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1.1. Galaxy redshift survey
3D map of our universe by measuring

©SDSS

redshift:  z =
λobs − λem

λem

angular position:   (θ, ϕ)

Observed redshift
Cosmological redshift (Hubble flow) + Doppler effect (peculiar velocity)

©Hubblesite

Observed position (inferred from redshift) ≠ Actual position 



1.2. Redshift space distortions (RSD)
Observed galaxy distribution appears distorted 

↓ 
Redshift space distortions (RSD)

Doppler effect induced by peculiar velocityPrimary source:

Real space 
(Actual position)

Redshift space 
(Apparent position)

Observer
line-of-sight direction

Large scale: coherent infall Small scale: virial motion

Kaiser effect Finger-of-God effect
Observer

line-of-sight direction

Real space 
(Actual position)

Redshift space 
(Apparent position)



1.3   Cosmology - RSD

s = r +
1 + z

H(z)
(v · ẑ) ẑ special relativity, v ≪ 1 

 : constant line-of-sight vector̂z

: linear growth rate

conservation law:  (1 + δ(s)(s)) d3s = (1 + δ(r)) d3r

continuity equation (linear):  
·δL +

1
a

∇ ⋅ v ≃ 0

N. Kaiser (1987)

redshift space

real space

δ(s)(k) = (b + f (k̂ ⋅ ̂z)2) δL(k)

f ≡
d ln δL

d ln a

Redshift space ↔ Real space

Kaiser formula
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Linear growth rate depends on the gravity theory 
→ a probe of gravity on cosmological scales

For ΛCDM:  f ≈ (Ωm(a))0.55

https://doi.org/10.1093/mnras/227.1.1
http://arxiv.org/abs/1807.06209


1.4. Other relativistic effects

Other relativistic effects
+ Gravitational redshift 
+ Integrated Sachs-Wolfe 
+ Shapiro Time delay 
+ Gravitational lensing 
+ ...

© NASA, ESA & L. Calçada

© Bill Saxton (NRAO/AUI/NSF)

Observed redshift
Cosmological redshift (Hubble flow) 

+ Doppler effect (peculiar velocity)

©Hubblesite



1.5. How is the signal of relativistic effects observed?
A.Challinor and A.Lewis [1105.5292] 
C.Bonvin and R.Durrer [1105.5280] 
J.Yoo [1409.3223], 
and many works

• gravitational redshift 
• Transverse Doppler

Perturbed FLRW:  ds2 = [−(1 + 2Φ)dt2 + a2(1 − 2Ψ)dx2]
Solve the geodesic eq.:  

dkμ

dλ
+ Γμ

αβkαkβ = 0

Define observed redshift including all effects:  1 + z =
(kμuμ)S

(kμuμ)O

s = r +
1 + z

H
(v ⋅ ̂r) ̂r

+
1 + z

H (−Φ +
1
2

v2 − ∫
t0

t
( ·Φ + ·Ψ) dt′ ) ̂r − ∫

χ

0
(Ψ + Ψ)dχ′ ̂r − ∫

χ

0
(χ − χ′ )∇⊥(Φ + Ψ)dχ′ 

• Shapiro time delay 
• integrated Sachs-Wolfe 
• gravitational lensing

{
Redshift space including possible relativistic effects

http://arxiv.org/abs/1105.5292
http://arxiv.org/abs/1105.5280
http://arxiv.org/abs/1409.3223


1.6. How is the signal of relativistic effects observed?

c.f. Kaiser formula

�(s) = b� �
1

H
r̂ ·

@

@r
(r̂ · v)

�

 
2

rH
+

Ḣ
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Linear density field with relativistic effects

s = r +
1 + z

H
(v ⋅ ̂r) ̂r

+
1 + z

H (−Φ +
1
2

v2 − ∫
t0

t
( ·Φ + ·Ψ) dt′ ) ̂r − ∫

χ

0
(Ψ + Ψ)dχ′ ̂r − ∫

χ

0
(χ − χ′ )∇⊥(Φ + Ψ)dχ′ 

Observed redshift including possible relativistic effects

conservation law:  (1 + δ(S)(s)) d3s = (1 + δ(r)) d3r
(linear approximation)

(line-of-sight vectors are highlighted in red)

Using this expression, we can intuitively understand how we will observe



1.7. Recalling Kaiser effect

Real space 
(Actual position)

Redshift space 
(Apparent position)

Large scale: coherent infall 

Kaiser effectδ(s)(k) = (b + f(k̂ ⋅ ̂z)2) δL(k)
Kaiser formula



1.7. Recalling Kaiser effect
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Kaiser effect

(line-of-sight vector)2 
→ even multipole anisotropies

δ(s)(k) = (b + f(k̂ ⋅ ̂z)2) δL(k)
Kaiser formula
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With relativistic effects

(line-of-sight vector)odd 
→ odd multipole anisotropies

Dipole anisotropy
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2.1. Dipole anisotropy

A.Challinor and A.Lewis [1105.5292] 
C.Bonvin and R.Durrer [1105.5280] 
J.Yoo [1409.3223], ...

s = s2 − s1

s2

s1

dθ

O

X

Y

( =
s1 + s2

2 )
bX

bY
(bX > bY)

Linear theory:

Beyond the distant-observer limit, the Doppler effect induces non-zero dipole:

 : constant line-of-sight vector̂z

Note: wide-angle effect

s = r +
1 + z
H(z) (v ⋅ ̂z) ̂z

ξ1 =
3
2 ∫

1

−1
(ξ(S)(s1, s2) cos θ ) d cos θ

ξ1 ∝ (bX − bY)

ξ1 ∝ (bX − bY)

Cross-correlating different biased objects is essential

http://arxiv.org/abs/1105.5292
http://arxiv.org/abs/1105.5280
http://arxiv.org/abs/1409.3223


2.2. Dipole in simulations
• Using cosmological N-body code RAMSES. 
• Storing gravitational potential data on light cone  
• Tracing back the light ray to the source by direct integration of 

geodesic equation 
• We obtain "Observed" position and redshift

(RayGalGroupSims  by M-A.Breton and Y.Rasera)

1 + z =
(gμνkμkν)source

(gμνkμkν)observer

gμνkμkν = − ak0 (1 + ϕ + v ⋅ n̂ +
1
2

v2)

Light-cone catalogue with all relativistic effects

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, S.Saga [1803.04294]

https://cosmo.obspm.fr/raygalgroupsims-relativistic-halo-catalogs/
http://arxiv.org/abs/1803.04294


2.3. Measurements in simulations
M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, S.Saga [1803.04294]
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Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-
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Figure 13. Full dipole of the cross-correlation function between
data H1600 and data H100. The deviation from linear theory is
governed by the potential contribution and the “residual” (mostly
related to the coupling between potential and velocity terms). The
dipole is a sensitive probe of the potential well beyond the virial
radius of haloes.

over as we have seen the residual (i.e all the cross terms
and non-linearities of the mapping) is of the same order as
the gravitational potential contribution and should be taken
into account properly. At small scales the pairwise velocity
PDF is also highly non-Gaussian, leading to high peculiar
velocities and Finger-of-God e↵ect. Coupled to gravitational
potential and possibly wide-angle e↵ect we expect this to be
a non-negligible contribution to the dipole. To fully under-
stand and probe cosmology or modified theories of gravity at
these scales using the cross-correlation dipole we therefore
need a perturbation theory or streaming model which takes
into account more redshift perturbation terms and relaxes
the distant observer approximation. This will be the focus
of a future paper.

There are multiple possible extensions to this work. At
large Gpc scales current analysis are limited by the volume
of the simulation as well as gauge e↵ect. At smaller scales
the baryons as well as the finite resolution e↵ect might play
a role. Extension of this work in these two directions can
open interesting perspectives. When analysing future sur-
veys, it is also important to consider observational e↵ects.
One possibility would be to populate haloes with galaxies
and to incorporate e↵ects such as magnification bias, ab-
sorption by dust, redshift errors, alignment of galaxies, etc.
Another straight-forward extension is to explore the influ-
ence of cosmology, dark energy, dark matter and modified
gravity on the dipole of the halo cross-correlation to shed
light on the nature of the dark sector with future large scale
surveys.
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Figure 10. Dipole of the cross-correlation function normalised by the bias, at large scales, for di↵erent perturbations of the observed
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right panel Doppler only, middle
left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel weak lensing only, and finally bottom right panel
the residual where we subtract all the previous e↵ects to the full dipole taking into account all the e↵ects at once. In black we have the
averaged prediction using linear theory at first order in H/k.
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Figure 11. Full dipole of the cross-correlation function nor-
malised by the bias. The dipole is dominated by the Doppler
contribution.

highlighted by Zhao et al. (2013). However it was restricted
to the region r < 2 Rvir inside or close to the virial ra-
dius Rvir ⇠ 1 � 2 h

�1Mpc of the clusters. Interestingly, the
transverse-Doppler contribution to the dipole (middle-left)
is non-zero even at very large radii (r > 2 Rvir). It remains
positive of order ⇠1 ' 2�6⇥10�5 at radii 14 < r < 30 h

�1Mpc.
At smaller scales there is strong increase from ⇠1 = 2 ⇥ 10�4

at 14 h
�1Mpc to ⇠1 = 5⇥ 10�4 at 6 h

�1Mpc. The ratio to the
potential contribution to the dipole is of order �10 at this
scale.

The ISW contribution (middle right) and lensing contri-
bution (bottom left) are consistent with zero at small scales.
The size of the error bars provide an upper limit for the sig-
nal of ⇠1 < 5 ⇥ 10�5 for ISW and ⇠1 < 10�4 for lensing. It is
still in agreement with the linear prediction which is of the
same order of magnitude, however the fluctuations are too
important to measure the signal.

Surprisingly, the residual (bottom right) is of the same
order as the potential contribution (from ⇠ �10�4 at
30 h

�1Mpc to ⇠ �6 ⇥ 10�3 at 6 h
�1Mpc). This is an im-

portant result of this paper. It means that at these scales
and especially below 15 h

�1Mpc, one cannot add up all the
contributions one by one. On the contrary, there are some
important contributions involving both potential terms and
velocity terms together.

5.3.2 Total dipole

The total dipole at non-linear scales is presented Fig. 13.
It remains slightly positive of order ⇠1 ⇠ 1 ⇥ 10�3 above
15 h

�1Mpc. As shown in the previous section, this is related
to the velocity contribution which remains positive in this
region. At smaller scales, the potential contribution dom-
inates over the velocity contribution. The total dipole is
then falling down quickly to ⇠1 ⇠ �1 ⇥ 10�2 at 6 h

�1Mpc.
Moreover within our simulated survey of 8.34 (h

�1Gpc)3, er-
ror bars (mostly related to the fluctuations of the velocity
field) are smaller than the signal at this scale. The dipole
of the group-galaxy cross-correlation function is therefore a
good probe of the potential far outside of the group virial

radii. Interestingly, deviations from linear theory are mostly
governed by the potential and by the residual. The interpre-
tation of the dipole is therefore non-trivial because of cor-
relations between potential and velocity terms. However the
dipole carries important information about the potential.

5.3.3 Mass dependence of the contributions

So far, we have focused on the cross-correlation between
haloes of mass ⇠ 4.5 ⇥ 1013

h
�1M� and haloes of mass

⇠ 2.8 ⇥ 1012
h
�1M�. In Fig. 14, we investigate the halo

mass dependence of the main dipole contributions (velocity,
potential). The mass dependence on the residual is shown
in Appendix C. We explore various configurations by
cross-correlating all the di↵erent halo populations with
the lightest halo population. At large linear scales the
variation of the dipole is mostly governed by the bias
di↵erence between the two halo populations, however at
small non-linear scales the evolution of the dipole is less
trivial. The velocity contribution to the dipole does not
evolve strongly with halo mass. It stays bounded in the
range 0 < ⇠1 < 1 ⇥ 10�3. On the other hand, the potential
contribution becomes more negative at larger mass from
⇠1 ' �5 ⇥ 10�4 to ⇠1 ' �1 ⇥ 10�2 at 6 h

�1Mpc. It means
that for massive enough haloes the potential contribution
dominates over the velocity contribution for a wide range
of scales (as seen previously). However for haloes lighter
than ⇠ 1013

h
�1M� the velocity-contribution dominates.

The residual also departs from 0 at larger radii for heavier
haloes. Interestingly it is mostly following the potential
contribution.

The prediction of the potential e↵ect from Eq. (41) (as-
suming spherical symmetry) reproduces the trend at a qual-
itative level. However the potential contribution is overesti-
mated. Taking into account the dispersion around the poten-
tial deduced from spherical symmetry as in Eq. (38) should
improve the agreement with the measured dipole (Cai et al.
2017). Note that we have checked (see Appendix B) that
our conclusions still hold for a very di↵erent halo definition
(i.e. linking length b = 0.1). The main di↵erence is a slightly
better agreement with the spherical predictions for the po-
tential contribution to the dipole.

6 CONCLUSIONS

In this work we explored the galaxy clustering asymmetry
by looking at the dipole of the cross-correlation function be-
tween halo populations of di↵erent masses (from Milky-Way
size to galaxy-cluster size). We took into account all the rel-
evant e↵ects which contribute to the dipole, from lensing to
multiple redshift perturbation terms. At large scales we ob-
tain a good agreement between linear theory and our results.
At these scales the dipole can be used as a probe of velocity
field (and as a probe of gravity through the Euler equation).
However one has to consider a large enough survey to over-
come important real-space statistical fluctuations. It is also
important to take into account the light-cone e↵ect and to
accurately model the bias and its evolution.

At smaller scales we have seen deviation from linear
theory. Moreover the gravitational redshift e↵ect dominates

MNRAS 000, 1–21 (2018)
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of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-
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Figure 10. Dipole of the cross-correlation function normalised by the bias, at large scales, for di↵erent perturbations of the observed
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right panel Doppler only, middle
left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel weak lensing only, and finally bottom right panel
the residual where we subtract all the previous e↵ects to the full dipole taking into account all the e↵ects at once. In black we have the
averaged prediction using linear theory at first order in H/k.
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2.4. Our model

Φ = ΦL + ΦNL
Non-linear halo potentialLinear potential

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

Modelling the potential
ΦL

ΦNL

  is estimated by NFW profileΦNL

s = r +
1 + z

H
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Picking up dominant contributions:
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
M ⌘ �3⌦m0�

2
0/(20

2�) with the quantity ⌦m being the density
parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields

z

x

y

�s1�s2�e2( �s2)

�e1( �s2)
�/2�/2

Figure 1. Geometric configuration of the unit vectors x̂1,2 lying on the G-I
plane, and orthogonal basis ê1,2 ( x̂2) (see Eq. (2.12)). Using this coordinate,
the angle cosine between x̂1 and x̂2 is given be x̂1 · x̂2 = cos \ .

(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by

b XW+/⇥ (s1, s2) ⌘
⌦
X(s1)W+/⇥ (s2)

↵
=
D
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⌘ b XW+/⇥ (std) (s1, s2) + b XW+/⇥ (grav) (s1, s2)

+ b XW+/⇥ (nNL) (s1, s2) . (2.11)

In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):
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ê1 ( ŝ2) =
✓
cos

\

2
, 0, sin

\

2

◆
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Using the explicit coordinate, we have b XW⇥ = 0, whereas we
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
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2�) with the quantity ⌦m being the density
parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields
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plane, and orthogonal basis ê1,2 ( x̂2) (see Eq. (2.12)). Using this coordinate,
the angle cosine between x̂1 and x̂2 is given be x̂1 · x̂2 = cos \ .

(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by
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+ b XW+/⇥ (nNL) (s1, s2) . (2.11)

In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
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parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields

z

x

y

�s1�s2�e2( �s2)

�e1( �s2)
�/2�/2

Figure 1. Geometric configuration of the unit vectors x̂1,2 lying on the G-I
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(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by
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In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):
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2.5. Dipole in the galaxy-galaxy correlations6 S. Saga et al.

Figure 2. Dipole moment of the cross-correlation function between halos
having di�erent bias parameters on large (top) and small (bottom) scales.
The results of analytical model predictions presented in this paper are partic-
ularly shown at I = 0.33, together with the measured results from the halo
catalogues, RayGalGroupSims, in which all possible special and general
relativistic e�ects arising from the light propagation in an inhomogeneous
universe are consistently taken into account (filled circles with errorbars).
Note that in the upper panel, to clarify the large-scale behaviour, the dipole
moment multiplied by the square of separation, i.e., B2 bXY,1, is plotted.
In each panel, black solid lines are the predictions of the analytical model
(see Eq. (2.21) with Eqs. (2.23)–(2.25)). The coloured solid lines show the
breakdown of these predictions, and the red, blue, and magenta respectively
represent the contributions from the standard Doppler (b (std)

XY,1, Eq. (2.23)),

the gravitational redshift from linear-order potential (b (pot)
XY,1 , Eq. (2.24)), and

the gravitational redshift from the non-perturbative halo potential (b (nNL )
XY,1 ,

Eq. (2.25)). For reference, we also plot the predictions based on Saga et al.
(2020) (gray dashed), in which the dipole cross correlation is computed
based on the Zel’dovich approximation by performing numerically seven
dimensional integrals. In all predictions, we adopt the bias parameters and
halo masses of the data data_H1600 and data_H100, listed Table 1 of Saga
et al. (2020) (bias parameters are also indicated in the upper panel). In the
top panel, the horizontal black dotted line represents bXY,1 = 0.

role to detect the gravitational redshift e�ect, and in this respect,
the predictions beyond linear scales would be indispensable.

3 COVARIANCE MATRIX

In estimating the signal-to-noise ratio of the relativistic dipole in the
upcoming surveys, the covariance matrix between di�erent scales
plays a crucial role. This is in particular the case for the statistics
defined in the configuration space as we consider. In this paper,
to compute the covariance matrix, we adopt the formalism devel-
oped by Bonvin et al. (2016); Hall & Bonvin (2017). This is a

generalization of the previous formulae for the Gaussian covariance
(e.g., Smith 2009; Grieb et al. 2016; Cohn 2006) to include the
anisotropies in the correlation function and multi-tracer technique,
taking also the orientation-dependent weight function into account.
In Sec. 3.1, we present their analytical formulae for the covari-
ance matrix. We then estimate the covariance matrix, specifically
focusing on the dipole cross-correlation, in Sec. 3.2.

3.1 Covariance matrix of dipole cross-correlation function

To give the analytical formulae for the Gaussian covariance, let
us first define the estimator for the dipole moment of the cross-
correlation function. Here, we assume that the cross-correlation
function can be written as a function of the separation between two
objects, s. This assumption is validated if we take the plane-parallel
limit:

b̂XY,1 (B) =
3
2

π 1

�1
d` `

π
d3r

+
XX (r � s/2)XY (r + s/2) , (3.1)

where the quantities+ and XX/Y are respectively the survey volume
and the measured density fluctuation of the objects X/Y. The quan-
tity ` is the directional cosine between the (fixed) line-of-sight ẑ and
separation vectors defined by ` = ŝ · ẑ. It is to be noted that while
the wide-angle e�ect indeed comes to play an important role in the
signal part, its impact on the covariance matrix has been shown to
be negligible at the scales below 190 Mpc/⌘ (Lepori et al. 2018).

Taking the contribution arising from the discreteness of the
galaxy samples into consideration, the ensemble average of the
quadrature, XX (r1)XY (r2), becomes

hXX (r1)XY (r2)i = bXY (r2 � r1) +
XK

X,Y
=X

XD (r2 � r1) , (3.2)

where the quantity XK
X,Y is the Kronecker’s delta and the function

XD is the Dirac’s delta function. The first term, bXY, represents the
cross-correlation function arising purely from the intrinsic cluster-
ing properties. The second term characterizes the contribution from
the Poisson sampling process, which becomes non-vanishing only
in the self-correlation case (i.e., X = Y and r1 = r2). Using the
expression at Eq. (3.2), the estimator given at Eq. (3.1) is shown
to be an unbiased estimator of the dipole cross-correlation, i.e.,⌦
b̂XY,1 (B)

↵
= bXY,1 (B) unless - = . and B = 0.

We then define the covariance of the dipole moment as follows:
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With the definition given above, Hall & Bonvin (2017) derived
the analytical formula for the covariance, which only involves one
dimensional integrals:
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Figure 2. Dipole moment of the cross-correlation function between halos
having di�erent bias parameters on large (top) and small (bottom) scales.
The results of analytical model predictions presented in this paper are partic-
ularly shown at I = 0.33, together with the measured results from the halo
catalogues, RayGalGroupSims, in which all possible special and general
relativistic e�ects arising from the light propagation in an inhomogeneous
universe are consistently taken into account (filled circles with errorbars).
Note that in the upper panel, to clarify the large-scale behaviour, the dipole
moment multiplied by the square of separation, i.e., B2 bXY,1, is plotted.
In each panel, black solid lines are the predictions of the analytical model
(see Eq. (2.21) with Eqs. (2.23)–(2.25)). The coloured solid lines show the
breakdown of these predictions, and the red, blue, and magenta respectively
represent the contributions from the standard Doppler (b (std)

XY,1, Eq. (2.23)),

the gravitational redshift from linear-order potential (b (pot)
XY,1 , Eq. (2.24)), and

the gravitational redshift from the non-perturbative halo potential (b (nNL )
XY,1 ,

Eq. (2.25)). For reference, we also plot the predictions based on Saga et al.
(2020) (gray dashed), in which the dipole cross correlation is computed
based on the Zel’dovich approximation by performing numerically seven
dimensional integrals. In all predictions, we adopt the bias parameters and
halo masses of the data data_H1600 and data_H100, listed Table 1 of Saga
et al. (2020) (bias parameters are also indicated in the upper panel). In the
top panel, the horizontal black dotted line represents bXY,1 = 0.

role to detect the gravitational redshift e�ect, and in this respect,
the predictions beyond linear scales would be indispensable.

3 COVARIANCE MATRIX

In estimating the signal-to-noise ratio of the relativistic dipole in the
upcoming surveys, the covariance matrix between di�erent scales
plays a crucial role. This is in particular the case for the statistics
defined in the configuration space as we consider. In this paper,
to compute the covariance matrix, we adopt the formalism devel-
oped by Bonvin et al. (2016); Hall & Bonvin (2017). This is a

generalization of the previous formulae for the Gaussian covariance
(e.g., Smith 2009; Grieb et al. 2016; Cohn 2006) to include the
anisotropies in the correlation function and multi-tracer technique,
taking also the orientation-dependent weight function into account.
In Sec. 3.1, we present their analytical formulae for the covari-
ance matrix. We then estimate the covariance matrix, specifically
focusing on the dipole cross-correlation, in Sec. 3.2.

3.1 Covariance matrix of dipole cross-correlation function

To give the analytical formulae for the Gaussian covariance, let
us first define the estimator for the dipole moment of the cross-
correlation function. Here, we assume that the cross-correlation
function can be written as a function of the separation between two
objects, s. This assumption is validated if we take the plane-parallel
limit:

b̂XY,1 (B) =
3
2

π 1

�1
d` `

π
d3r

+
XX (r � s/2)XY (r + s/2) , (3.1)

where the quantities+ and XX/Y are respectively the survey volume
and the measured density fluctuation of the objects X/Y. The quan-
tity ` is the directional cosine between the (fixed) line-of-sight ẑ and
separation vectors defined by ` = ŝ · ẑ. It is to be noted that while
the wide-angle e�ect indeed comes to play an important role in the
signal part, its impact on the covariance matrix has been shown to
be negligible at the scales below 190 Mpc/⌘ (Lepori et al. 2018).

Taking the contribution arising from the discreteness of the
galaxy samples into consideration, the ensemble average of the
quadrature, XX (r1)XY (r2), becomes

hXX (r1)XY (r2)i = bXY (r2 � r1) +
XK

X,Y
=X

XD (r2 � r1) , (3.2)

where the quantity XK
X,Y is the Kronecker’s delta and the function

XD is the Dirac’s delta function. The first term, bXY, represents the
cross-correlation function arising purely from the intrinsic cluster-
ing properties. The second term characterizes the contribution from
the Poisson sampling process, which becomes non-vanishing only
in the self-correlation case (i.e., X = Y and r1 = r2). Using the
expression at Eq. (3.2), the estimator given at Eq. (3.1) is shown
to be an unbiased estimator of the dipole cross-correlation, i.e.,⌦
b̂XY,1 (B)

↵
= bXY,1 (B) unless - = . and B = 0.

We then define the covariance of the dipole moment as follows:
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With the definition given above, Hall & Bonvin (2017) derived
the analytical formula for the covariance, which only involves one
dimensional integrals:
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2.6. Recent detection of the dipole
2.8σ detection of relativistic effects 
in SDSS DR12 CMASS galaxy 
sample

New probe of gravity!

S. Alam et al. [1709.07855]

• 765,433 LRGs 
• 0.44 < z < 0.70 
• using the absolute magnitude of 

galaxies to separate into different 
biased samples

Deep & Wide future surveys
SuMIRE project(2023~)

Euclid(2023~)

DESI (2019~) SKA (2030~)

https://arxiv.org/abs/1709.07855


2.7. Future detectability
Detectability of the gravitational redshift 13

Figure 9. Expected number density of galaxies (top) and bias parameter
(bottom) for the surveys listed in Table 1. The plotted data are taken from
the tables summarized in Appendix D.

In our analytical treatment, one crucial assumption is that each
of the galaxies to cross correlate strictly reside at the halo centre, and
thus no virialized random motion is invoked. This is an idealistic
situation, and there are galaxies whose positions are away from
the halo center (e.g., Hikage et al. 2013). The o�-centered galaxy
positions lead to two possible systematics in the dipole signal. One is
the diminution of the non-perturbative halo potential contribution to
the gravitational redshift e�ect. Another is to introduce the virialized
random motion to the o�-centered galaxies. This can give a non-
negligible amount of the transverse Doppler e�ect as the second-
order special relativistic e�ect, which is known to produce the dipole
cross-correlation signal (Zhao et al. 2013; Kaiser 2013; Cai et al.
2017; Zhu et al. 2017; Breton et al. 2019). Note that there are
other relativistic e�ects that induce the dipole asymmetry in the
cross-correlation function, and their impacts on the detection of
gravitational redshift e�ect have been studied in both numerical
and analytical treatments (Zhu et al. 2017; Di Dio & Seljak 2019;
Breton et al. 2019; Beutler & Di Dio 2020). Below, we analytically
estimate the impacts of these two e�ects on the dipole signal.

Let us first discuss the suppressed gravitational potential. Fol-
lowing Hikage et al. (2013), we introduce the probability distribu-
tion function of the galaxy position inside each halo, ?o� , normal-
ized as follows:π Avir

0
4cA2?o� (A; 'o�) dA = 1 . (5.1)

We model it to be Gaussian distribution, i.e., ?o� (A; 'o�) /

Figure 10. Expected signal-to-noise ratio for the surveys listed in Table 1,
using the single galaxy population. (Top) Dividing the sample into two
subsamples to cross-correlate, we choose the threshold halo mass "⇤ so
that the signal-to-noise ratio is maximized at each redshift bin (see text in
detail in Sec. 4.3.1). (Bottom) Same as the top panel, but the threshold halo
mass "⇤ is chosen so that the CV⇥P (dashed lines) and P⇥P (dotted lines)
contributions are minimized by imposing the conditions, 12

X=X = 12
Y=Y

and =X = =Y, respectively. Note that accounting for the halo occupation
number, the signal-to-noise ratio for DESI-BGS would be optimistic (see
the main text, fourth paragraph in Sec. 4.3.1 for details).

exp
⇣
�(A/'o�)

2
/2
⌘

with 'o� being the o�set parameter. Using
the distribution function ?o� , the halo potential at the o�-centered
galaxy position can be estimated to be

qNFW (I," , 'o�) =
π Avir

0
4cA2qNFW (A, I,")?o� (A; 'o�) dA ,

(5.2)

where the explicit form of the NFW potential qNFW (A , I,") can
be found in Appendix D of Saga et al. (2020). Note that in the
limit of 'o� ! 0, the distribution function becomes ?o� (A) =
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SuMIRE project(2022~)

Euclid(2022~)

DESI (2019~) SKA (2030~)

Cross-correlation between different biased objects

Strategy 1: Split a single sample into two subsamples 
Assume galaxies follow the halo distribution with Mhalo > Mmin 

subsample with small bias: [Mmin, M*] 
subsample with large bias: [M*, ∞] 

The uncertainty of how M* is determined remains. 

Strategy 2: Combining several types of samples from different 
surveys 

Assume survey regions are fully overlapped

S.Saga, A.Taruya, Y.Rasera, M-A.Breton (2109.06012)

https://arxiv.org/abs/2109.06012


2.8. Results
Detectability of the gravitational redshift 13

Figure 9. Expected number density of galaxies (top) and bias parameter
(bottom) for the surveys listed in Table 1. The plotted data are taken from
the tables summarized in Appendix D.

In our analytical treatment, one crucial assumption is that each
of the galaxies to cross correlate strictly reside at the halo centre, and
thus no virialized random motion is invoked. This is an idealistic
situation, and there are galaxies whose positions are away from
the halo center (e.g., Hikage et al. 2013). The o�-centered galaxy
positions lead to two possible systematics in the dipole signal. One is
the diminution of the non-perturbative halo potential contribution to
the gravitational redshift e�ect. Another is to introduce the virialized
random motion to the o�-centered galaxies. This can give a non-
negligible amount of the transverse Doppler e�ect as the second-
order special relativistic e�ect, which is known to produce the dipole
cross-correlation signal (Zhao et al. 2013; Kaiser 2013; Cai et al.
2017; Zhu et al. 2017; Breton et al. 2019). Note that there are
other relativistic e�ects that induce the dipole asymmetry in the
cross-correlation function, and their impacts on the detection of
gravitational redshift e�ect have been studied in both numerical
and analytical treatments (Zhu et al. 2017; Di Dio & Seljak 2019;
Breton et al. 2019; Beutler & Di Dio 2020). Below, we analytically
estimate the impacts of these two e�ects on the dipole signal.

Let us first discuss the suppressed gravitational potential. Fol-
lowing Hikage et al. (2013), we introduce the probability distribu-
tion function of the galaxy position inside each halo, ?o� , normal-
ized as follows:π Avir
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We model it to be Gaussian distribution, i.e., ?o� (A; 'o�) /

Figure 10. Expected signal-to-noise ratio for the surveys listed in Table 1,
using the single galaxy population. (Top) Dividing the sample into two
subsamples to cross-correlate, we choose the threshold halo mass "⇤ so
that the signal-to-noise ratio is maximized at each redshift bin (see text in
detail in Sec. 4.3.1). (Bottom) Same as the top panel, but the threshold halo
mass "⇤ is chosen so that the CV⇥P (dashed lines) and P⇥P (dotted lines)
contributions are minimized by imposing the conditions, 12

X=X = 12
Y=Y

and =X = =Y, respectively. Note that accounting for the halo occupation
number, the signal-to-noise ratio for DESI-BGS would be optimistic (see
the main text, fourth paragraph in Sec. 4.3.1 for details).
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with 'o� being the o�set parameter. Using
the distribution function ?o� , the halo potential at the o�-centered
galaxy position can be estimated to be

qNFW (I," , 'o�) =
π Avir
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4cA2qNFW (A, I,")?o� (A; 'o�) dA ,
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where the explicit form of the NFW potential qNFW (A, I,") can
be found in Appendix D of Saga et al. (2020). Note that in the
limit of 'o� ! 0, the distribution function becomes ?o� (A) =
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Strategy 1: Split a single sample into two subsamples 
Assuming galaxies follow the halo distribution with Mhalo > Mmin 

subsample with small bias: [Mmin, M*] 
subsample with large bias: [M*, ∞] 

The uncertainty of how M* is determined remains.

Strategy 2: Combining several types of samples from different 
surveys 

Assuming survey regions are fully overlapped14 S. Saga et al.

Figure 11. Expected signal-to-noise ratio for the cross-correlation between two di�erent samples without creating subsamples. The target samples are obtained
either from di�erent surveys or single survey listed in Table 1. The top (bottom) panel summarizes the results for which the cumulative signal-to-noise ratio
combining multiple redshift slices, given by

qÕ
I (S/N)2, is greater (less) than 2. The estimated values of the cumulative signal-to-noise ratio are summarized

in the legend (see parentheses). Note that the signal-to-noise ratio may be optimistic for the cases including the DESI-BGS sample (see the fourth paragraph in
Sec. 4.3.1 for details).

XD (A)/(4cA2
), and we consistently reproduce qNFW (I," , 'o�) =

qNFW,0 (I,") . Adopting Eq. (5.2), we substitute q̄NFW into the
expression of nNL in Eq. (2.13), instead of the central potential
qNFW,0. Then the dipole cross-correlation with the suppressed halo
potential contribution is estimated through the analytical formulas
in Sec. 2.2.

Next consider the transverse Doppler e�ect from the o�-
centered galaxies. To estimate its qualitative impact, we compute
the velocity dispersion of galaxies, f2

E , which is expressed as a sum
of the two contributions (e.g., Sheth & Diaferio 2001):

f2
E (A , I,") = f2

vir (A, I,") + f2
halo (I,") . (5.3)

Here, the first and second terms at the right-hand side are originated
respectively from the virial motion within a halo and the large-scale
coherent motion of the host haloes. Note that the second term is
non-vanishing even if the galaxies reside at the centre of the haloes.
Although we include it for self-consistency, we confirmed that the
transverse Doppler e�ect is dominated by the virial motion.

To compute the velocity dispersion of the virial motion, f2
vir,

we adopt the halo model prescription and use the analytical formula
for the velocity dispersion of the NFW density profile (see Eq. (14)
of £okas & Mamon 2001):

f2
vir (A , I,") = U(A, I,")

⌧"

Avir
, (5.4)

with the function U(A, I,") given by
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where the quantities 2, G, and function Li(G) respectively stand for
the concentration parameter (Bullock et al. 2001; Cooray & Sheth
2002), the radius normalized by the virial radius, G ⌘ A/Avir, and
the logarithmic integral function. The function 6(2) is defined as
6(2) ⌘ [ln(1 + 2) � 2/(1 + 2)]�1.

For the velocity dispersion, f2
halo, we estimate it using the

prediction of the peak theory based on the linear Gaussian density
fields (Bardeen et al. 1986; Sheth & Diaferio 2001):

f2
halo (I,") = (0� 5 ⇡+)

2f2
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where we define the function f= by
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2
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Here the function , (G) = 3 91 (G)/G is the Fourier transform of the
real space top-hat window function, and the radius ' is related to
the mass of the halo " through " = 4cd̄'3

/3, where the quantity
d̄ is the background matter density.

Given the velocity dispersion from the above analytical formu-
lae, the total impact of the o�-centering e�ects, including the trans-
verse Doppler e�ect, is estimated by replacing the nNL in Eq. (2.13)
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expression of nNL in Eq. (2.13), instead of the central potential
qNFW,0. Then the dipole cross-correlation with the suppressed halo
potential contribution is estimated through the analytical formulas
in Sec. 2.2.

Next consider the transverse Doppler e�ect from the o�-
centered galaxies. To estimate its qualitative impact, we compute
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E , which is expressed as a sum
of the two contributions (e.g., Sheth & Diaferio 2001):
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coherent motion of the host haloes. Note that the second term is
non-vanishing even if the galaxies reside at the centre of the haloes.
Although we include it for self-consistency, we confirmed that the
transverse Doppler e�ect is dominated by the virial motion.

To compute the velocity dispersion of the virial motion, f2
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where the quantities 2, G, and function Li(G) respectively stand for
the concentration parameter (Bullock et al. 2001; Cooray & Sheth
2002), the radius normalized by the virial radius, G ⌘ A/Avir, and
the logarithmic integral function. The function 6(2) is defined as
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Here the function , (G) = 3 91 (G)/G is the Fourier transform of the
real space top-hat window function, and the radius ' is related to
the mass of the halo " through " = 4cd̄'3

/3, where the quantity
d̄ is the background matter density.

Given the velocity dispersion from the above analytical formu-
lae, the total impact of the o�-centering e�ects, including the trans-
verse Doppler e�ect, is estimated by replacing the nNL in Eq. (2.13)
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2.9. Short summary
Gravitational redshift effects(halo potential) 

↓ 
Dipole in the galaxy-galaxy cross-correlation with different biased objects 

↓ 
Future surveys can detect them with large SN~10−20! 

🤔However two or more different biased samples are needed 
uncertainty: how we get (sub)samples...?

cross-correlation between... 
one type of biased samples & its shape information
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3.1. Galaxy-Intrinsic alignment correlations

2 S. Saga et al.

redshift e�ects (see e.g., Bonvin & Fleury 2018; Bonvin et al. 2020,
for the test of gravity from a viewpoint of equivalence principle).

In the GG correlations, cross-correlating two di�erent biased
objects plays an essential role to observe the non-vanishing dipole
moment to exploit it as the probe of the gravitational redshift e�ect.
Thus, given one galaxy sample in the future survey, we need to split
it into more than two subsamples. Depending on how we split the
sample, the detectability drastically changes (Saga et al. 2021), and
one needs to find the optimal way to measure the GG dipole at a
statistically significant level (see e.g., Bonvin et al. 2016; Lepori
et al. 2018). On the other hand, even if we have only one galaxy
sample, together with the information about the shape of galaxies,
the cross-correlation between galaxies and ellipticity fields, i.e., GI
correlation, can be expected to play the same role as the GG dipole.

Interestingly, recent observational analyses of the GI correla-
tion show the solid detections of the GI correlation (e.g., Mandel-
baum et al. 2006; Okumura et al. 2009; Singh et al. 2015; Johnston
et al. 2019; Samuro� et al. 2019; Yao et al. 2020, and Tonegawa &
Okumura 2021 at I > 1). Indeed, it has been shown that GI corre-
lations in combination with GG correlations can strongly constrain
the cosmological parameters (Taruya & Okumura 2020; Okumura
& Taruya 2021). With the above in mind, in this paper, we first
investigate the signal of the Gi dipole moment taking into account
both the Doppler e�ect without assuming the plane-parallel limit
and the gravitational redshift e�ect due to halo potentials. To this
end, we adopt our quasi-linear model of the observed density fluc-
tuations with the relativistic e�ects (Saga et al. 2020, 2021). The
covariance formulae used in GG correlations are extended by taking
proper account of the angular dependence so that it can be applied
in GI correlations, and we discuss the detectability by this formula.

This paper is organized as follows. In Sec. 2, we present our
analytical model of the GI correlation, incorporating the Doppler
e�ect and gravitational redshift e�ects due to the non-linear halo
potential. In Sec. 3, we introduce the estimator for the GI correlation
function. We present the covariance matrix for the GI correlation
function by using the spherical harmonics, to consistently describe
their angular dependence. Thus, we compute the signal-to-noise
ratio of the dipole moment for the representative parameters of
the upcoming surveys. Finally, Sec. 4 is devoted to the summary
of important findings. In Appendix A, we summarize the relevant
coe�cients involved in the expressions of our analytical model. The
detailed calculations of the covariance matrix for the GI correlation
function are presented in Appendix B.

Throughout this paper, we assume a flat Lambda cold dark
matter (⇤CDM) model. The fiducial values of cosmological param-
eters are chosen to match the seven-year WMAP results (Komatsu
et al. 2011), and we will work with units of 2 = 1.

2 PRELIMINARY

We are interested in the anisotropies of the cross-correlation func-
tion between the observed density and intrinsic ellipticity in redshift
space. As a preliminary to doing so, we devote Sec. 2.1 to the in-
troduction of the model of the intrinsic ellipticities and Sec. 2.2 to
the model of the observed density field.

2.1 Intrinsic ellipticity field

Throughout the paper, we adopt the linear alignment model (Catelan
et al. 2001; Hirata & Seljak 2004) that is commonly used and is a
simple model to relate the intrinsic ellipticity to linear density fields

(see Okumura et al. 2020 for the discussion on the validity of the
linear alignment model with #-body simulations). According to
the linear alignment model, we write the projected galaxy shape
function WI

8 9 (x) by

WI
8 9 (x) = 1K
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where the quantity 1K parametrizes the strength of the intrinsic
alignment. The functions XL (x) and XL (k) are the linear density
fields and its Fourier counter part, respectively. In the above, we
define the projection tensor by

P8 9 (x̂) ⌘ X8 9 � Ĝ8 Ĝ 9 , (2.2)

where x̂ = x/|x |.
The projected galaxy shape function is conventionally charac-

terized by two independent components, which we denote W+ and
W⇥. Let us define the two-dimensional orthogonal basis lying at the
tangent space of the sphere at x, ê1 (x̂), and ê2 (x̂), which satisfy
the following relations: x̂ · ê0 = 0 and ê0 · ê1 = X01 for 0, 1 = 1, 2.
Then, we define two components of the galaxy shape function by✓

W+(x)
W⇥ (x)

◆
=
✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆
WI
8 9 (x) , (2.3)

Substituting Eq. (2.1) into Eq. (2.3), the intrinsic ellipticity
fields can be written by✓

W+(x)
W⇥ (x)

◆
= 1K

✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆

⇥
π

d3:

(2c)3
eik ·x :̂8 :̂ 9XL (k) , (2.4)

The parameter of the strength of the intrinsic alignment 1K has
been investigated by many authors, e.g., Kurita et al. (2021); Akitsu
et al. (2021); Shi et al. (2021) using simulations, and Okumura et al.
(2009); Blazek et al. (2011) using luminous red galaxies from the
Sloan Digital Sky Survey. Throughout the paper, we set the redshift-
independent constant in the analysis: 1K = 0.1 (see e.g., Schmitz
et al. 2018; Kurita et al. 2021).

2.2 Density field in redshift space

It has been known that the observed galaxy distributions via galaxy
redshift surveys are apparently distorted due to the special and
general relativistic e�ects (e.g., Croft 2013; Yoo 2014; Tansella et al.
2018; McDonald 2009; Bonvin & Durrer 2011; Bonvin et al. 2014,
and references theirin). Recent our investigations have shown that
the appeared distortions are mainly induced by the Doppler e�ect
of the galaxy’s peculiar velocity at large scales and by gravitational
redshift e�ect arising from the halo gravitational potential at small
scales (Breton et al. 2019; Saga et al. 2020). Here, on the basis of
the analytic model developed in Saga et al. (2021), incorporating
these major relativistic e�ects, we briefly present the expression of
the observed density fields.

We start from the relation between the observed source position
referred to as redshift space (s) and real-space counter part (x) (Saga
et al. 2020, 2021):

s = x + 1
0�

(v · x̂) x̂ � 1
0�

qL (x)x̂ + nNL x̂ , (2.5)
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redshift e�ects (see e.g., Bonvin & Fleury 2018; Bonvin et al. 2020,
for the test of gravity from a viewpoint of equivalence principle).

In the GG correlations, cross-correlating two di�erent biased
objects plays an essential role to observe the non-vanishing dipole
moment to exploit it as the probe of the gravitational redshift e�ect.
Thus, given one galaxy sample in the future survey, we need to split
it into more than two subsamples. Depending on how we split the
sample, the detectability drastically changes (Saga et al. 2021), and
one needs to find the optimal way to measure the GG dipole at a
statistically significant level (see e.g., Bonvin et al. 2016; Lepori
et al. 2018). On the other hand, even if we have only one galaxy
sample, together with the information about the shape of galaxies,
the cross-correlation between galaxies and ellipticity fields, i.e., GI
correlation, can be expected to play the same role as the GG dipole.

Interestingly, recent observational analyses of the GI correla-
tion show the solid detections of the GI correlation (e.g., Mandel-
baum et al. 2006; Okumura et al. 2009; Singh et al. 2015; Johnston
et al. 2019; Samuro� et al. 2019; Yao et al. 2020, and Tonegawa &
Okumura 2021 at I > 1). Indeed, it has been shown that GI corre-
lations in combination with GG correlations can strongly constrain
the cosmological parameters (Taruya & Okumura 2020; Okumura
& Taruya 2021). With the above in mind, in this paper, we first
investigate the signal of the Gi dipole moment taking into account
both the Doppler e�ect without assuming the plane-parallel limit
and the gravitational redshift e�ect due to halo potentials. To this
end, we adopt our quasi-linear model of the observed density fluc-
tuations with the relativistic e�ects (Saga et al. 2020, 2021). The
covariance formulae used in GG correlations are extended by taking
proper account of the angular dependence so that it can be applied
in GI correlations, and we discuss the detectability by this formula.

This paper is organized as follows. In Sec. 2, we present our
analytical model of the GI correlation, incorporating the Doppler
e�ect and gravitational redshift e�ects due to the non-linear halo
potential. In Sec. 3, we introduce the estimator for the GI correlation
function. We present the covariance matrix for the GI correlation
function by using the spherical harmonics, to consistently describe
their angular dependence. Thus, we compute the signal-to-noise
ratio of the dipole moment for the representative parameters of
the upcoming surveys. Finally, Sec. 4 is devoted to the summary
of important findings. In Appendix A, we summarize the relevant
coe�cients involved in the expressions of our analytical model. The
detailed calculations of the covariance matrix for the GI correlation
function are presented in Appendix B.

Throughout this paper, we assume a flat Lambda cold dark
matter (⇤CDM) model. The fiducial values of cosmological param-
eters are chosen to match the seven-year WMAP results (Komatsu
et al. 2011), and we will work with units of 2 = 1.

2 PRELIMINARY

We are interested in the anisotropies of the cross-correlation func-
tion between the observed density and intrinsic ellipticity in redshift
space. As a preliminary to doing so, we devote Sec. 2.1 to the in-
troduction of the model of the intrinsic ellipticities and Sec. 2.2 to
the model of the observed density field.

2.1 Intrinsic ellipticity field

Throughout the paper, we adopt the linear alignment model (Catelan
et al. 2001; Hirata & Seljak 2004) that is commonly used and is a
simple model to relate the intrinsic ellipticity to linear density fields

(see Okumura et al. 2020 for the discussion on the validity of the
linear alignment model with #-body simulations). According to
the linear alignment model, we write the projected galaxy shape
function WI

8 9 (x) by

WI
8 9 (x) = 1K


P8: (x̂)P 9; (x̂) �
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2
P8 9 (x̂)P:; (x̂)
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⇥
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d3:

(2c)3

✓
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1
3
X8 9

◆
48k ·xXL (k) , (2.1)

where the quantity 1K parametrizes the strength of the intrinsic
alignment. The functions XL (x) and XL (k) are the linear density
fields and its Fourier counter part, respectively. In the above, we
define the projection tensor by

P8 9 (x̂) ⌘ X8 9 � Ĝ8 Ĝ 9 , (2.2)

where x̂ = x/|x |.
The projected galaxy shape function is conventionally charac-

terized by two independent components, which we denote W+ and
W⇥. Let us define the two-dimensional orthogonal basis lying at the
tangent space of the sphere at x, ê1 (x̂), and ê2 (x̂), which satisfy
the following relations: x̂ · ê0 = 0 and ê0 · ê1 = X01 for 0, 1 = 1, 2.
Then, we define two components of the galaxy shape function by✓

W+(x)
W⇥ (x)

◆
=
✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆
WI
8 9 (x) , (2.3)

Substituting Eq. (2.1) into Eq. (2.3), the intrinsic ellipticity
fields can be written by✓

W+(x)
W⇥ (x)

◆
= 1K

✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆

⇥
π

d3:

(2c)3
eik ·x :̂8 :̂ 9XL (k) , (2.4)

The parameter of the strength of the intrinsic alignment 1K has
been investigated by many authors, e.g., Kurita et al. (2021); Akitsu
et al. (2021); Shi et al. (2021) using simulations, and Okumura et al.
(2009); Blazek et al. (2011) using luminous red galaxies from the
Sloan Digital Sky Survey. Throughout the paper, we set the redshift-
independent constant in the analysis: 1K = 0.1 (see e.g., Schmitz
et al. 2018; Kurita et al. 2021).

2.2 Density field in redshift space

It has been known that the observed galaxy distributions via galaxy
redshift surveys are apparently distorted due to the special and
general relativistic e�ects (e.g., Croft 2013; Yoo 2014; Tansella et al.
2018; McDonald 2009; Bonvin & Durrer 2011; Bonvin et al. 2014,
and references theirin). Recent our investigations have shown that
the appeared distortions are mainly induced by the Doppler e�ect
of the galaxy’s peculiar velocity at large scales and by gravitational
redshift e�ect arising from the halo gravitational potential at small
scales (Breton et al. 2019; Saga et al. 2020). Here, on the basis of
the analytic model developed in Saga et al. (2021), incorporating
these major relativistic e�ects, we briefly present the expression of
the observed density fields.

We start from the relation between the observed source position
referred to as redshift space (s) and real-space counter part (x) (Saga
et al. 2020, 2021):

s = x + 1
0�

(v · x̂) x̂ � 1
0�

qL (x)x̂ + nNL x̂ , (2.5)

MNRAS 000, 1–12 (2021)
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redshift e�ects (see e.g., Bonvin & Fleury 2018; Bonvin et al. 2020,
for the test of gravity from a viewpoint of equivalence principle).

In the GG correlations, cross-correlating two di�erent biased
objects plays an essential role to observe the non-vanishing dipole
moment to exploit it as the probe of the gravitational redshift e�ect.
Thus, given one galaxy sample in the future survey, we need to split
it into more than two subsamples. Depending on how we split the
sample, the detectability drastically changes (Saga et al. 2021), and
one needs to find the optimal way to measure the GG dipole at a
statistically significant level (see e.g., Bonvin et al. 2016; Lepori
et al. 2018). On the other hand, even if we have only one galaxy
sample, together with the information about the shape of galaxies,
the cross-correlation between galaxies and ellipticity fields, i.e., GI
correlation, can be expected to play the same role as the GG dipole.

Interestingly, recent observational analyses of the GI correla-
tion show the solid detections of the GI correlation (e.g., Mandel-
baum et al. 2006; Okumura et al. 2009; Singh et al. 2015; Johnston
et al. 2019; Samuro� et al. 2019; Yao et al. 2020, and Tonegawa &
Okumura 2021 at I > 1). Indeed, it has been shown that GI corre-
lations in combination with GG correlations can strongly constrain
the cosmological parameters (Taruya & Okumura 2020; Okumura
& Taruya 2021). With the above in mind, in this paper, we first
investigate the signal of the Gi dipole moment taking into account
both the Doppler e�ect without assuming the plane-parallel limit
and the gravitational redshift e�ect due to halo potentials. To this
end, we adopt our quasi-linear model of the observed density fluc-
tuations with the relativistic e�ects (Saga et al. 2020, 2021). The
covariance formulae used in GG correlations are extended by taking
proper account of the angular dependence so that it can be applied
in GI correlations, and we discuss the detectability by this formula.

This paper is organized as follows. In Sec. 2, we present our
analytical model of the GI correlation, incorporating the Doppler
e�ect and gravitational redshift e�ects due to the non-linear halo
potential. In Sec. 3, we introduce the estimator for the GI correlation
function. We present the covariance matrix for the GI correlation
function by using the spherical harmonics, to consistently describe
their angular dependence. Thus, we compute the signal-to-noise
ratio of the dipole moment for the representative parameters of
the upcoming surveys. Finally, Sec. 4 is devoted to the summary
of important findings. In Appendix A, we summarize the relevant
coe�cients involved in the expressions of our analytical model. The
detailed calculations of the covariance matrix for the GI correlation
function are presented in Appendix B.

Throughout this paper, we assume a flat Lambda cold dark
matter (⇤CDM) model. The fiducial values of cosmological param-
eters are chosen to match the seven-year WMAP results (Komatsu
et al. 2011), and we will work with units of 2 = 1.

2 PRELIMINARY

We are interested in the anisotropies of the cross-correlation func-
tion between the observed density and intrinsic ellipticity in redshift
space. As a preliminary to doing so, we devote Sec. 2.1 to the in-
troduction of the model of the intrinsic ellipticities and Sec. 2.2 to
the model of the observed density field.

2.1 Intrinsic ellipticity field

Throughout the paper, we adopt the linear alignment model (Catelan
et al. 2001; Hirata & Seljak 2004) that is commonly used and is a
simple model to relate the intrinsic ellipticity to linear density fields

(see Okumura et al. 2020 for the discussion on the validity of the
linear alignment model with #-body simulations). According to
the linear alignment model, we write the projected galaxy shape
function WI

8 9 (x) by

WI
8 9 (x) = 1K
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48k ·xXL (k) , (2.1)

where the quantity 1K parametrizes the strength of the intrinsic
alignment. The functions XL (x) and XL (k) are the linear density
fields and its Fourier counter part, respectively. In the above, we
define the projection tensor by

P8 9 (x̂) ⌘ X8 9 � Ĝ8 Ĝ 9 , (2.2)

where x̂ = x/|x |.
The projected galaxy shape function is conventionally charac-

terized by two independent components, which we denote W+ and
W⇥. Let us define the two-dimensional orthogonal basis lying at the
tangent space of the sphere at x, ê1 (x̂), and ê2 (x̂), which satisfy
the following relations: x̂ · ê0 = 0 and ê0 · ê1 = X01 for 0, 1 = 1, 2.
Then, we define two components of the galaxy shape function by✓

W+(x)
W⇥ (x)

◆
=
✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)

◆
WI
8 9 (x) , (2.3)

Substituting Eq. (2.1) into Eq. (2.3), the intrinsic ellipticity
fields can be written by✓

W+(x)
W⇥ (x)

◆
= 1K

✓
4̂18 (Ĝ)4̂1 9 (Ĝ) � 4̂28 (Ĝ)4̂2 9 (Ĝ)

24̂18 (Ĝ)4̂2 9 (Ĝ)
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⇥
π

d3:
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eik ·x :̂8 :̂ 9XL (k) , (2.4)

The parameter of the strength of the intrinsic alignment 1K has
been investigated by many authors, e.g., Kurita et al. (2021); Akitsu
et al. (2021); Shi et al. (2021) using simulations, and Okumura et al.
(2009); Blazek et al. (2011) using luminous red galaxies from the
Sloan Digital Sky Survey. Throughout the paper, we set the redshift-
independent constant in the analysis: 1K = 0.1 (see e.g., Schmitz
et al. 2018; Kurita et al. 2021).

2.2 Density field in redshift space

It has been known that the observed galaxy distributions via galaxy
redshift surveys are apparently distorted due to the special and
general relativistic e�ects (e.g., Croft 2013; Yoo 2014; Tansella et al.
2018; McDonald 2009; Bonvin & Durrer 2011; Bonvin et al. 2014,
and references theirin). Recent our investigations have shown that
the appeared distortions are mainly induced by the Doppler e�ect
of the galaxy’s peculiar velocity at large scales and by gravitational
redshift e�ect arising from the halo gravitational potential at small
scales (Breton et al. 2019; Saga et al. 2020). Here, on the basis of
the analytic model developed in Saga et al. (2021), incorporating
these major relativistic e�ects, we briefly present the expression of
the observed density fields.

We start from the relation between the observed source position
referred to as redshift space (s) and real-space counter part (x) (Saga
et al. 2020, 2021):

s = x + 1
0�

(v · x̂) x̂ � 1
0�

qL (x)x̂ + nNL x̂ , (2.5)
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Two independent components:

ξ = ⟨δ(s1)γ+/×(s2)⟩

Our model Linear alignment model

⟨δ(s1)γ×(s2)⟩ = 0

Coordinates:

P.Catelan et al. (2001) 
C.M.Hirata & U.Seljak (2004)



3.3. Demonstration: multipole moments

ξ(std)
ℓ ξ(pot)

ℓ ξ(NL)
ℓ

ξ = ⟨δ(s1)γ+(s2)⟩ = ⟨δ(std)(s1)γ+(s2)⟩ + ⟨δ(pot)(s1)γ+(s2)⟩ + ⟨δ(NL)(s1)γ+(s2)⟩
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
M ⌘ �3⌦m0�

2
0/(20

2�) with the quantity ⌦m being the density
parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields

z

x

y

�s1�s2�e2( �s2)

�e1( �s2)
�/2�/2

Figure 1. Geometric configuration of the unit vectors x̂1,2 lying on the G-I
plane, and orthogonal basis ê1,2 ( x̂2) (see Eq. (2.12)). Using this coordinate,
the angle cosine between x̂1 and x̂2 is given be x̂1 · x̂2 = cos \ .

(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by

b XW+/⇥ (s1, s2) ⌘
⌦
X(s1)W+/⇥ (s2)

↵
=
D
X (std) (s1)W+/⇥ (s2)
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X (nNL) (s1)W+/⇥ (s2)

E
⌘ b XW+/⇥ (std) (s1, s2) + b XW+/⇥ (grav) (s1, s2)

+ b XW+/⇥ (nNL) (s1, s2) . (2.11)

In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):
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Using the explicit coordinate, we have b XW⇥ = 0, whereas we
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δ(std) = Real space + Doppler effect

δ(pot) = Linear potential

δ(NL) = NL potential
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
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2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields
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(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by

b XW+/⇥ (s1, s2) ⌘
⌦
X(s1)W+/⇥ (s2)

↵
=
D
X (std) (s1)W+/⇥ (s2)

E
+
D
X (grav) (s1)W+/⇥ (s2)

E

+
D
X (nNL) (s1)W+/⇥ (s2)

E
⌘ b XW+/⇥ (std) (s1, s2) + b XW+/⇥ (grav) (s1, s2)
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In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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M ⌘ �3⌦m0�

2
0/(20

2�) with the quantity ⌦m being the density
parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields

z

x

y

�s1�s2�e2( �s2)

�e1( �s2)
�/2�/2

Figure 1. Geometric configuration of the unit vectors x̂1,2 lying on the G-I
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(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by
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In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):
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where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
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qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by
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where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
M ⌘ �3⌦m0�

2
0/(20

2�) with the quantity ⌦m being the density
parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields

z

x

y

�s1�s2�e2( �s2)

�e1( �s2)
�/2�/2

Figure 1. Geometric configuration of the unit vectors x̂1,2 lying on the G-I
plane, and orthogonal basis ê1,2 ( x̂2) (see Eq. (2.12)). Using this coordinate,
the angle cosine between x̂1 and x̂2 is given be x̂1 · x̂2 = cos \ .

(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by
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⌘ b XW+/⇥ (std) (s1, s2) + b XW+/⇥ (grav) (s1, s2)
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In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
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, ê2 ( ŝ2) = (0, 1, 0) . (2.12)

Using the explicit coordinate, we have b XW⇥ = 0, whereas we

MNRAS 000, 1–12 (2021)

Relativistic e�ects on GI correlations 3

where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by
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where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by
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Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
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(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by
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In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
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≡ ξ(std) + ξ(pot) + ξ(NL)

Our model



3.3. Demonstration: multipole moments

ξ(std)
ℓ ξ(pot)

ℓ ξ(NL)
ℓ

ξ = ⟨δ(s1)γ+(s2)⟩ = ⟨δ(std)(s1)γ+(s2)⟩ + ⟨δ(pot)(s1)γ+(s2)⟩ + ⟨δ(NL)(s1)γ+(s2)⟩

ξℓ =
2ℓ + 1

2 ∫
1

−1
(ξ(S)(s1, s2) Pℓ(cos θ) ) d cos θ≡ ξ(std) + ξ(pot) + ξ(NL)

Similarities with GG correlations: 
• even multipoles are dominated by "std" 

• wide-angle effects in "std" produce odd 

multipoles 

• "NL" dominates small-scale odd multipoles 

Difference: 
• std & NL dipole are the same sign (no sign 

flip at small scales)

GI dipole



3.4. Demonstration: dipole signals

w/ ΦNL

w/o ΦNL

4 S. Saga et al.

obtain non-vanishing correlation, b XW+ , as

b XW+ (std) = 1K
’
=,✓

⇣
0 (=)✓ + 5 1 (=)✓

⌘
⌅(=)
✓ (B) sin2 \ , (2.13)

b XW+ (grav) = 1KMB
’
=,✓

2 (=)✓ ⌅(=)
✓ (B) sin2 \ , (2.14)

b XW+ (nNL) = 1K
nNL
B

’
=,✓

⇣
3 (=)✓ + 5 4 (=)✓

⌘
⌅(=)
✓ (B) sin2 \ , (2.15)

where we define the function ⌅(=)
✓ by

⌅(=)
✓ (B) =

π
:2d:
2c2

9✓ (:B)
(:B)= %L (:) , (2.16)

where the functions 9✓ and %L are the spherical Bessel func-
tion and the linear power spectrum defined by hXL (k)XL (k 0)i =
(2c)3XD (k + k 0)%L (:). The dimensionless coe�cients 0 (=)✓ , 1 (=)✓ ,
2 (=)✓ , 3 (=)✓ , and 4 (=)✓ are summarized in Appendix A1. These ex-
pressions is applicable for the correlation with widely separated
pair of objects. Importantly, the variables B1, B2, cos \, and sin \ in
Eqs. (2.13), (2.14), and (2.15) can be given as a function of three
variables: B, 3, and `. In order to isolate the scale (i.e., separation)
dependence of the correlation function from the line-of-sight de-
pendence, 3, we further expand the correlation function in powers
of (B/3) as follows:

b XW+ (B, 3, `) = b XW+pp (B, `) + b XW+wa (B, `)
⇣ B
3

⌘
+$

✓⇣ B
3

⌘2
◆
, (2.17)

where the first and second terms at the right-hand side, respectively,
correspond to the expression in the plane-parallel limit 3 ! 1 and
leading-order wide-angle correction. We summarize these expres-
sions in Appendix A2.

In quantifying the observed anisotropies, we further introduce
the multipole expansion of the correlation function. The multipole
moments are defined by averaging the correlation function over
the directional cosine `, weighting with the Legendre polynomials
L✓ (`):

b XW+✓ (B) = 2✓ + 1
2

π 1

�1
d` b XW+ (B, `)L✓ (`) . (2.18)

For instance, we show the non-zero dipole moment of each contri-
bution:
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2 , (2.19)
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⌘
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All non-vanishing multipoles are summarized in Appendix A3.
Exploiting analytical expressions of multipole moments de-

rived above, we will show the theoretical predictions of multipole
moments of the GI correlations. As we mentioned below Eq. (2.6),
given the redshift and halo mass, the bias and non-linear poten-
tial terms are, respectively, determined by the Sheth-Tormen pre-
scription and NFW profile of haloes. Thus, as a practical example,
we present the numerical predictions of miltipoles with halo mass
" = 1013 "�/⌘ at I = 0.5 in Figs. 2. Since all the multiples are
proportional to the strength of the intrinsic alignment, 1K, we divide
the multipoles by 1K, i.e., b✓/1K.

First comparing the amplitude of multipoles in each contribu-
tion, the Doppler contribution (left) induces large even multipoles

Figure 2. Multipole moments of the GI correlation function, for ✓ = 0–4,
with the halo mass " = 1013 "�/⌘ at I = 0.5, arising from the Doppler
e�ect (left), linear gravitational redshift e�ect (center), and non-linear grav-
itational redshift e�ect (right). The solid and dotted lines represent the mul-
tipoles itself b✓ and the negative value of the multipoles �b✓ , respectively.
We show the multipole moments divided by the strength of the intrinsic
alignment 1K, i.e., b✓/1K, because all contributions are proportional to this
parameter.

but small odd multipoles, while the linear and non-linear gravita-
tional redshift contribution (center and right, respectively) mainly
induce the odd multipoles. In particular, looking at the even mul-
tipoles, one can see that the contribution of the Doppler e�ect is
dominant at all scales among each contribution, while the nonlin-
ear gravitational redshift e�ect plays a role at small scales for the
odd multipoles. The e�ect of linear gravitational redshift is always
subdominant. This indicates that when investigating gravitational
redshift e�ects from the anisotropy of GI correlations, the impor-
tant piece is to observe odd multipoles, especially dipoles, as in the
case of galaxy-galaxy correlations.

Next, in Fig. 3, we present the behaviour of the dipole mo-
ment at various redshifts with halo masses " = 1012 "�/⌘ (left),
1013 "�/⌘ (center), and 1014 "�/⌘ (right). As in Fig. 2, we present
the dipole moment divided by the parameter 1K. The solid and dot-
ted lines represent the dipole prediction with and without non-linear
gravitational redshift e�ects, respectively. Comparing the solid and
dotted lines, we can notice that the contribution of the nonlin-
ear gravitational redshift e�ect becomes dominant at small scales
(B . 40 Mpc/⌘) and increases the dipole amplitude significantly,
especially seen in the more massive halo (right panel) and higher
redshift (blue lines). This is because, both bias parameters based
on the Sheth-Tormen prescription and NFW potential tend to have
larger values as increasing the redshift and halo mass, and then,
the dipole signal has a large amplitude. It is important to notice
that, unlikely to the galaxy-galaxy correlation function (Saga et al.
2020, 2021), the non-linear gravitational redshift contributes the
same (positive) sign as the Doppler contribution. Therefore, we do
not see the sign flip of the dipole moment. With the above results,
let us turn our focus to the detectability of the dipole moment of the
GI correlation in the next section.

3 DETECTABILITY OF THE GI DIPOLE

So far, we present the non-linear gravitational redshift e�ect due
to the halo potential on the GI correlation function, particularly
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obtain non-vanishing correlation, b XW+ , as

b XW+ (std) = 1K
’
=,✓

⇣
0 (=)✓ + 5 1 (=)✓

⌘
⌅(=)
✓ (B) sin2 \ , (2.13)

b XW+ (grav) = 1KMB
’
=,✓

2 (=)✓ ⌅(=)
✓ (B) sin2 \ , (2.14)

b XW+ (nNL) = 1K
nNL
B

’
=,✓

⇣
3 (=)✓ + 5 4 (=)✓

⌘
⌅(=)
✓ (B) sin2 \ , (2.15)
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where the first and second terms at the right-hand side, respectively,
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leading-order wide-angle correction. We summarize these expres-
sions in Appendix A2.

In quantifying the observed anisotropies, we further introduce
the multipole expansion of the correlation function. The multipole
moments are defined by averaging the correlation function over
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For instance, we show the non-zero dipole moment of each contri-
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All non-vanishing multipoles are summarized in Appendix A3.
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we present the numerical predictions of miltipoles with halo mass
" = 1013 "�/⌘ at I = 0.5 in Figs. 2. Since all the multiples are
proportional to the strength of the intrinsic alignment, 1K, we divide
the multipoles by 1K, i.e., b✓/1K.
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tion, the Doppler contribution (left) induces large even multipoles
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with the halo mass " = 1013 "�/⌘ at I = 0.5, arising from the Doppler
e�ect (left), linear gravitational redshift e�ect (center), and non-linear grav-
itational redshift e�ect (right). The solid and dotted lines represent the mul-
tipoles itself b✓ and the negative value of the multipoles �b✓ , respectively.
We show the multipole moments divided by the strength of the intrinsic
alignment 1K, i.e., b✓/1K, because all contributions are proportional to this
parameter.
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tipoles, one can see that the contribution of the Doppler e�ect is
dominant at all scales among each contribution, while the nonlin-
ear gravitational redshift e�ect plays a role at small scales for the
odd multipoles. The e�ect of linear gravitational redshift is always
subdominant. This indicates that when investigating gravitational
redshift e�ects from the anisotropy of GI correlations, the impor-
tant piece is to observe odd multipoles, especially dipoles, as in the
case of galaxy-galaxy correlations.

Next, in Fig. 3, we present the behaviour of the dipole mo-
ment at various redshifts with halo masses " = 1012 "�/⌘ (left),
1013 "�/⌘ (center), and 1014 "�/⌘ (right). As in Fig. 2, we present
the dipole moment divided by the parameter 1K. The solid and dot-
ted lines represent the dipole prediction with and without non-linear
gravitational redshift e�ects, respectively. Comparing the solid and
dotted lines, we can notice that the contribution of the nonlin-
ear gravitational redshift e�ect becomes dominant at small scales
(B . 40 Mpc/⌘) and increases the dipole amplitude significantly,
especially seen in the more massive halo (right panel) and higher
redshift (blue lines). This is because, both bias parameters based
on the Sheth-Tormen prescription and NFW potential tend to have
larger values as increasing the redshift and halo mass, and then,
the dipole signal has a large amplitude. It is important to notice
that, unlikely to the galaxy-galaxy correlation function (Saga et al.
2020, 2021), the non-linear gravitational redshift contributes the
same (positive) sign as the Doppler contribution. Therefore, we do
not see the sign flip of the dipole moment. With the above results,
let us turn our focus to the detectability of the dipole moment of the
GI correlation in the next section.

3 DETECTABILITY OF THE GI DIPOLE

So far, we present the non-linear gravitational redshift e�ect due
to the halo potential on the GI correlation function, particularly
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ξ(std)
1

ξ(pot)
1

ξ(NL)
1

Relativistic e�ects on GI correlations 3

where x̂ is the unit vector defined by x̂ = x/|x | and 0, �, and v are a
scale factor, Hubble parameter, and peculiar velocity of galaxies, re-
spectively. Here, we neglected minor relativistic contributions (e.g.,
Yoo 2010; Challinor & Lewis 2011; Bonvin & Durrer 2011). The
second and third terms in the right-hand side of Eq. (2.5) represent
the Doppler e�ect and the linear-order gravitational redshift e�ect
arising from the potential of the linear density field, respectively. The
third term in Eq. (2.5) describes the non-linear contribution arising
from the gravitational redshift e�ect due to the halo potential, which
can not be simply characterized by the linear-order contribution. As
with the same manner in Saga et al. (2020, 2021), the non-linear
contribution is modelled by using the gravitational potential of the
universal halo density profile called Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996), given by

nNL = � 1
0�

qNFW,0 (I,") , (2.6)

where the function qNFW,0 (I,") stands for the NFW potential
evaluated at the centre of haloes, and we assume that it is constant
depending only on the halo mass and redshift (see Appendix D
in Saga et al. (2020) for the explicit forms). Note that, in general,
the galaxy does not sit in the centres of haloes, so-called the o�-
centering e�ect (Hikage et al. 2013; Yan et al. 2020), which would
have a potential impact on the estimation of the non-linear term.
Since this paper is mainly aimed at investigating the basic features
of the relativistic e�ects on the GI correlation, we do not take into
account this systematic e�ect and leave a detailed investigation of
this systematic e�ect on the GI correlation for future work. It is
important to notice that, in our model, we adopt the bias model
described by the Sheth-Tormen prescription 1ST (I,") (Sheth &
Tormen 1999) to relate the bias to halo mass. Thus, given redshift
and halo mass, the bias and NFW potential are simultaneously
determined.

Starting from Eq. (2.5), Saga et al. (2021) have shown the
density field in redshift space up to $ (nNLXL), explicitly given by

X(s) = X (std) (s) + X (grav) (s) + X (nNL) (s) . (2.7)

Here, we decompose the density field into three contributions:
X (std) (s), X (grav) (s), and X (nNL) (s), respectively, arising from the
Doppler e�ect, gravitational redshift e�ect due to the linear gravi-
tational potential, and non-linear contribution, explicitly given by

X (std) (s) ⌘
π

d3k

(2c)3
eik ·s

"
1 + 5 `2

: � i 5
2
:B

`:

#
XL (k) , (2.8)

X (grav) (s) ⌘
π

d3k

(2c)3
eik ·s

"
(8:B`: + 2) M

B:2

#
XL (k) , (2.9)

X (nNL) (s) ⌘ nNL
B

π
d3k

(2c)3
eik ·s

"
�1 + (1 � 2 5 )`2

:

� i(1 + 5 ) 2
:B

`: � i1:B`: � i 5 :B`3
:

#
XL (k) , (2.10)

where the quantities 5 and 1 stand for the linear growth rate and
Eulerian linear bias, respectively. Here we define `: ⌘ ŝ · k̂, and
M ⌘ �3⌦m0�

2
0/(20

2�) with the quantity ⌦m being the density
parameters for matter and the subscript 0 stands for the values at the
present time.

2.3 Galaxy density and intrinsic alignment correlation

In this subsection, we derive the analytic formula for the GI cor-
relation function by cross-correlating the intrinsic ellipticity fields

z

x

y

�s1�s2�e2( �s2)

�e1( �s2)
�/2�/2

Figure 1. Geometric configuration of the unit vectors x̂1,2 lying on the G-I
plane, and orthogonal basis ê1,2 ( x̂2) (see Eq. (2.12)). Using this coordinate,
the angle cosine between x̂1 and x̂2 is given be x̂1 · x̂2 = cos \ .

(Eq. (2.4)) and observed density fields (Eqs. (2.8)–(2.10)). We first
note that it has shown the e�ect of RSD on the shape of the halo is
negligible compared to that on the position of the halo (Singh et al.
2015; Okumura & Taruya 2020). Therefore, the intrinsic ellipticity
fields given in Eq. (2.4) in redshift space can be identified by that
in real space, i.e., W+/⇥ (s) = W+/⇥ (x).

Let us define the GI correlation function by

b XW+/⇥ (s1, s2) ⌘
⌦
X(s1)W+/⇥ (s2)

↵
=
D
X (std) (s1)W+/⇥ (s2)

E
+
D
X (grav) (s1)W+/⇥ (s2)

E

+
D
X (nNL) (s1)W+/⇥ (s2)

E
⌘ b XW+/⇥ (std) (s1, s2) + b XW+/⇥ (grav) (s1, s2)

+ b XW+/⇥ (nNL) (s1, s2) . (2.11)

In general, the cross-correlation function is given as a function
of two vectors s1 and s2. Hereafter, we characterize the cross-
correlation function by three variables: the separation B = |s | = |s2�
s1 |, mid-point distance 3 = |d | = | (s1 + s2) /2|, and directional
cosine between the separation vector and the mid-point vector ` =
ŝ · d̂, i.e., b XW+/⇥ (s1, s2) = b XW+/⇥ (B, 3, `). In explicitly computing
the GI correlation function, without loss of generality, we adopt the
following coordinates (see Fig. 1):

ŝ1 =
✓
sin

\

2
, 0, cos

\

2

◆
, ŝ2 =

✓
� sin

\

2
, 0, cos

\

2

◆
,

ê1 ( ŝ2) =
✓
cos

\

2
, 0, sin

\

2

◆
, ê2 ( ŝ2) = (0, 1, 0) . (2.12)

Using the explicit coordinate, we have b XW⇥ = 0, whereas we
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New simple formulae including wide-angle effects & gravitational redshift effect
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3.5. Demonstration: dipole covariance

NOTE: instead using Legendre polynomial  , we need 
to carefully treat the angular dependence by using   in 
computing covariance matrix.

Pℓ(cos θ)
Yℓ,m(θ, ϕ)

COV1(s1, s2) ∼
1
V ∑

ℓ,ℓ′ 

(ξgg
ℓ × ξII

ℓ′ 
+ ξgI

ℓ × ξgI
ℓ′ )

1
V ∑

ℓ′ 
( 1

ng
× ξII

ℓ′ 
+

σ2
shape

ng
× ξgg

ℓ′ )
1
V

1
ng

σ2
shape

ng

CV×CV term

CV×P term

P×P term

AIA = 23 
σshape = 0.2Schematically, ...



3.6. Demonstration: signal-to-noise ratio

( S
N )

2

=
smax

∑
s1,s2=smin

ξ1(s1)(COV1(s1, s2))−1ξ1(s2)

• low-z SN is dominated by wide-angle effect 
• measurements at high-z have more chances

(smin, smax) = (1, 150) Mpc/h 
bias&number density: Sheth&Tormen(1999) 
AIA is chosen to match Kurita et al.(2020)



4. Summary
The galaxy-Intrinsic alignment cross-correlation can be a 

new probe of gravitational redshift effects

Dipole anisotropy in galaxy-galaxy correlations 
• Two populations are needed 
• SN reaches ~ 10−25 

Dipole anisotropy in galaxy-IA correlations: 
• Single galaxy populations + shape information 
• Rough estimation implies SN reaches ≲ 1−4 × [volume in (Gpc/h)3]1/2 

Future prospects: 
• SN for specific surveys + systematic effects 
• Test of gravity theory 
• Measurements in RayGalGroupSims

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772] 
S.Saga, A.Taruya, Y.Rasera, M-A.Breton [2109.06012]

SS et al, in prep.

https://arxiv.org/abs/2004.03772
https://arxiv.org/abs/2109.06012

