

GALAXY INTRINSIC ALIGNMENT POWER SPECTRUM IN ILLUSTRIS-TNG

Jingjing Shi /史晶晶 (with Masahiro Takada, Toshiki Kurita, Ken Osato, etc.)

Takada san's talk

GALAXY INTRINSIC ALIGNMENT

- Challenge contaminates weak lensing cosmology
- Opportunity probe of cosmology and galaxy formation physics

GALAXY INTRINSIC ALIGNMENT – THEORIES

Catelan+2001, Hirata & Seljak 2004, White 1984

II+GG

II: intrinsic alignment GI: intrinsic alignment GG: cosmic shear

Galaxy intrinsic alignment – Primary contamination of cosmic shear cosmology (Hirata & Seljak 2004, Troxel+2015)

Krause+2015

INTRINSIC ALIGNMENT – OBSERVATIONS

Luminous red galaxies – clear IA signal shown by the correlation function between galaxy positions and intrinsic ellipticities

Singh et al. 2015

Mandelbaum+2011, Yao+2020

Blue star-forming galaxies – no clear IA signal detected so far

INTRINSIC ALIGNMENT – OBSERVATIONS

Non-linear and baryonic physics dominates !

Luminous red galaxies – clear IA signal shown by the correlation function between galaxy positions and intrinsic ellipticities Mandelbaum+2011, Yao+2020

Blue star-forming galaxies – no clear IA signal detected so far

Singh et al. 2015

SIMULATIONS

300 Mpc

IA POWER SPECTRUM

$$egin{aligned} &\langle \gamma_E(m{k})\gamma_E(m{k'})
angle \equiv (2\pi)^3\delta_D(m{k}+m{k'})P_{EE}(m{k}), \ &\langle \gamma_E(m{k})\delta_m(m{k'})
angle \equiv (2\pi)^3\delta_D(m{k}+m{k'})P_{\delta E}(m{k}), \ &\langle \gamma_E(m{k})\delta_g(m{k'})
angle \equiv (2\pi)^3\delta_D(m{k}+m{k'})P_{gE}(m{k}), \end{aligned}$$

Merits of IA Power Spectrum

- Scale dependence of IA
- Full information on 2pt statistics
- High S/N ratio

INTRINSIC ALIGNMENT – M* AND REDSHIFT DEPENDENCE

Consistent with NLA prediction

$$P_{\delta E}(k,\mu) = -A_{\rm IA}C_1\rho_{\rm cr0}\frac{\Omega_{\rm m}}{D(z)}(1-\mu^2)P_{\delta\delta}(k,z)$$

INTRINSIC ALIGNMENT – ENVIRONMENT DEPENDENCE

INTRINSIC ALIGNMENT – MORPHOLOGICAL DEPENDENCE

INTRINSIC ALIGNMENT – SYNERGY BETWEEN IMAGE AND SPEC SURVEYS

Shi+2021a

Shi+2021a

ELGs traced density field cross correlate with LRGs ellipticity field

GALAXY INTRINSIC ALIGNMENT

- Challenge contaminates weak lensing cosmology
- Opportunity probe of cosmology and galaxy formation physics

INTRINSIC ALIGNMENT – PROBE OF COSMOLOGY

Complementary probe of Baryonic Acoustic Oscillation, Redshift Space Distortion (Chisari+2013, Taruya & Okumura2020)

INTRINSIC ALIGNMENT – PROBE OF COSMOLOGY

- Complementary probe of Baryonic Acoustic Oscillation, Redshift Space Distortion (Chisari+2013, Taruya & Okumura2020)
- Special probe of anisotropic Primordial non-Gaussianity

EMISSION LINE GALAXY (ELG) SURVEYS

	Testing ACDM	Assembly history of galaxies	Importance of IGM
GA CO	 Nature & role of neutrinos Expansion rate via BAO up to z=2.4 PFS+HSC tests of GR Curvature of space: Ω_K Primordial power spectrum Nature of DM (dSphs) 	 PFS+HSC synergy Absorption probes with PFS/SDSS QSOs around PFS/HSC host galaxies Stellar kinematics and chemical abundances – MW & M31 assembly history 	 Search for emission from stacked spectra dSph as relic probe of reionization feedback Past massive star IMF from element abundances
GЕ	Structure of MW dark haloSmall-scale tests of structure growth	 Halo-galaxy connection: M_*/M_{halo} Outflows & inflows of gas Environment-dependent evolution 	 Physics of cosmic reionization via LAEs & 21cm studies Tomography of gas & DM

PFS survey cosmology: use single tracer ([OII] emission line galaxies, i.e. ELGs) to map evolution of the large-scale structure of the Universe in a wide range of redshifts, 0.6 < z < 2.4, over 1400 deg² sky area covered also by the HSC image survey

DESI targets:

Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$per deg^2$	$per deg^2$	$per deg^2$	sample
LRG	0.4 - 1.0	r,z,W1	350	580	285	4.0 M
ELG	0.6 - 1.6	g,r,z	2400	1870	1220	17.1 M
QSO (tracers)	< 2.1	g,r,z,W1,W2	170	170	120	$1.7 { m M}$
QSO (Ly- α)	> 2.1	g,r,z,W1,W2	90	250	50	$0.7 {\rm M}$
Total in dark time			3010	2870	1675	23.6 M
BGS	0.05 - 0.4	r	700	700	700	9.8 M
Total in bright time			700	700	700	9.8 M

DESI Collaboration, 2016

INTRINSIC ALIGNMENT OF ELGS

Mandelbaum+2011, Yao+2020

Blue star-forming galaxies – no clear IA signal detected so far

Shi+2021a

SIMULATION

OBSERVATION

INTRINSIC ALIGNMENT OF ELGS

Blue star-forming galaxies – no clear IA signal detected so far

OBSERVATION

SIMULATION

SHAPE ESTIMATOR

OBSERVATION

$$I_{ij} = \frac{\int d^2\theta w(\theta) f(\theta) \theta_i \theta_j}{\int d^2\theta w(\theta) f(\theta)}$$

Taruya san's talk

SIMULATION

$$I_{ij}^{\text{reduced}} = \frac{\sum_{n} m_{n} \frac{x_{ni} x_{nj}}{r_{n}^{2}}}{\sum_{n} m_{n}}$$

See Kurita+2020 for tests of various shape estimators in simulations

SELECTION OF ELGS IN TNG300

SFR ranked selected galaxies

roughly corresponds to

[OII] emission line strength selected galaxies

Gonzalez-Perez+2020; Osato & Okumura 2021, in prep

Table 1Properties of ELGs in Illustris-TNG300, Studied in this Work

Z.	$\langle \log M_{\star} \rangle$	$\langle \log M_{\rm halo} \rangle$	$\langle SFR \rangle$	$f_{\rm cen}$	A_{IA}	σ_ϵ
0.5	10.39	13.20	25.75	0.667	15.39 ± 2.96	0.43
1.0	10.41	13.04	47.78	0.682	15.26 ± 2.89	0.41
1.5	10.42	12.88	71.64	0.741	12.86 ± 2.83	0.39
2.0	10.41	12.67	94.01	0.798	15.45 ± 2.84	0.40

Shi+2021b

Ray-tracing simulation using Pégase.3 code

APERTURE SHAPE ESTIMATOR

APERTURE SHAPE ESTIMATOR

INTRINSIC ALIGNMENT OF ELGS

APERTURE SHAPE ESTIMATOR - APPLICATION TO LRGS

SUMMARY AND WORKING DIRECTION

Galaxy intrinsic alignment contaminates weak lensing cosmology

- 3D IA power spectrum full 2pt correlation information, scale dependence, high S/N ratio
- Mass, redshift, scale, morphological, environmental dependence of both shape and spin are studied in the simulation - useful for constraining the galaxy formation physics by comparing to observations
- Work in progress direct measure intrinsic alignment in HSC survey for LRGs

Galaxy intrinsic alignment as cosmological probe

- The cosmological information encoded in IA signal of galaxies targeted by ongoing/future surveys can be promisingly extracted with our aperture shape estimator
- Work in progress apply this estimator to observed image

TATT

Blazek+2019

$$\gamma_{ij}^{I} = \underbrace{C_{1}s_{ij}}_{\text{Tidal Alignment}} + \underbrace{C_{1\delta}(\delta \times s_{ij})}_{\text{Density Weighting}} + \underbrace{C_{2}\left[\sum_{k=0}^{2} s_{ik}s_{kj} - \frac{1}{3}\delta_{ij}s^{2}\right]}_{\text{Tidal Torquing}} + \dots,$$

$$C_1 = -A_1 \bar{C}_1 \frac{\Omega_{\rm m} \rho_{\rm crit}}{D(z)},$$

 $C_2 = 5A_2\bar{C}_1\frac{\Omega_{\rm m}\rho_{\rm crit}}{D^2(z)}.$

Samuroff+2020

Model	Parameter	Prior
NLA	A_1	U[-6, 6]
	b_g	$\mathrm{U}[0.05,8]$
TATT	A_1	U[-6,6]
	A_2	U[-6,6]
	b_{TA}	U[-6,6]
	b_g	$\mathrm{U}[0.05,8]$

$$C_{1\delta} = -A_{1\delta}\bar{C}_1 \frac{\Omega_{\rm m}\rho_{\rm crit}}{D(z)},$$

INTRINSIC ALIGNMENT – OBSERVATIONS

INTRINSIC ALIGNMENT – MASS AND Z DEPENDENCE

Kurita+2020

Shi+2021b

