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INTRODUCTION 

Behaviour of granular systems under many conditions  
exhibit a great similarity to ordinary fluids  

Rapid flow conditions: hydrodynamic-like type equations. Good 
example of a system which is inherently in non-equilibrium 

Dominant transfer of momentum and energy is through  
binary inelastic collisions. Subtle modifications of 

the usual macroscopic balance equations  

To isolate collisional dissipation: idealized microscopic model   

Granular systems are constituted by macroscopic grains that collide 
inelastically so that the total energy decreases with time 
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Smooth hard spheres  
with inelastic collisions  

V¤
12 ¢ b¾ = ¡®V12 ¢ b¾

Coefficient of restitution 

0 < ® · 1

Direct collision 

v¤1 = v1 ¡
1

2
(1 + ®) (b¾ ¢V12)b¾

v¤2 = v2 +
1

2
(1 + ®) (b¾ ¢V12)b¾

V12 = v1 ¡ v2

V¤
12 = v¤1 ¡ v¤2
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Collisional energy change 

Momentum conservation  v1 + v2 = v¤1 + v¤2

¢E =
1

2
m
³
v¤21 + v¤22 ¡ v21 ¡ v22

´
= ¡

m

4
(1¡ ®2)(V12¢b¾)2

Very simple model that captures many properties of granular flows,  
especially those associated with dissipation  
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Real granular systems characterized by some degrees of  
polidispersity in density and size: Multicomponent granular systems  

Mechanical parameters: fmi; ¾i; ®ijg; i = 1; ¢ ¢ ¢ ; s

Direct collision: 

V12 ´ g12
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REVISED ENSKOG KINETIC THEORY 

S-multicomponent mixture of smooth hard spheres or disks 
of masses mi, diameters σi, and coefficients of restitution αij 

At a kinetic level:  fi(r1,v1;t)  

Two-particle distribution function 

Ci(r1;v1; t) =
sX

j=1

¾d¡1
ij

Z
dv2

Z
db¾£(b¾ ¢ g12)(b¾ ¢ g12)

£
³
®¡2
ij fij(r1;v

00
1; r1 ¡ ¾ij;v

00
2; t)¡ fij(r1;v1; r1 + ¾ij;v2; t)

´
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Collision rules: v001 = v1 ¡ ¹ji
³
1+ ®¡1

ij

´
(b¾ ¢ g12)b¾

v002 = v2 + ¹ij
³
1+ ®¡1

ij

´
(b¾ ¢ g12)b¾

where    µij=mi/(mi+mj) 

Kinetic theory approach: velocity correlations are neglected  
(molecular chaos hypothesis !!) 

  

Spatial correlations (volume exclusion effects) 

fij(r1;v1; r2;v2; t) ! Âij (r1; r2 j fnig) fi(r1;v1; t)fj(r2;v2; t)
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Subtle point: How is defined the pair correlation function out of equilibrium?  

Let us consider here a monocomponent ordinary gas  
for the sake of simplicity 

In 1922, Enkog assumed that the pair correlation is the same function of the  
number density as in a fluid at equilibrium with the density evaluated at  

the point of contact (Standard Enskog Theory, SET)     

Husimi V-functions of the virial expansion  
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Conceptual drawback of SET: its extension to mixtures leads to inconsistencies 
with Onsager’s reciprocity relations   

  

H. van Beijeren and M. Ernst (Physica A, (1973)) proposed the  
Revised Enskog Theory, RET  

Pair correlation is the same functional of density as in a nonuniform equilibrium  
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Monocomponent fluids: SET and RET yield the same  
Navier-Stokes transport coefficients. They differ at the Burnett hydrodynamic order 

Multicomponent fluids. SET and RET give different expressions for the  
Navier-Stokes transport coefficients associated with mass and heat fluxes  

Good theory for granular mixtures is the extension of the RET to  
inelastic collisions 
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(López de Haro, VG, Physica A 197, 98 (1993)) 

(López de Haro, Cohen, Kincaid, J. Chem. Phys. 78, 2746 (1983)) 



Bad news for the RET: Several MD simulations have shown that  
velocity correlations become important as density increases  

(McNamara&Luding, PRE (1998); Soto&Mareschal PRE (2001);  
Pagonabarraga et al. PRE (2002);…..) 

Good news for the RET: Good agreement at the level of macroscopic  
properties for moderate densities and finite dissipation 

(Simulations: Brey et al., PF (2000); Lutsko, PRE (2001); 
 Dahl et al., PRE (2002); Lois et al. PRE (2007);  

Bannerman et al., PRE (2009); Mitrano et al. PF (2011), PRE (2014) 
Experiments: Yang et al., PRL (2002); PRE (2004);  

Rericha et al., PRL (2002);…..) 

RET is still a valuable theory for granular fluids for densities  
beyond the Boltzmann limit  and dissipation beyond  

the quasielastic limit 
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MACROSCOPIC BALANCE EQUATIONS 

Hydrodynamic fields ni(r; t) =

Z
dvfi(r;v; t)

Macroscopic equations are exact since they are obtained from the  
first hierarchy equation (without the Enskog approximation)  

U(r; t) =
1

½(r; t)

X

i

Z
dvmivfi(r;v; t)

T(r; t) =
1

n(r; t)

X

i

Z
dv

mi

d
(v ¡U)2fi(r;v; t)
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MACROSCOPIC BALANCE EQUATIONS 

After some algebra….. 

Two contributions: (i) collisional effect due to scattering with a change in velocities;  
(ii) pure collisional effect due to the spatial difference of the colliding pair   
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Dtni + nir ¢U +m¡1
i r ¢ ji = 0

Balance equation for the partial densities 

Balance equation for the flow velocity 

½DtU¯ +r°P°¯ =
sX

i=1

ni (r; t)Fi¯ (r)

Balance equation for the granular temperature 

d

2
n (Dt + ³)T+P°¯r°U¯+r¢q¡

d

2
T

sX

i=1

r ¢ ji
mi

=
sX

i=1

Fi ¢ ji
mi

Dt ´ @t + v ¢ rCooling rate 
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Mass flux ji(r1; t) = mi

Z
dv1V1fi(r1;v1; t)

V=v-U 

Pressure tensor P°¯ (r1; t) = Pk
°¯ (r1; t) + Pc

°¯ (r1; t)

Kinetic contribution Collisional contribution 

Pk
°¯ (r1; t) =

sX

i=1

Z
dv1miV1¯V1°fi(r1;v1; t)

Pc
°¯ (r1; t) =

1

2

sX

i;j=1

mj¹ij
³
1+ ®ij

´
¾dij

Z
dv1

Z
dv2

Z
db¾£(b¾ ¢ g12)(b¾ ¢ g12)2

£b¾¯ b¾°
Z 1

0
dxfij(r1 ¡ x¾ij;v1; r1 + (1¡ x)¾ij;v2; t):

Rheology of disordered particles - suspensions, glassy and granular materials, June 2018, Kyoto   



Heat flux 

qk (r1; t) =
sX

i=1

Z
dv1

1

2
miV

2
1 V1fi(r1;v1; t)

q (r1; t) = qk (r1; t) + qc (r1; t)

Gij= µijV1+ µjiV2 is the center-of-mass velocity 

qc (r1; t) =
sX

i;j=1

1

8

³
1+ ®ij

´
mj¹ij¾

d
ij

Z
dv1

Z
dv2

Z
db¾£(b¾ ¢ g12)

£(b¾ ¢ g12)2
h³
1¡ ®ij

´ ³
¹ji ¡ ¹ij

´
(b¾ ¢ g12) + 4b¾ ¢Gij

´

£b¾
Z 1

0
dxfij(r1 ¡ x¾ij;v1; r1 + (1¡ x)¾ij;v2; t);
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Cooling rate 

³ =
1

2dnT

sX

i;j=1

³
1¡ ®2

ij

´
mi¹ji¾

d¡1
ij

Z
dv1

Z
dv2

Z
db¾

££(b¾ ¢ g12)(b¾ ¢ g12)3fij(r1;v1; r1 + ¾ij;v2; t)

Balance equations become a closed set of hydrodynamic equations 
 for (ni,U,T) once the fluxes and the cooling rate are expressed as 

functionals of  (ni,U,T) (“constitutive relations”) 
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CHAPMAN-ENSKOG NORMAL SOLUTION 

Assumption: For long times (much longer than the mean free time)  
and far away from boundaries (bulk region) the system reaches a  

hydrodynamic regime 

Normal solution 

In some situations, gradients are controlled by boundary or initial conditions. 
Small spatial gradients: 

fi = f
(0)
i + ²f

(1)
i + ¢ ¢ ¢

fi(r;v; t) = fi(vjfni(r; t)g;U(r; t); T (r; t)g)
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Some controversy about the possibility of going from kinetic theory to 
hydrodynamics by using the Chapman-Enskog method 

 

The time scale for T is set by the (inverse) cooling rate instead of spatial  
gradients. This new time scale, T is much faster than in the  
usual hydrodynamic scale. Some hydrodynamic excitations 

decay much slower than T  

For large inelasticity (ζ−1 small), perhaps there were NO time scale separation 
between hydrodynamic and kinetic excitations:  

NO AGING to hydrodynamics!! 

We assume the validity of a hydrodynamic description and compare with 
computer simulations  
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HOMOGENEOUS COOLING STATE  
(zeroth-order approximation)  
Spatially homogeneous isotropic states 

@tfi(v; t) =
X

j

Jij[vjfi(t); fj(t)]

Partial temperatures 

Granular temperature T =
X

i

xiTi; xi = ni=n

Cooling rates for Ti ³i = ¡@t lnTi; ³ = T¡1
X

i

xiTi³i

niT i =
mi

d

Z
dv v2fi(v)
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Hydrodynamic or normal state: all the time dependence of vdf occurs 
only through the temperature T(t)    

Consequence: temperature ratios must be constant  
(independent of time) 

Assumption 

fi(v; t) = niv
¡d
0 (t)©i(c); c ´

v

v0(t)

v0(t)
2 / T(t)
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@t ln ° = ³2 ¡ ³1HCS condition: ³1 = ³2

Elastic collisions: ³1 = ³2 = 0; T1 = T2 = T

Equipartition theorem for classical statistical mechanics 

What happens if the collisions are inelastic ?  

VG&J. W. Dufty PRE 60, 5706 (1999) 

° 6= 1

γ=T1/T2  Binary mixture:   
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Time evolution of temperature ratio γ. Comparison with  
Monte Carlo simulations   

Montanero&VG, Granular Matter 4, 17 (2002) 
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Comparison with molecular dynamics (MD) simulations  

Dahl, Hrenya,VG& Dufty, PRE 66, 041301 (2002) 
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Breakdown of energy equipartition  

Computer simulation studies: Barrat&Trizac GM 4, 57 (2002);  
Krouskop&Talbot, PRE 68, 021304 (2003); Wang et al. PRE 68,  
031301 (2003); Brey et al. PRE 73, 031301 (2006); Schroter et al. 

PRE 74, 011307 (2006);……. 

Real experiments: Wildman&Parker, PRL 88, 064301 (2002);  
Feitosa&Menon, PRL 88, 198301 (2002).  

All these results confirm this new feature in granular mixtures !! 
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NAVIER-STOKES HYDRODYNAMIC EQUATIONS 

Previous studies: Jenkins et al. JAM 1987; PF 1989; Zamankhan, PRE 1995; 
Arnarson et al. PF 1998; PF 1999; PF 2004;  

Serero et al. JFM 2006 
  

Limited to the quasielastic limit. They are based on the  
energy equipartition assumption  

Our motivation: Determination of the transport coefficients by using 
a kinetic theory which takes into account the effect of  
temperature differences on them. NO limitation to the  

degree of dissipation  
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The distribution functions are given by  

After some efforts…. 
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Inhomogeneous terms are defined in terms of fi
(0) 
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CONSTITUTIVE EQUATIONS 

A. Cooling rate  

³ ! ³(0) + ³Ur ¢U
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B. Mass fluxes 

Transport coefficients : 
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B. Pressure tensor 

P°¯ = p±°¯¡´
µ
r°U¯ +r¯U° ¡

2

d
r ¢U

¶
¡·r¢U

Equation of state 

Shear viscosity ´ = ´k + ´c

´k =
sX

i=1

´ki = ¡
1

(d+2)(d¡ 1)

sX

i=1

Z
dvmiV¸V°Ci;¸° (V)
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Bulk viscosity 

· = ·k + ·c ·k = 0

Rheology of disordered particles - suspensions, glassy and granular materials, June 2018, Kyoto   



C. Energy flux 

Transport coefficients  

¸k =
sX

i=1

¸ki = ¡
1

dT

sX

i=1

Z
dv

1

2
miV

2V ¢Ai (V)

Dk
q;ij = ¡

1

dT2

Z
dv

1

2
miV

2V ¢Bji (V)

λ=λk+λc 
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Some limiting cases 

  
 Mechanically equivalent particles [Garzó&Dufty PRE 59, 

5895 (1999)+Lutsko, PRE 72 021306 (2005)] 

 Binary mixtures at low-density [Garzó&Dufty, PF 14, 1476 
(2002)+Garzó&Montanero, JSP 129, 27(2007)] 

 Elastic hard spheres  
[López de Haro, Cohen&Kincaid, JCP 78, 2746 (1983)]  

Self-consistency of our results  
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j1 = ¡
m2

1n

½
D11r lnn1¡

m1m2n2
½

D12r lnn2¡½DTr lnT

Constitutive equations (binary mixture) 

P°¯ = p±°¯¡´
µ
r°U¯ +r¯U° ¡

2

d
r ¢U

¶
¡·r¢U

q = ¡T2Dq;1r lnn1 ¡ T2Dq;2r lnn2 ¡ ¸rT

Eight transport coefficients:  
n
D11; D12; DT ; ´; ·;Dq;1; Dq;2; ¸

o

Parameter space:  fm1=m2; ¾1=¾2; x1; Á; ®11; ®22; ®12g
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Transport coefficients given in terms of solutions of coupled linear 
integral equations. Complex mathematical problem 

Sonine polynomial approximation. Only leading terms are  
usually considered 

To test the accuracy of the Sonine solution: comparison with  
numerical solutions of the RET (DSMC) 

VG, J. Dufty, C. Hrenya, PRE 76, 031303 (2007); 031304 76(2007);  
J.A. Murray, VG, C. Hrenya, Powder Tech. 220, 24 (2012) 
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Energy equipartition assumed 
(dashed line) 

Influence of energy equipartition on transport 
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Shear viscosity coefficient of a heated binary mixture 

From a computational point of view, it is difficult to measure this  
coefficient. Strategy: (Driven) simple shear flow  

ni=const., r T=0, Ui,x=ay 
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Average collision frequency ν(t)/ T(t)1/2  (hard spheres). Thus, a*=a/ν(t)→ 
0 and so, one can measure the N-S shear viscosity in the long time limit 

[Naitoh&Ono, JCP (1979); Montanero&Santos PRE (1996)] 

Ordinary fluid (elastic collisions): T(t) increases with  
time due to viscous heating.  

º

nT
´ = ¡ lim

t!1

P ¤xy
a¤

; P ¤xy = Pxy=nT
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Granular fluid (inelastic collisions): Energy sink in the temperature  
balance equation 

@tT = ¡
2

dn
aPxy + (¡³T )

Is it possible to frustrate the cooling effects so that the viscous heating 
is still able to heat the system as in the elastic case? One can identify 

the (heated) shear viscosity when a*→ 0   
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Granular fluid is excited by an external energy source that exactly  
compensates for the collisional cooling  (Gaussian thermostat) 

Fexc
i (V) =

1

2
mi³V

Kinetic theory: First Sonine approximation to get η of a  
heated granular binary mixture: 

Ci;°¯(V) ! ¡fi;M(V)
´ki

niT
2
i

mi

µ
V°V¯ ¡

1

d
V 2±°¯

¶

The expression of η slightly differs from the one obtained in the free cooling case 
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Shear viscosity coefficient of a (heated) granular fluid 

VG&J.M. Montanero, PRE 68, 041302 (2003) 
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When the excess gas is in HCS, the diffusion equation is  

@tx1(r; t) = D11(t)r2x1; D11(t) /
q
T (t)

Mean square position of impurity after a time interval t  

@

@t
hjr(t)¡ r(0)j2i =

2dD11(t)

n2

Einstein form is used to measure D11 in DSMC simulations  
[Brey et al. PF 12, 876 (2000)] 

Tracer diffusion coefficient: Diffusion of impurities in 
granular gas under HCS  
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m1=m2 = 1=4;¾1=¾2 = 1=2;Á = 0:2

DSMC 

First Sonine 

0.5 0.6 0.7 0.8 0.9 1.0
1.0
1.1
1.2
1.3
1.4
1.5

α

D 11
(α

)/D
11

(1
)

Second Sonine 

®22 = ®12 ´ ®; x1 ! 0

First two Sonine approximations are considered !! 

VG&Montanero, PRE 68, 021301 (2004) 
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VG&F.Vega Reyes, PRE 79, 041303 (2009); JFM 623, 387 (2009) 
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INSTABILITIES IN FREELY COOLING  
DENSE GRANULAR BINARY MIXTURES 

In contrast to ordinary fluids, instabilities (such as dynamic particle  
clusters)  occur in freely cooling (HCS) granular gases. Pionnering work of 

Goldhirsch&Zanetti (PRL 70, 1619 (1993)); McNamara (PF A 5, 3056 (1993))  
  

(Peter Mitrano, CU) 
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General trends: (i) instabilities are more likely in larger domains;  
and  (ii) velocity vortices manifest more readily than  

particle clusters    

This is also a very good problem to assess Navier-Stokes  
hydrodynamics derived from Kinetic Theory 

For given values of the mechanical parameters of the system, there  
exists a critical  system lenght demarcates (stable) homogeneous  
flow from one with velocity-vortex instabilities or one exhibiting  

the clustering instability  
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LINEAR STABILITY ANALYSIS 

HCS is unstable with respect to long enough wavelength perturbations.  
Stability analysis of the nonlinear hydrodynamic equations with respect to HCS  

for small initial excitations 

HCS solution rx1H = rnH = rTH = 0;UH = 0;

@t lnTH = ¡³0H

This basic solution is unstable to linear perturbations 
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We linearize the Navier-Stokes equations  
with respect to the HCS solution. Deviations of the hydrodynamic  

fields from their values in HCS are small 

x1(r; t) = x1H+±x1(r; t); n(r; t) = nH+±n(r; t);

U(r; t) = ±U(r; t); T (r; t) = TH + ±T (r; t)

Equation for the velocity field : 

½H@t±U+r`pH = ´Hr2±U+

µ
d¡ 2

d
´H ¡

2

d
·H

¶
r(r¢±U)
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Linearization about HCS yields a set of partial  
differential eqs. with coefficients that are independent of space  
BUT depend on time. Time dependence can be eliminated  by  

¿ =
Z t

0
dt0ºH(t0); ` =

ºH(t)

vH(t)
r

ºH / nH¾
d¡1
12 vH; vH =

q
2TH=(m1 +m2)

Set of coupled linear differential equations with  
constant coefficients  
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Set of Fourier transformed dimensionless variables:  

½1;k(¿) =
±x1k(¿)

x1H
; ½k(¿) =

±nk(¿)

nH

wk(¿) =
±Uk(¿)

vH(¿)
; µk(¿) =

±Tk(¿)

TH(¿)

±yk¯(¿) =
Z
d`e¡ik¢`±y¯(`; ¿)

±yk¯ ´
n
½1;k; ½k;wk; µk

o
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Transversal component of the velocity field is decoupled  
from the other modes. This identifies “d-1” shear (transversal) modes    

µ
@

@¿
¡ ³¤0H +

1

2
´¤Hk

2
¶

wk? = 0

wk?(¿) = wk?(0)e
s?¿ ; s?(k) = ³¤0H ¡

1

2
´¤Hk

2

There exists a critical wave number:   kc? =

vuut2³¤0H
´¤H

k < kc? Shear modes grow exponentially!! 
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The remaining 4 longitudinal modes are coupled and are 
the eigenvalues of a 4X4 matrix  

There exists two critical wave numbers:   

kc? =

vuut2³¤0H
´¤H

; kck

Solution of a quartic equation 

For wave numbers smaller than these critical values,  
the system becomes unstable   
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If the system length L>Lc, then the system becomes unstable  

2¼

L¤c
= max

n
kc?; k

c
k
o

In most of the studied cases, the linear stability 
analysis predicts that the HCS is unstable to velocity vortices  

and linearly stable to particle clusters.  

kc? > kck
Stringent assessment of kinetic theory calculations!!! 

Periodic boundary conditions, the smallest k is  2¼=L
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MONOCOMPONENT GRANULAR FLUIDS 

P. Mitrano et al. PF 23, 093303 (2011) 

VG, PRE 72, 021106 (2005) 
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Standard Sonine approximation 
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HIGHLY DISSIPATIVE GRANULAR FLUIDS 

Modified Sonine approximation (VG et al., Physica A 376 94 (2007)) 

Mitrano, VG, Hilger, Ewasko,  
Hrenya, PRE 85, 041303 (2012) 
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BINARY GRANULAR DENSE MIXTURES 

P. Mitrano, VG and C.M. Hrenya, PRE 89, 020201(R) 2013 

Rheology of disordered particles - suspensions, glassy and granular materials, June 2018, Kyoto   



Even in the extreme case of small concentration (mole fraction 0.1)  
and large dissipation the discrepancies are smaller than 10%   
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Objective: Segregation problem driven by  
the presence of a thermal gradient and the gravitational  

field in a moderately dense ganular fluid 

Model system: dense granular fluid (species 2)+intruder (species 1)  

(granular binary mixture in the tracer limit) 

THERMAL DIFFUSION SEGREGATION 
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Mechanical parameters of the system  

Experimental conditions: inhomogeneous steady state without 
convection (zero mass flux) and gradients along the z direction  

¤ > 0 Intruder rises with respect fluid  (BNE) 

¤ < 0 Intruder falls with respect fluid (RBNE) 
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Hydrodynamic description to evaluate thermal 
diffusion   

a) Momentum balance equation:  

b) Constitutive equation for the mass flux of intruder:  

¤

@p

@z
=

@p

@T
@zT +

@p

@n
@zn = ¡½g
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Non-convecting steady state 

Density gradients in terms of gravity and thermal gradient   

¯ = p¤+ Á@Áp
¤; Á = [¼d=2=2d¡1d¡(d=2)]n¾d

p¤ = p=nT; g¤ = ½g=n@zT < 0
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Early theoretical attempts:  

•Elastic systems: Jenkins and Yoon PRL 2002  

•Quasielastic particles: Trujillo, Alam & Herrmann EPL 2003 

Dense gases: Homogeneous temperature  

Dilute gases: Inhomogeneous temperature 
•Weak dissipation: Serero et al. JFM 2006  

•Arbitrary degree of dissipation:  
Brey et al. PRL 2005; Garzó EPL 2006 
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Our theory  
(i) goes beyond weak dissipation limit, (ii) combined effect 

of gravity and thermal gradient, 
(iii) applies for moderate densities 

It covers some of the aspects not previously accounted 
for in previous theories, but it also assumes a Navier-Stokes 

description (first order in spatial gradients) 
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VG, PRE 78, 020301 (R) (2008); EPJE 29, 261 (2009);  
New J. Phys. 13, 055020 (2013)  



COMPARISON WITH SIMULATIONS 

Simple case: dilute granular gas in the absence of gravity 

Thermal diffusion segregation in driven steady states  
characterized by a uniform heat flux    

@qz

@z
= ¡

d

2
nT (³ ¡ ¾T)¡ Pxz

@Ux

@z
= 0

External forcing term Viscous heating term 

Collisional cooling 

Rheology of disordered particles - suspensions, glassy and granular materials, June 2018, Kyoto   



Two types of uniform-heat-flux steady flows: 

Case I: No shear with a stochastic external forcing  

Ux(z) = 0; ¾T = ³

Case II: No volume driving and boundary shear; i.e, both walls  
are in relative motion (sheared granular gas)  

This is the case closer to the Navier-Stokes description 

d

2
nT³ = ¡Pxz

@Ux

@z
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Case I: Monte Carlo simulations (DSMC method) 

Case II. Molecular dynamics simulations 

Parameter space 
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Temperature ratio  
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CONCLUSIONS 

Hydrodynamic description (derived from  kinetic theory) appears  
to be a powerful tool for analysis and predictions of rapid 

flow gas dynamics of granular mixtures at moderate densities.    

New and interesting result: partial temperatures (which measure  
the mean kinetic energy of each species) are different (breakdown of   
energy equipartition theorem). Energy nonequipartition has important  

and  new quantitative effects on transport coefficients  

A normal solution is obtained by applying the Chapman-Enskog method 
for states close to the HCS. Exact expressions for the equation of state, the  
cooling rate and transport coefficients have been obtained to first-order in 

spatial gradients (Navier-Stokes hydrodynamic order)    
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CONCLUSIONS 

Explicit forms for the kinetic and collisional contributions to the  
cooling rate and transport coefficients are obtained by considering 

the leading terms in a Sonine polynomial expansion      

Analytical results for the tracer diffusion and shear viscosity coefficients 
are compared against DSMC simulations. Good agreement is found over a  

wide range of values of parameters of the system  
   

Instability of HCS: Good agreement of kinetic theory with  
extensive MD simulations for finite dissipation and moderate 

densities. Stringent test of kinetic theory    
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CONCLUSIONS 

A segregation criterion has been derived from the Enskog kineti theory. It covers  
some of the aspects not preoperly accounted for in previous theoretical  

attempts. Goor agreement with DSMC and MD simulations  
for dilute binary granular mixtres   
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SOME OPEN PROBLEMS 

Extension to inelastic rough spheres 

Influence of interstitial fluid on grains (suspensions)  
Previous results for monodisperse gas-solid flows  

(VG, Tenneti, Subramaniam, Hrenya, JFM 712, 129 (2012))  and dilute binary 
mixtures (Khalil, VG, PRE 58, 052201 (2013))   

Granular hydrodynamics for far from equilibrium steady states 
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