 h ⁻¹ kpc	~1. 10 ¹² h ⁻¹ M _☉	1024 ³	~55	ACDM, SUCDM, RPCDM	Blue Gene/P(4096)
2592 h ⁻¹ Mpc	20 h ⁻¹ kpc	~1.5 10 ¹¹ h [°]	2048 ³	~55	ACDM, RPCDM	Blue Gene/P(24576)
5184 h ⁻¹ Mpc	40 h ⁻¹ kpc	~1. 10 ¹² h ⁻¹ M⊚	2048 ³	~40	ACDM, RPCDM	Blue Gene/P(24576)
10368 h ⁻¹ Mpc	40 h ⁻¹ kpc	~1. 10 ¹² h ⁻¹ M _☉	4096 ³	~40	ACDM	Curie Fat Nodes (9728)

Dark Energy Universe Simulation Series

Comparing cosmologies in the Dark Energy Universe Simulation Series Simulations : 1024³ particles - 162 h⁻¹Mpc - Z=0 Caption : Luminosity = dark matter density - Color = cosmology http://www.deus-consortium.org/

Cosmological Models

Initial Conditions and the Particle Mass Resolution Model Ω_m h σ_8 Wo W_a m_p $(10^9 h^{-1}M_{\odot})$ ΛCDM 0.72 0.80 0.0 2.3 0.257 -1.0**wCDM** 0.852 -1.22.4 0.275 0.72 0.0 -0.66-0.872.0 RPCDM 0.230 0.72 0.08 Lee & Libeskind 2020, ApJ, 902, 22

• wCDM: a phantom DE model with negative kinetic energy.

- RPCDM: a quintessence model with Ratra-Peebles scalar field dark energy.
- All of the three models satisfy the same WMAP7 constraints.

Calculations

- Constructing the tidal fields smoothed on the scale R_f :
 - Finding three eigenvectors, $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$, at the positions of the selected halos with 300 or more particles
 - Calculating the cosines of the angles between the halo spin axis, $\hat{\mathbf{j}}$, and each of $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3\} : cos\theta_i \equiv |\hat{\mathbf{j}} \cdot \hat{\mathbf{e}}_i|$
 - Ensemble averages, $\langle cos \theta_i \rangle, \mbox{ as a function of the halo mass } M_h$

Lee & Libeskind 2020, ApJ, 902, 22

- Transition of the preferential direction of $\hat{\mathbf{j}}$ from $\hat{\mathbf{e}}_2$ to $\hat{\mathbf{e}}_3$, as M_h decreases.
- The preferential direction of $\hat{\mathbf{j}}$ being perpendicular to $\hat{\mathbf{e}}_1$, regardless of M_h .

A New Definition of M_t

• Setting up a null hypothesis, H_0 :

$$p(\cos\theta_2) \sim p(\cos\theta_3)$$

- Performing a KS test of H_0 :
 - Finding the mass bin at which the KS test rejects H_0 at the C.L. below 99.9%.
 - Defining the bin as the spin transition zone, M_t

 $D_{\max} \equiv \operatorname{Max}_{\theta} \{ |P(\cos \theta \ge \cos \theta_2) - P(\cos \theta \ge \cos \theta_3)| \}$

Lee & Libeskind 2020, ApJ, 902, 22

Variation of M_t with Cosmology

Variation of M_t with Smoothing Scale

Variation of M_t with Redshifts

Variation of M_t with Web Type

A Different Type of Transition of the Galaxy Stellar Spins

Hydrodynamic Simulation Dataset

- IllustrisTNG 300-1
 - Full baryon physics
 - Planck cosmology
 - $m_{gas} = 1.1 \times 10^7 M_{\odot}$
 - $L_{\rm box} = 302 \,{\rm Mpc}$
 - Subhalos with 300 or more stellar cells

300 Mpc

Lee et al. 2021, ApJ, 922, 6

- The halo spin directions transit between the tidal intermediate and minor principal axes in the spin transition zone, M_t
 - A new algorithm based on the KS test is developed to rigorously determine $M_{\rm t}$.
- The range of M_t varies with redshift, smoothing scale, web-type and background cosmology as well.
 - It becomes narrower at higher redshifts, on the smaller scales, in the filamentary environments, and for dynamical DE models.
 - It can distinguish among $\Lambda \text{CDM}, w\text{CDM}$ and RPCDM.
- The galaxy stellar spins transit between the tidal major and minor principal directions.

Discussion

- The halo spin transition may be related to the nonlinear growth of the tidal fields:
 - Retarded nonlinear growth of the tidal fields can induce smaller values of M_t .
- The galaxy spin transition might be induced by anisotropic occurrence of discharge of stellar materials by the galactic winds (Lee et al. 2021, arXiv:2111.13831)