Forecasting z~2 direct galaxy-cosmic web alignment for Subaru-PFS

Benjamin Zhang^{1,2} Khee-Gan Lee² Jingjing Shi², Benjamin Horowitz³

¹UC Berkeley ²Kavli IPMU ³Princeton University

Overview

- Review recent results by Codis et al. 2018 (<u>arXiv:1809.06212v1</u>) on direct galaxy shape/spin-cosmic web alignment in the Horizon-AGN hydrosim
- Corresponding study of direct alignments in IllustrisTNG hydrosim @ z=2
- Forecast of expected spin, shape alignment signal detected by upcoming Subaru Prime Focus Spectrograph (PFS) survey

Codis et al. 2018: "Galaxy orientation with the cosmic web across cosmic time"

Data

- Horizon-AGN cosmological hydrodynamic simulation
 - Box length: 100 Mpc/h
 - Baryons, stars, stellar feedback
 - Cosmological redshifts: z = 2, 1.5, 1.0, 0.5, 0
- Galaxy sample
 - >50 star particles
 - Angular momentum vector (spin), minor axis of inertia tensor ellipsoid (minor-axis shape) calculated from star particles only
 - \circ Stellar mass range: ~10⁸-10¹¹⁻¹² M_o

Cosmic web characterization

- DisPerSE density ridge-extractor code (arXiv:1009.4015v1)
 - "Skeleton" line segments along ridges in density, but using galaxy distribution directly instead of continuous density fields

Codis et al. 2018, Figure 2

Methods

- Alignment metric for each galaxy
 - Absolute-valued dot product of galaxy's spin/minor-axis shape vector and average direction of 2 closest DisPerSE line segments
 - \circ |cos θ | (alignment)
 - \circ [0, 1] with 0 = perpendicular, 1 = parallel
- Mean alignment of collection of galaxies: $<|\cos \theta|>$
 - Null case: $<|\cos \theta|> = 0.5$ (2 vectors with independent uniformly random direction)
- Alignment error estimation
 - Error on mean alignment computed separately on 8 sub-cubes of simulation

Spin-Filament Results

- Clear spin-flip at transition mass
- Alignment strength \bullet decreases slightly with cosmic time

Spin-Filament Results contd.

- Transition mass at $\log_{10}(M_*/M_{\odot}) = 10.1 \pm 0.3$
- No clear redshift dependence for transition mass (likely due to galaxy sample size)

Minor-axis Shape-Filament Results

- Monotonic mass dependence
- Minor positive alignment for low-mass bins @ z=1.5
 - But unclear results for lower redshifts
- Suggestive of positive major axis-filament alignment trends

IllustrisTNG shape/spin alignments

Data

- IllustrisTNG 300-1 cosmological hydrodynamical simulation
 - Box length: 205 Mpc/h
 - "Full-physics": DM, baryons, stars, supermassive black holes
 - z=2 simulation snapshot
- Galaxy major-axis shape sample: Shi et al. 2021
 - Contrast with Codis et al.: reduced inertia-tensor's **major** axis
 - Stellar mass ≥ $10^9 M_{\odot}$
- Galaxy spin sample
 - \geq 50 *total* particles
- Simulation resolution comparison: TNG100-1
 - 75 Mpc/h: greater mass/physics resolution
 - Galaxy spins only; same cuts as 300-1

Cosmic Web Characterization

Deformation tensor

- Calculated from binned DM density field: Hessian of gravitational potential at each point
- Ordered eigenvalues of tensor $e_1 \ge e_2 \ge e_3$: matter collapse order in Zel'dovich approximation, along corresponding eigenvectors e_1 , e_2 , e_3
- e₃ filament direction + wall plane-parallel: generalized "cosmic web direction" for every point
- $\mathbf{e_1}$ also encodes useful information; $\mathbf{e_2}$ less so

Veena et al. 2020, Figure 4

Methods

- Dark matter density binned to 512³ grid, smoothed to 2 Mpc/h, deformation tensor calculated at each point
- Closest tensor to each galaxy found, |cos θ| calculated between each eigenvector and major-axis shape/spin

Major-Axis Shape Alignment Results

- Slightly negative trend until highest stellar mass bin
- Qualitatively agrees with Codis et al. minor-axis vs. filament
- No clear trends; less information about cosmic web encoded
- Monotonically more negative trend with mass

Major-Axis Shape Alignment Results contd.

- Clear transition mass at M_{*}
 ~ 10^{10.5} M_o!
- After transition mass, major-axis shape alignment strength monotonically increases

- Transition mass at $M_{\star} \sim 10^{10.25} M_{\odot}$
- Negative signal after transition; similar amplitude to e₃

TNG300 & 100 Spin Alignment Results

- Relatively small galaxy sample for TNG100 from ~10^{8.5} M_o on
- For $e_1 \& e_3$, 1 σ bootstrap errors of TNG100 agree with TNG300 above ~10⁸ M_o
- e_3 spin-flip transition mass ~10^{8.75} for TNG100, ~10^{9.4} for TNG300
 - Disagrees with Codis et al. (~ $10^{10.4}$). Different cosmic web formalism / sim physics
 - Wang et al. 2018 (<u>arXiv:1810.04581v1</u>) reports M_{tr}~10⁸ for same cosmic web formalism on Illustris (75 Mpc/h)

Subaru-PFS Alignment Signal Forecast

How well can we measure this signal in PFS?

Subaru Prime Focus Spectrograph Survey

- Starting mid-2023
- Spectrographic redshifts / spectra from 0.6 < z < 7
- Our focus is on "cosmic noon" subprogram @ z~2.3
 - Spectrographic redshifts for galaxies within volume 2.7 * 10⁷ h⁻³ Mpc³
 - 15,000/30,800 galaxies for program, depending on exact distribution of observing time

IGM Tomography

- Cosmic web reconstruction at high-z hard: few galaxies!
 - COSMOS-level of study needed to attempt: see Ata et al. 2020 (arXiv:2004.11027v2)
- IGM tomography offers direct probe of cosmic web
 - Neutral H produces redshifted absorption lines (Lyman-alpha forest) in spectrum of background objects
- CLAMATO survey: 4.1 * 10⁵ h⁻³
 Mpc³
 - PFS to probe 2 orders of magnitude higher volume!

Source: UCL Mathematical & Physical Sciences

IGM Tomography contd.

↑ Source: CLAMATO DR2 (Horowitz et al. 2021, <u>arXiv:2109.09660v1</u>)

IGM Tomography contd.

↑ Source: CLAMATO DR2 (Horowitz et al. 2021, <u>arXiv:2109.09660v1</u>)

Observational Data

- Illustris TNG300 simulation @ z=2
- Galaxy sample magnitude-limited
 - Observed J-band magnitude (no dust)
 - Match expected number of PFS galaxy spec-z's (15,000/30,800)
 - Select dispersion-dominated (spheroid) galaxies via $\kappa_{rot} < 0.5 (\kappa_{rot} = K_{rot} / K)$
 - $M_* = [10^{10}, 10^{11.5}] M_{\odot}$
- For 64 viewing angles on half-sphere:
 - Displace galaxies by peculiar velocities along viewing angle LoS: redshift-space distortion (RSD)
 - Construct mock PFS-like IGM tomography survey along viewing angle LoS
 - Reconstruct cosmic web deformation tensor using TARDIS-II code (Horowitz et al. 2021, <u>arXiv:2007.15994v1</u>)
 - Project shape ellipsoid onto viewing angle plane, take longest axis of ellipse as major-axis shape
 - Project deformation tensor eigenvectors onto viewing angle plane

Observational galaxy sample

2D Alignment

- Alignment null distribution after projection (2D): upper half of Beta[$\alpha = \beta = 0.5$]
 - Random 3D vectors after projection \rightarrow random 2D Ο vectors
- Histogram bins calculated over alignments from all viewing angles
- For each bootstrap iteration, select alignments from random viewing angle first

dist.

Fiducial Observation Time (N = 15,000)

Cosmic web reconstructed with IGM tomography Major-axis shape projected on 64 viewing angles

Extra Observations (N = 30,800)

Cosmic web reconstructed with IGM tomography Major-axis shape projected on 64 viewing angles

Avenues for Improvement

- Increased volume for next-gen survey
 - Approximate overall significance σ_T as $\sqrt{(\sigma_3^2 + \sigma_1^2)}$.
 - \circ σ_{T} = 0.46 | 1.17, for N=15,000 | N=30,800
 - Assuming same magnitude distribution and errors $\propto N^{0.5}$, need 3x volume (N=90,000) for σ_T =2
- Improved IGM tomography reconstruction
- Estimates of 3D shape (3D major-axis shape below)

Appendices

