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Discussion outline:

/ Agenda:

non-EFT/PT part

® Galaxy shapes, tensors and |A in 3D
® The role of symmetries
® Projections onto 2D planes

EFT/PT part

® EFT /bias expansion for galaxy shapes

® One-loop power spectrum and tree-level bispectrum



Ellipsoids, 2-tensors, galaxy shapes

How can we describe the field of ellipsoids?

Ellipsoid — 3 parameters;

1/a®> 0 0
Th=1 0 1/b* 0
0 0 1/

Rotation matrix — 3 Euler angles;
Rij(1,0,¢9) = T =RIT'R"
Ellipsoid equation;
(& —xy) - T (x—x,) =1
Tensor field:

ZT(O‘) (xa) 5D (x —x,)




Ellipsoids, 2-tensors, galaxy shapes
Intrinsic galaxy shape field:

Lj(@) = Iij(xa)dP (x — x4)

Number-wighted galaxy size
tr[li;(@)] = 52 (1 + & () ,
where (I;;) = s?/3 65.
Shape fluctuation field
Lij(x) — (Iij)
tr(li;)
Trace-free galaxy shape perturbations: g;;(x) = TF[S;;(x)].

Sy(e) - = aule) + 300155

Alternative shape field definition:

@) = 3 (@~ m) = lly (@) = () (14 3n(a)




Symmetries and Spherical Tensors

SO(3) representations:

¢
Spherical tensors : Y O™ (k) = Z <D(f)) Yy Oa(k)
q=—4 1

Rank 0,1, 2 form the any orthogonal basis constructed as:

scalar : Yy © =
vector : Yfm = l%i, Yi(il) = eii,
tensor : Yig-o) = l%ifej — %6{7{, Ygil) = ]%jeii + l%ie Y;Eiz) eiieji,

This gives the expansion

1
Tyj(k) = 31" (k)55 + Z 13" (k) Y™ (k)

m=—2

This equivalent to the usual cosmological SVT decomposition.



Decomposition of tensor correlators

We are interested in statistical N-point functions:

(Sij(k1)Sim(k2))" = Pijim(k1),
(S (k1) Sim (k2)Srs(k3)) = Bijimrs(k1, k2, k3)

Given that we can decomposed the S;; tensor:

separation into “dynamics” + ‘“symmetries”

<5152> = <5152> + {Y(Z)m}



Symmetries and spherical tensors
Statistics isotropy and homogeneity and parity invariance:

<5Lgm)(k) Sgg/m)(k')> (27605 O Pags ™ ().
All contributions given by the five scalar functions PZ(Z,”)
(3(k)3(K') = P (k)
(8(k)gi; (k")) = Y, (0)(k)

<gij(k)glm(k?/)> Y(O)Y Z Y( q }P(q)(k)
q=1,2
Bispectrum:

(6(K1)gij(k2)gim (k3)) = Y;§°) (/;?2)1’}7(72) (7%3)352)2(’61, k2, ks3) +

Reminder: )
Sij(k) = gij(k) + §5s(k)55



Projections: flat-sky
3D shape of galaxies get projected onto the onto the sky:
V1,35 (1) = TF [Pit () Pji(7)] gra(7)

where P;;(7) = 62-? — 7.
Integrating along the line of sight for photometric survey

Y1,i5(0) = /dX W (xX)vr:5 (x7, X8),
These rotation of the basis leads to the following spectra
Cse(l) = /dX%Po(S)(f/X),
Con(t) = [ a8 (205 ep0 + P (010)

Cps(! /dXW x) P(l) (¢/x)

Csp(l) = Cpp(f) = 0.




Projections: full-sky

Note that configuration space basis vectors are eigenfunctions of
the projection operator P.m* = m* = projections are simple!

SR +2)f . A N
Faa () = MGy 55(7) = / dx W(x)g+2(x7)
Spin weighted spherical harmonics:

Jr2 =) Apma2Y,™

Im

Full-angle power spectrum:

v\ _ K K XX/
(X Xim) = 64y 6pm Ci

Leads to familiar £ and B mode full sky form:

2

(itmleriemy =3 [ Pé?(k)[ m“;’;%xlm} [ / Wa@f;*q}(mk)}
q=0 X2

X1

[Shiraishi++:21]



/ Agenda:

EFT/PT part

e EFT /bias expansion for galaxy shapes

® One-loop power spectrum and tree-level bispectrum



Strategy and model development

~ 100Mpc/h - ~_30Mpc/h TN 10Mpc/h

b

Effective Field Theory

Non-perturbative methods; simulations, etc. |'

Large scales (low k)
Small scales (high k)

Dynamical scale range in wavelengths: &
Describe the matter density on large-scales (small fluctuations).

EFT methods:

a) UV physics unknown, and we b) UV physics known, but
have scale separation (inflation, long-wavelengths are of interest
baryonic fluids, dielectrics) (phonons, QCD (CPT))

Bias coefficients incorporate complicated galaxy formation physics:
halo formation, merger history, feedback (SN, AGN), ...



Galaxies and biasing of dark matter halos

Power spectrum P(k) [(n-"Mpe)*]

® cosmological theory (sims) give dark matter distribution, but not

galaxy distribution.

® what we observe from survey are galaxies, not dark matter.

® Bias: How does galaxy distribution related to the matter?

+ LRG
©Main

 [n Mpe-1]
[Tegmark et al, 2006]

® galaxies form at high peaks:

overdensity

N}

=)

ﬂ"l

(Ll RO | h i

‘W lw‘““’ Hlm

Im ”

= exhibit higher clustering

® Tracer detriments the amplitude: P, (k) = b>P,, (k) +



Canonical approaches to galaxy biasing

Local biasing model: relation to dark z =z
matter
Op = c50 + 052(52 + 05353 + ... [Fry—+:93]

R,

Quasi-local (in space):  [McDonald+:09]

Sn(x) = cs6(x) + c5202(x) + c520% () o)
+ 282 (x) + c520(x) % () + cee + .. .,
with effective (bias) coefficients ¢; and
q=a(0)

operators:
[from Desjacques++:18]

1
sij(x) = 0;0;0(x) — 5555(35)7
where ¢ is the gravitational potential, and white noise (stochasticity) e.

Complete set set of operators including non-locality in time effects!
[Angulo, ZV++:15, Fujita, ZV++:16, Desjacques++:18 Fujita&ZV:20]



A new look at bias expansion: “Monkey bias”
[Fujita, ZV:20]

A new idea:
(I1.) impose physical constraints - consistency relations in LSS

final tracer density
+ biasing
final matter density
dnitial proto-tracer density
biasing v,
initial matter density

(I.) construct a bias from linear density - as a Monkey would,




A new look at bias expansion

A new idea: [Fujita, ZV:20]
(I.) construct a bias from linear density - as a Monkey would,

(1) impose physical constraints - consistency relations in LSS

How do we describe the system for a tracer?

Balance equations:

Or0a(x) + V - ([1 + da] ua) (®) = S5[6](x),
Orug (@) + Hug(z, 7) + up(z,7) - Vup(z,7) = =Vo(x, 7) + Su[d](x),

The |hs. terms are:
V2p(x) o 6, (),
and small scale sources Ss(x), S, (x), suppressed by some scale k..

The key notion is the separation of scales in the system, i.e. gravity
dominates on large scales.



|. Specifying the non-linear terms

This is the “Monkey part”:

Continuity eq. : 0,6 + (linear terms) = —66 — 615@0’
Euler eq. : 9.0 + (linear terms) = 382’ 883

where § is the density and 0 is the velocity divergence.
Solution is constructed by the iterative “Monkey” process

{XY aX@ 0;0; ., 0;0; }

0? Y, 0?2 0?2
where X and Y are drown from the list of the lower order operators.

New bias basis:

504 = a15L

0; 0;0; . 0;0;
+ 0167 + by0i0 1, — 32J or 5‘2]

72 =51, + bs

op, + ...

In the paper we keep terms up to the third order terms in PT:



II. Constraining the coefficients

Consistency relations of LSS are direct consequence of the
equivalence principle and adiabatic initial conditions:

D(na)k'qa g
D) k2w

[Peloso+:13, Kehagias+:13, Creminelli++:13...]

(67 (7)08, (11) ... 68 (7)) ~ —Pa(k,7)> (m)...08 (m)) , k— 0.

Tree-level statistics is the simplest way to impose the constraints:

k-q
2k2

By requiring the IR-divergent term to vanish we get:

,ligg)@k(% 5y,) = (ﬂfl(a)bz(ﬂ) - al(ﬁ)’h(a)) Py(k)Py(q1) + O(K°),

bo(@)  p,(B)

@ g o\

The C(7) is universal, tracers independent, function of time.



Fixing the dynamical degrees of freedom

New bias expansion:

09 = a1 [0, +C B0 G0 | +107 +bs (%526, %5201 ) + (31 oxder)

How to determine the universal coefficients C(7)?

Easy way is to fix it to dark matter: C=1.

These coefficients reflect dynamics and modifications of GR!
Example: Clustering quintessence [Sefusatti&Vernizzi:11, Fasiello&ZV:17]

C=1-—¢(r),

where ¢ depends on the quintessence field and 7.
This motivates the construction of optimal estimators for C.



Scalar field biasing: effective approach

Alternative systematisation in terms of derivatives of potential ¢ :
[ _
= 30, H2k ihs
with higher operators Oy,:

@ iy, ()’
@ )] )], () wntin®),

and additional derivative operators R2V2tr[TIIV], .. ..

— series allows one to estimate the higher order (theory) errors
— coefficients - physics from the R, scale (some degeneracies)

Tracer field is then given

=365 0105 (=)
O



Biasing of shapes in 3D: effective approach

Expansion of the field of galaxy shapes:
gij(@) =Y b3 TF[0;)(=).
1)

where the list of operators (up to higher derivatives and stochastic
contributions) is

, [Hirata&Seljak : 04]
- TE[()],, TR ),
o TEOUIP] TR [P e [T,

(@)’ TR, eml], TmY] (tr[Hm])z...

ij
Derivative operators relevant for leading power spectrum corrections

R2V*TF 1]

ij”



Density weighting of IA?

Galaxy number weighting of the shape fluctuation field

. 1=
Sij(x) = (1 + dn(x)) (gz'j(w) + 353(:1:)55)
The connection to the earlier definition:

gi(®) = (14 6(2)) Gij (), Ss(@) = (14 0u(®)) bs ().

linear order: bg = bg and b} = bS
second order: bnbg and bnbS

However, there is an indep. op. tr[TIM]TF[TI!] in g;; and gy,

There is full degeneracy of these operators in the EFT.



Higher derivatives and stochasticity

Higher derivatives:
Taylor expansion = suppression in R, (extend of operators)

Leading operator:
RIVATR[IIM];

At higher order:
R2V2TF[(TM)2];;, R2TF[g, M oFT1lY]; |
and many others. .. rapidly increase at higher order.

Stochasticity:
Fields €;;, eo are uncorrelated with the O;;.

(o (R)eor ()Y, (e (k)era (k) = (5 55 - 855K 5K5M)

Beyond leading order:



One-loop results

Perturbative form of the shear tensor field

Z 27T 5’9 qin ICf]n{)las( R qn)(sL(ql) s 5L(qn);

where IC}(;ZS are bias kernels (up to third order for one-loop).
PT results up to one-loop power spectrum

pene- loop __ Pab 11n+P(22) —|—P( )+P(31)

ijlm ijlm ijlm ijlm ijlm>
Linear, and loop (22), (13) contributions

kikikikm
g

P2 (k) =2 K2 (q,k — @)K (a.k — @) Pin(@) Pin |k — al),

ijlm
kik;
15> Pin(k) K (k. 4. ~@) Pin(0).

Pl (k) =

ijlm

1 Pin (k)

P (k) = 3equ

ijlm

Similar, but more cumbersome, for bispectrum...



One-loop results

Bias parameters:

Py Pso Py3
~

wetns s Dy U T 0ma U T JU o YU fstoan ).
g: {b%} U {bg,l, b, bgg} U {bgl, b§’2} U {bi* } U {stoch.} .

~—~——
Py Py Py3

Shot noise:
P (k) =0, Py (k) =Py (k)= Py (k) = 2P
which gives
Cop(f) =0, Cpp(t)=Cpp(t) =WP.

i.e., Cgg(¢) — Cpp({) is shot noise free.



3D correlators

PO PO pO ) 4ng p@).

02 422 +22 2




3D correlators
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Projected correlators

Ch™ and CPF

0, bp=0
=1, bR:’:i/zr‘ bp=|b1/4|




Projected correlators

C’éEE and C’fB
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Projected correlators

cpn, CPE and CFP

n
7
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Bispectrum



IR resummation

Why do we usually care? Because of the BAO!

| UAV

0.01 0.02 0.05 0.10 0.20 0.50
k [h/Mpc]

Long displacements can be resummed - without affecting the UV
At leading order:

[P = [P0 e PR [Py, Py =Py - P

with long-displacement dispersion ¥.2 = OA % [1 - jo(k;R*)} Pr(k),

Straightforward prescription for higher loops!
[Simonovi¢++;15,ZV++;16, Ivanov++-;16]



Efficient Evolution of Loops

Problem: we get cosmo. parameters - MCMC runs - slow!

Pl—loop = Piin + Po2 + 2P13 + Pc.t.

oo
. i 2
P [ s@oth =@ RiRz, = [tk [0 0)
0
Solution: Mellin transform used to reduce the problem to
Hankel /Bessel!
104 0.01
E— z=0.0 W‘ Pn z=0.0
71000 e T ,, 0001 |~|\Y\ Piy (
= 72 £ ‘ )
% 100 ///// \ £ %”\ ﬂﬂ v
= // N 5 10®
ST // BIRSRT et )
“ /) — N Bdireet 10°¢
/ — — X Pp-fft
1 L 10—7
0.001 0.010 0.100 1 10 100 0.001 0.010 0.100 1 10 100
k  [h/Mpc] k  [h/Mpc]

Very fast to evaluate - useful is FFTLog [Hamilton:00]
Works for EPT & LPT [Schmittfull&ZV:16x2, McEwen++:16, Simonovi¢++:17]



What we were talking about:

e

Summary:

® description of IA as biased tensor field on large scales:
"symmetry + dynamics(eft)”

® use of spherical tensors to disentangle the symmetry structure:
allows the full sky treatment

® EFT framework allows us to determine the scale dependence
on large scales, while the small scale effects are condensed
into the bias parameters

® One-loop power spectrum results and tree-level bispectrum
results are available



