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Introduction

' ' . Takehara & K. Ok ,
Drag law in a granular media P Tz v o,
Experlmental Setup -l-he Cecllnln’lsourgdtglnltlh?sgerby V

Particles,” /’

Force gauge
fixed to the desk

Slider -~
Noplextensible thread connected to the gauge

1.4
1.2

The disk is fixed by a wire.
See S. Takada's talk yesterday.
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Interactions of intruders in oranular assemblics

Brazil Nuts Effect (ED) - Rolling Cylinder (Exp.)
D. A. Sanders, et al, PRL, 93, 20, (2004) I. Zuriguel, et al, PRL, 95, 258002, (2005)

S ———— 0> fo
—— —> Separation
b
e (0),(0) [ < fen
— = Attraction

f < fn = Attraction
f > fn = Separation

p1/ps = 1.0 = Attraction

p1, Ps. Large/Small granular density

*
.
¢

Mechan Mechanism
echanism S — f < fon = 6U% <0

 Lower density region ™/ w'es) R s (large fluctuation outside)
/ = 6P = p §U2/2 < 0
I \.V.,./ . Pressure difference
More collisions at region B~ Lo o makes attraction.
2018/06/21?5& rl;zgtlé) Toﬁvg?téseeng;[;;;igdo'nnteract'on L oU = —[Urms(out)_2 + Vrms'(OlZLt)z -
I (Urms(in)” + Vens (in)*)]




- Purpgse of this talk

« This talk is dedicated to the theory for the
drag force and the interaction of intruders
mainly in granular media

 For this purpose, we review previous works.

* Then, we introduce recent numerical
simulations by Tanabe.

* Finally, I will explain some
ohenomenological theories to understand
the results of simulations and experiments.
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o Introcuction: Wnat do we «xnow aoout drag in
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* Previous study for pure 2D drag in granular media

> Previous studies on tne interaction oetween
intruders

> Sirmulations of two intruclers in 2D granular rneclia
— Two intruders in a steacdy rotion
— Two intruders under an oscillation

> Prnienornenological theory for tne drag and tne
interactions for intruclers
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Density profile & Streamline

Streamline
—: MD result

---: perfect fluid density

Cavity behind the tracer
( Dead water model can be used. )

The streamline obtained from MD
is well fitted by that of the perfect fluid.
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Comparison with simulation re

3+2e 2 _ 5
Farag = — =sin“60 | sinfyDpV

2 3
N\
2 2 :
072 O EIE
0.74 [
- 1.5 1.5 |
s : 3
c 1 e
* - 1
L
0.5
0.5
0
0 ]
0 0.1 0.2 0.3

"
Simulation results are well fitted without any fitting parameters !
This is consistent with Chicago group for granular jet.
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. Depletioniforce & adiabatic pistor

- * The problem is related to the depletion force (in a
constriction region).

» * Note that the conventional depletion force is the result
of the violation of the pressure balance=> acceleration.

» * However, we are interested in the adiabatic motion
under the pressure balance.=> Casimir effect or adiabatic
piston

2018/06/21
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- Theadiabatic pistor

« *The adiabatic piston problem is equivalent to
fluctuating 1d depletion force problem.

 *If the density is lower in the depletion region, the
attractive interaction between pistons exist under the
pressure balance as a result of non-Gaussian correrction.

\/;?,,(1 I

Vi = €E——VUr,

n — - —) vr = 2kg T/ M

U UTy
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*InteractioRidinon-Gaussian systems

We begin with the generalized Fokker-Planck equation:

N
O P = Z{rlvk(kaU) + L, P)

Ly = /Z 0 Vk W(x)dx = )\/(e_“"vk — 1)W(x)dx.

n=1

Li = ADAV(iVy) —1]. Wi(q) = / dae—TTW ()

If the hopping is nonlocal, we need higher
order derivative in Fokker-Planck equation.

2018/06/21 Drag and interaction of intruders 13



. Effectivelinieiaction in steady state

0= ’y_lPSSVkU + Dbdyvk(l — CLQCdVV%C)PSS

g ..

p.="
7
B

= 1/(yDbay)

cdy{ kaU_?)/BQ Z V.U - VgU—F/@ /V;CU }

{k,}=1

1—a’BW + O(a*)]
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" NonsGaussian noise and AOUP

« Both models have
effective attractive

Interactions. :
__ 50}
 Nevertheless, the 3 |
AOUP exhibits 5
strong phase Z aof
separation butthe &, [ = lonoaussan
P | £ 200 — Memory (AOUP)
nond—Gladu55|an t S, Eauilbriom
model does not. :
0.0 0.5 1.0
2018/06/21 Drag and interaction of intruders

AOUP=Active Ornstein Uhrenbeck process
Fodor et al., PRL 117, 038103 (2016).
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Interparticle distance
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o Introduction: Whnat do we know aoout drag in
granular rmedia?

> Previous study for pure 2D drag in granular rmedia

> Previous studies on tne interaction oetweern
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 Simulations of two intruders in 2D granular media
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l

m;r; = z FC‘J +F,, (2 Dlsl_<_|ndex
: r; . Position m; : Mass

Voyx =V (D\/ kn/Ms)

I
—l 1. Repulsive force (only normal force)

i" . . ,
FY = k,6Wnt) — y, vt/

2. Driving force (follow tray oscillation)

Fex = _.u(vi — vex)

* Fixed flat wall L,, = 60Dg % Vex
U;
* Periodic boundary L, = 80D ‘
5%]
« Two Intruders are pinned in system
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Voyx =V (D\/ kn/Ms)

» Diameter of disks (density: const.)
D¢ = D(1 £ 0.1r) : Small disks D; = 10D : Intruder
(poly-dispersity: Uniform distr.)
» Intruders are fixed on system ;- Disk index
with distance L, for y-direction 7, : Position m; : Mass

> Contrc_)l parameter: * M = z FY 4 F,,
non-dimensional speed V I
* Fixed flat wall L,, = 60Dg

 Periodic boundary L, = 80D
« Two Intruders are pinned or mobile in system

2018/06/21 Drag and interaction of intruders 18
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0.357

rom high V.

050 1 tl — 1 Flow time>relaxation time
| ousr. e088°2°° p/y >1=1v,1/d<10:Flow is different.
I | | v r/d=4T1 v, 1/d=23.57
b inner ;
aor| e ™ EEEmEEEE g
: LI U 5
F: e v I &
0 | 4IU GID BIIJ IIZIID 12|0 140

External flow v /(d/7)

V,..7/d=4.71 v,.7/d=23.57
ex No coalescence of wakes®*
60 T T 1 1 1 1 T ] 1 60 T T T 1 1 1 T ] 1
-1 08 50 -1 08
40
L1 06 - F1 0.6
330
-4 04 20 -4 04
L1 0.2 10 F4 0.2
0 e E e E— o 0 — o
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
x/d x/d
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" Granular flows\locity & Separation ange

Velocity field Separation angle
| @ R/d=115 0.56m1 v r0.56
075 B RrRd=125 ﬁag " V' v X "
] v v v
0501 @ R/d=14.5 EA o
5 A R}'d=305 050” """"""""""" * """""" 'OSOHGD
¥ 0.251 S A |
‘R- V¥V R/d=50.5 # " o) =
o 0'005”"@2’ """ ° L SRS L 0.44m - 0.441 N
—-0.25
—0.50 ' ’O 0.38m| o v 2n-p, [0.381
—0.75 10 20 30 40 50
ﬁ R*
0 /2 n 3n/2 2m
]
- O i O
r
6
Vex HC
- 21T — 0,
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Fitting with cos 2

: 2 intruders
One intruder
. 06 V.=0.001 —@—v'=0.040 ——

o |v,=0.010 +v =0.050 —&— 0.025 @ RId=115
= V. =0.020 fitting -~ ' -l R/d=125
2 05 wv=0.030 = T intruder ~ % 0.020 - Rid=145
© .ﬁ ' A RId=30.5
= 047 S ~¥- R/d=505
> < 0.015 :
o3 i i A
g 0.3 r > 0.010
S 02} 0.005
2 v ¥
E 01 t 4 0.000 A R R --
Q) i i 0 n/2 mn 3n/2 2

)] B R A FUETET- o

0.0p 0.5p 1.0p 1.5p 2.0p

Around intruder f 60 — 8
0 50 7
T(ga)—{ , o + 4] < g * !
G = W2 : 15
y(cos((@ + 4) — m))*, otherwise %5 |
20 13
(y =0.47,4 = 0.203, o5 = 1.5691) 0 12
. 11
(ps: separation angle) 0 H

y
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* The effective repulsive interaction exists
between two.

« => This is contrast to perfect fluidity

0.030 : . : : : 0.008
0,075 : ] Single intruder 0.006 -
VLo T 1
| % EDUE:E Et’pper; 0.004 |
0.020 F ! oupie (Lower _
~ : B 9 3 0.002 |
= | = [y
< 00151 e ® < 0.000
& | _ < 0,002}
0.010f ! . 2e |
: . B ” -0.004 -
0.005} . Be O | ~0.006 L
| ?_IF C_‘; L
0.000 el | ' . . | -0.008
0 20 40 60 80 100 120
External flow v /(d/7)
2018/06/21 Drag and interaction of intruders

T  Single intruder
1 Double (Upper) , A
T Double (Lower) |, &
T A (=1
A
[ v o9
| I
I v =
|
I
1 l l l l l
0 20 40 60 80 100 120
External flow v /(d/7)
22



Drag force Fy.,4

0.0105;

------------- -l-----.xﬂ----_
0.0100; .
x’
g 0.0095 | x
iy ”
0.0090
V Lower
o —
&0085f o HR)KR—Q
10 0 - | -
R#:

Interaction force Fi,.;

ROT
&

0.004 14 v
) A Upper
0.002 Ay e
"""" A
_______ Ag]
0.000 .
................. VW
T 2 A
—0.002 | vV
-0.004 ¥
10 20 3b 40 Sb
R*

Both Fyrag(R) & Fipt(R) can be fitas F(R) = a+ bR™* (a = 1).

Farag 1s suppressed when R is small because the flow speed decreases.

F;,; approaches 0 as in

2018/6/27

creasing R.
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m;t; = z Fci’j + F,, ¢ : Disk index
v (t) = 2mAv sin(2mvt) ; T, Position m; : Mass

4—>) 1. Repulsive force (only normal force)

i’ - . . . i, -
F7 =k,6%n" —y,v,’

2. Driving force (follow tray oscillation)

Fex = _.u(vi — vex)

1. 2.
+ Fixed flat wall L, = 60D; % 2. Dex
" mm)

 Periodic boundary L, = 80D I"'5i,j
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- Originief attractive force

 There are wakes in front and back of
Intruders.

 Grains in the channel are squeezed out.

 Density in the channel is much lower than
that outside.

e Pressure difference exists.

12D

Around tracer ¢ Around tracer ¢



|

Introduction: Wnat do we «now aoout crag in
granular rnedia?

Previous study for oure 2D drag in granular media
Previous studies on tne interaction oetweer
intruclers

Sirmulations of two intruclers in 2D granular rnedia
— Two intruders in a steacdy rmotion

— Two intruders under an oscillation

Phenomenological theory for the drag and the
Interactions for intruders

Discussion & conclusions
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~Outline of the theory

« We assume that Enskog theory for binary
systems can be used.

 Then, the environment is assumed to be
Maxwellian.

« Then, we adopt Kramers-Moyal expansion.

« We can determine the drag force if we know
the temperature.

» The temperature is determined by a
phenomenological simple model.

 The interaction is also guessed from a simple
crude theory.

2018/06/21 Drag and interaction of intruders 27



- Enskogitfieory for mixtures

The distribution function for 'zj—species f:(V . t) for the velocity

0
(8t+v V) szt Z V|f%afj)u

TE(VIfi 1) =d@-jg¢j/dt@/d&@(&-wz)(&-wg)

1
X Lgfz'(’r', V") fi(r + o, Vy'it) — fi(r, Vist) fi(r — o, Vast)
1]

with the radial distribution at contact g;; between ¢ and j,
the precollisional velocities V', Vio = Vi — V;
restitution coeflicient e;; between ¢ and j

2018/06/21 Drag and interaction of intruders 28



intruder (mass M and the diameter D)
in another species (consisting of N identical disks of the mass m

a small parameter € = \/m/M

the geometric factor

X = 5n(d + D)gan ()

1 9

2018/06/21 Drag and interaction of intruders 29



- Boltzmani=Enskog equatior

 Boltzmann-Enskog equations for the
intruder and grains are given by

8Pg;’t) - / AV Wi (VIV)P(V' 1) = We(V[V)P(V,1)]
‘|—<%’trp(vat)
PO~ [ ol (V1) = Welo!f0)p(o. 0]

+‘%,gp(va t) + XJE[’U‘papL

2018/06/21 Drag and interaction of intruders

30



* Transition rate is given by

2
W (VV) = X/dv"[d&p(v",t)@(—(V" _ o))V — o) 66 (V V'

1L+ Ol(V o) -5l )

+ €
and
o (v[v) fdv ]dch (V' t v') - “)(V’—v’)-&é(’u—vur1j62(1+e)[(‘v’—V").&]6‘),
V":V—(1+e) M oo-(V—-v)]=V+(1+e) olg- (V' =2")).

e M-+m 1 + €2

o is the unit normal at contact and ©(x) is Heaviside’s step function

If we assume p(v) = (m /27142 exp[—muv?/(2T)], one can rewrite

Y|Av|?=¢ [ 'm

k(e.e)2 \ 22T exp[—muv3, /2T,

Wir(vilvy) =

If we are interested in the case of d = 2.

, X m - m[Vy = Vo + ke, e)Vy 2
VIV =t o2\ oaT P [ OTk(e, )2 ) 3




- Kramefssoyal expansion

OP(V 1)
ot

Introducing W(V:wv) = W (V'|V)

— £gasp(vz t) + '@trP(V.ﬂ t)&

LoasP(V. 1) = /
/dvﬂ
=1

-5

T

dvW

(Viv)P(V,t) + /d’UH’T(V —v:v)P(V —wv.t)
(Viv)dvP(V 1) Z )n (C)V)n : /(IU?J”W’(V:U)P(V,I‘)

ol (OV) : ]d'va W(V.v)P(V,1).
where we have used the formal relation

= (—v)? d\" O
Vv);( 25 (o) 1) =elew 10w
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“Summaryiefkiamers-Moyal expansion

—  (=D""
L,..P(V.t)= DM . (V)P(V.t)
g ﬂ; OV, - OV,

DY 0, (V) = = f AV (VI = Vo) (V] =V )W (V'V),

2018/06/21 Drag and interaction of intruders 33



- Thermal system

» Drag law

Fox = —MDI(V).
* |f we assume that the thermal speed is
larger than pulling speed, we obtain

D'V ~ —2(1 +e)e?/(3(1 + €2) X\/QTT/?HV for V <L /T /m,
» Then, we reach

X(1+e€) .
F. = V2rmTV,
‘3(1 + €2) A
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- GranulaRor athermal systerr

« We need to determine the temperature for
athermal systems.

 For this, we adopt the simple picture:

Particle \
motion
(blue)

Incoming flow

direction Macroscopic flow field

2018/06/ 35



~ Mean flowsaind the temperature

« The mean flow is the tangential projection
of particle velocity.

* The fluctuation is the normal velocity:

Y , : ~ A2\ a2 2
v, = +vcosh T'(6) =~ m((Av)z) = mv* cos” 6.
. 0.6 [V:=0.001 —@—v'=0.040 —F—
o |[v.=0.010 —M—Vv'=0.050
E= V.=0.020 '—E fitting -
® 05 v'=0.030
E . ﬁ
S 04
o i i
E 0.3 |
8 02}
- # ?
g 0.1 f ]
J v
G R-N-B- Y el B B
0.0p 0.5p 1.0p 1.5p 2.0p
Around intruder f
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~ . DraglaWifor granular systems

Using the average temperature
T ~TO) =21 [0, d0T(0) = mE_ [, df cos? ) = mV?/2

We obtain

\/ﬁﬁ((llj e?)gg”(d + D)gan(p)e” " (510(1/2) + 311(1/2))V

Fdra,g —
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U InteractioniBetween two intruders

* Let us consider a steady flow:

Particle —p >
motiox _ _ _
(blue) \0\‘ F'Xdc'w
Incoming (4
flow =) s Macroscopic flow field
direction .l,
Particle f‘ Hot spot
motion . . 2
(blue) \ |i Fixed circular dis
Incoming "
flow =) T8\ Macroscopic flow field
direction

l_—)

38
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- Asimplified mode

» Two-body problem can be reduced to
one-body problem:

Fixed ciN
Incoming y

flow = Macroscopic flow field
direction .l,

N

The perpendicular component to the wall is usin(7/2 —#0g) = wcos bty = (Vp/2) sin 26,.
AT =~ m(V?2/4)sin(26,),
AT(0) =~ (1/4)mV?2sin?(260) exp|—2(# — 0o)?]
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- Twosbody interaction

* Induced pressure
AP(0) =~ ngaa(p)AT(0)
» Total induced force is repulsive:
Fiot = (1/4)ngap(@)mV? 51112(290) ffom dft_ff'ﬂe_wg = (1/4)\/7/2ngap(p)mV? 31112(290).

the separation angle tp 5 ~ 27/5 in the simulation

Fiot = 0 if 6y = 7/2

0.025 & a-rs
oser| W V 0.56m 8 0.020 4 ma-es
v v v v v x g 0.015 -V Rld;50:5
L L — e & 0.50nc1|3° E: 0010
© \
0.44r] A 0.441 0.005
Af A A o 0.000] — e —
0.38m 4 Vv o2n-p, [0-38T 0 /2 g 3n/2 2n
10 20 30 40 50 action of intruders 40



- Separation angle?

e Althouah the nerfect fluid model cannot

CX 1.00m -
>C o .| lar
te 0.95 A o  ® °
] . I 4\
SIf , %‘ ...o"..
3 + ..' )
S€ 0.90m 1 J ... =Y
| .'. e w_ (Inviscid Flow)
0.85;1—...... 5> e (granular flow)
2 4 6 8 10

R
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two single bodies

D 2 3 2 .. 2 ) 5
Farag = E,DV e+§ —gsm Y. |siny, + e+g
D 1 2
Fmtzipv —(e—35 ) —3cos Y. | cosy,

Drag and resistance anaginst separation angle Y. where ), = 31/2

0.0025 -
0.014
0.0000' r'-"';. .
0.012; _ ] Y
0.0025 "
= 0.010- ,, —0.0050
© £
Ty L. —0.0075;
0.008 P
"7 @ Lowerintruder Fyrag —0.01004 ® Lowerintruder Fi
0.006 —— Fdrag(@c) —0.0125 - — Finelwe)
N P Farag(Wc)/1.8 | e g 3.5%F
0.004 +- g —0.01501{ __.- int(We)
0.00m 0.10m 0.20m 0.30m 0.40m  0.50m 0.00m 0.10m 0.20m 0.30m 0.40m  0.50m
Ye Ye

Note that pure two body calculation gives attractive interaction even if there
exists the separation.
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Attractivelieraction in oscillation

The origin of the attractive interaction in
oscillatory systems can be understood
qualitatively:

There are wakes (cavities) in front and back of
the intruders.

Grains in the channel can be squeezed out
because the wake regions do not have
pressure.

The density in the channel is much lower than
the outside density.

The pressure also has the same tendency.
So the intruders approach with each other.
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nclusions

 Perfect fluidity seems to work for the drag
force in pure 2D.

« However, the interaction between two
intruders cannot be expressed by the
perfect fluid model.

* Instead, a simple model can be used for
the drag force and the interaction in a
steady flow.

 The qualitative picture for the interaction in
an oscillatory flow exists, but there is no
quantitative description.
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