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Question:
What is single-file diffusion (SFD)?
Why is it interesting?



A short answer:
Single-file diffusion is a 1D model of caged dynamics.

Further questions:

e \What does SFD tell us about cages?

e How can we detect collective motions in SFD and de-
termine its correlation length?

e Is the method of analysis extensible to 2D colloidal
liquids?

e How can we introduce cage-breaking events into SFD?

e Does SFD help us to choose *“good” statistical quan-
tities for proper characterization of glassy dynamics?

— All right, I will answer these questions one by one.



Kinetic theories of particle systems

e Rarefied: —H{—% one life, one meeting ..

— always encounter a new partner

of af
o TV o T

— reunions or ring collisions as exceptional events

/bef Boltzmann eq.

e Dense: —#EIEAE to be reborn on the same lotus

— always the same neighbors:

motion blocked by “cage effect” ... ..
— solidification without crystallization ... .
0000




Single-File Diffusion (SFD)

1D system of particles (typically Brownian)
+ “no-passing’ repulsive interaction

8?(- Y V(X — X))+ pfi(t)

! j<k interaction random force

mX; = —pX; —

e thermodynamics:
ideal gas or Tonks—Takahashi gas P
Takahashi (1942)*

e dynamics:
a problem of 1965-vintage

Harris (1965), Jepsen (1965)*, ... S erticles (v = 0):
still studied actively <R2>=2Dt
as a model of ideal cage effect Einstein (1905)
« reprinted in: “Mathematical Physics in One e "no passing” interaction:

Dimension”, Lieb & Mattis (1966) (R2) =77



SFD is slow
2 <« Dtk I[? 5 0
def

R; = X;(t) — X;(0), study long-time behavior of MSD

e free Brownian particles (V = 0): <R2 x t

e '‘no passing” (Vmax = o0):

Kollmann, PRL 90 (2003) g
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Basic setup

1D Langevin eq. with repulsive interaction

S Y VO~ X))+ i)

t j<k interaction random force

e periodic BC: Xz—I—N = Xi + L

mX; = —pX; —

e equilibrium IC, statistically homogeneous & steady
e large system (N — oo) with pg = N/L kept finite

e Vmax > kgT: no overtaking

Variants (mainly in the latter half of the talk)

e finite system size L, N "

max Vmax Vmax
L flnlte VmaX/kBT & |Ong tlme kyT 1 kBT\ ks T -
overtaking s r ,

o—=s 0 — 0



Slowdown of diffusion (1/2): MSD

(R?) = ([r;(t) — r;(0)]?)

mean square displacement
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Qoshida et al., MPLB 29 (2015)
the v/t-behavior in SFD corresponds to the plateau in 3D case



Slowdown of diffusion (2/2): velocity autocorrelation

SFD 3D Newtonian MD
(Xi(1)X:(0)) Z(t) = § (vi(®) - vi(®)
~ _ [FBL 414302 N +t_‘3/2 (low ¢)
ym —¢t=5/2  (high ¢)

Taloni & Lomholt,
PRE 78 (2008)

Williams et al., PRL 96 (2006)

negative velocity autocorrelation:

the particle is pushed back by the neighbors O
what do they do~?
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SFD is “glassy”’: structure behind the slow dynamics

2
static structure factor (R<) vs t
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Displacement correlation (DC) in SFD distinguishes
anomalous diffusions from normal diffusion

<R2'Rj> (t = 20002/D) MSD <R2>

displ. corr.

300 -
. [ —8— Verust (Vmax = kgT')
350 T T T T T T T E 2000 —— Verust (Vmax = 5kgT)
e Vmax=kT ! = —o— Verust (Vinax = 10k5T)
300 + o \max = 5kT E S J—— Lennard-Jones
250 - | B f % T
e 200 - Ot
=] = 100 200 300 400 00
*—R 150 L time Dt/o
8 P
T 100} ¥ |3 -
Problem:
50 - La el -
- eg EE R~ SUTE calculate (RR)
W6 4 2 0t 4+ & e in the absence
j-i

of overtaking
presence/absence of correlation



Idea for analytical calculation of DC: label variable

e Continuum description in standard (Eulerian) variable:
Dean—Kawasaki eq. p= Zj pi = Zj 5(z — X; (1))

Q=D (axp + kaaxU> £ 0 0550
B j
op+ 0:Q =0

e Introduce label variables £ as
a solution to (9z€,—9:€) = (p, Q)

and define the mapping £ +— x(&,1t)
(Lagrangian description)

plz) =

— by construction, & satisfies
the convective eq. (pd; + Q0.)E =0

— in the absence of overtaking,
¢ labels the worldline

— displacement: R = z(£,t) — x(€,0)




Ideal SFD = elastic chain = roughening surface
e Eulerian-Lagrangian map: (£,t) — x = x(€,t)

e introduce v = ¥ (&,t) to express g—z = lo(1 4+ 7))

interpretation: deformation grad.
— *vacancy” in (lattice) SFD

— Y“stretch” in elastic chains O

— slope of h = x — £p& regarded as a roughening surface

e displacement R(&,t) = x(&,t) — x(£,0)
= OeR = Lo [¥(&, 1) — (&, 0)]

Alexander—Pincus formula relates (RR) to C o {(Y):
oo C(k.0) —C(k.t reduced to Edwards—Wilkinson
() o [© CEO-ClDy,

integral if C' ~ e~ Dk
— 00 k2

more generally: use DK eq.




Analytical result: DC in SFD without overtaking

<RR=>/v(Dct)

Y

4

T
—— analytic

o t=30
= t=30
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w
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% 2
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B ¢ Y | 2802,/D% VT
0 o .\{t}:Q_—v’(_Dc‘t} 0 d:ef § o ‘S, — € T 51 EO — i
T ecg-gppm poA(t) 2./ DSt PO
. dynamical correlation length
e key ingredient: elongation or “vacancy” field ¥
o
displacement gradient 7 = Lo(1 + )
0/3 0 00  ©
[
e correlated motion with diffusive [ e

dynamical length A\(t) o< v/t




Question:
How can we extend the calculation of

displacement correlation to 2D7



Definitions in 2D

label variables & = (£,7): curvilinear coordinate system
sticking to the particles, r(&,t + At) —r(€,t) = u(€, ) At

time integr. R =R(&,t —8) = r(&,1) —x(€s) |1

displacement SIS Es

displacement corr. (DC) tensor | B e
frriieitt ((ReRa)
<R®R>~ — [<R£CRQC> <R:cRy>] [<R11Rr>]

d (RyRg) (RyRy) o
®d ded
—XH(d/fo,t—S) _I_XJ_(d/eOat_S)(:ﬂ-_ J2 )
longitudinal transverse

as a function of d = “initial” relative position

~ 1
d~tlg(€—¢), bg= — Ri(t-s)
0(§ =&, fo o J,Rj(t—s)

d



Strategy for analytical calculation of DC in 2D

e deformation grad. 9(x,vy)/0(&,n) taken as field var.:

14+ W 1
(3§r,877r)=€0[ +* L 1+*w2] lo =

v/ PO
e rewrite Dean—Kawasaki eq. in terms of WV, and u:

fol lwl(f t)] - !aiuy@ t)]

— _ = 2 AY
u=-—-D ( P + kBT> + 25 (& — ])f](t)
where V = (V§)0: + (Vn)0, — expressible with W

e Calculate Cpp <\Tfa\T15> in Fourier representation

e Alexander—Pincus formula:
inv. Fourier trf. of <\|7a\T15>/(kak5) yields (R ® R)



DC in 2D colloidal liquid
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. . by present authors

NN

-5 0 5

compare:

Doliwa & Heuer,
PRE 61 (2000)

10

label variable theory: DK eq. with r =r(&,t)

N RN A,
\ / \ /

e /() 1 ) < /() 1
linear analysis linear analysis + correction

e linear analysis (with Helmholtz de-
composition in &€-space) suffices to ex-
plain DC at /arger scales

e need of correction for rotational
modes at smaller scales: elasticity

Qoshida et al., PRE 94 (2016)



Remark: difference from Alder—Wainwright backflow

Alder & Wainwright present

vortex pair
spatially: (with “back flow" )
PRA 1 (1970)

I I
-1 1

0
£/(2vD%)

temporally: iti - negative tail
(u(t) - u(s)) positive tall (i.e. cage effect)

N.B. velocity autocorrelation in SFD is also negative



Question:
How can we introduce a 1D analogue

of rotational modes into SFD?



Overtaking: a cage-breaking event allowed by finite
barrier y y

A

Vma Vma
_ BN
The same 1D Langevin eq. ,

o— o—c

X;) + pfi(t)

L i<k interaction random force

sz == —,LLXZ — 8X

but now with finite Vmax/kgT & long time
= overtaking rate v >0

finite Vmax can be interpreted as modeling quasi-1D sys-
tem of hardcore particles, with r; = (X, Y;):

0
= —pr; — —— Z Vhardcore("“gk) + Z Y2 + pf;(t)

or; i<k



DC from simulation with different barrier heights

Vimax overtaking Numerical solution:

~+ o0 never decrease in short-distance cor-
high seldom relations (except for j —i = 0)
medium sometimes — analytical clarification?
low often
'3"5"] T T T T T
O a|WayS w0 | e Vmax = kT E
——Vmax = 3kT &
250 I —— Vmax = 5kT
Problem 2: T
@ 150
how does the pres- T

ence of infrequent
overtaking affect the
displacement corre- TER
lation? -

(R;R;) plotted against j —i at t = 200



Theoretical treatment of overtaking: formulation

e Correspondence among three variables:
numbering j, label variable &, and particle position x

e label variable £ = &(x,t), by construction, obeys the
convective eq. (pds + Q0.)E =0

o define =;(t) Le(x;00,) 9 000006

Ooshida et al., JPSJ 80 (2011) iji
— no passing: =;(t) ==;(0) @ o0 -
time-independent T e """"""""""

— overtaking: =,(t) # =;(0)



T heoretical treatment of overtaking: example

before it
©00000 S

-------------------------------------------------------------------- EQ — 2, =4 = 44, =
@ during it

""""""""""""""""""""""""""""""""""" d=
©00 g O d—;=/(P5Q4—P4Q5)de

J! — _9=s
.................................................................... dt
after it
®00000 " _ __ __,

def

=;(t) = &(X;(t),1),
pj =0(x — X;(t)), Opj+0:Q; =0



Amidakuji

Calculation of DC in SFD with overtaking =&
o express R;(t) = Xj(tz1 —f X;(0) in terms e notom
~ - er - The middle is
of ¢(k,t) and 6=;(¢t) = =,(t) — =,(0) i
e /(k,t), Fourier modes of vacancy field, sotamine. % 1 © 8 e
is still governed by Dean—Kawasaki eqg. oo | [ [T
e dynamics of 6= (i.e. overtaking) o B
modeled by random exchange whne e 3
with frequency vq wior
cf. Amidakuji (Amitabha’s Lottery) P
— PDF for (6=;,0=;) e

e calculate DC within linear approx.:

ik(=:—=;) Y(k,t) —(k,0) 2
E% lgg:o <€ j ‘ k2 ‘ > + 02 <5Ei53j>

wikimedia

(RiR;)

assumption:
no correlation between ¥ and =



Analytical result: DC in SFD with overtaking

(R;R;) {QSx/kat + 2u,t

=i
03 S [2 Dit%p(%pg) — \/21/atgo<
where o = L/N, D, = DS + v,,
1 >
0) = —e % —|9|erfc|l]|,
p(0) N 14 0]
(0=i0=i+n) } modified Bessel func.

= —2uy,t 6_4V“t [IA_1(4Vat) + IA(4Vat)]
1 —4u,t -
+ (A _ 5) e ; I,(4v,t)

Comparison w particle simulation

(RiR;) - 5 —il
——=L plotted against 19 =
JD%t P J 2./D%

<RRA>/ sqrt(Det)

- ---: theory with overtaking (v, = 0.0057 D/o?)
——— : theory without overtaking (v, = 0)

(i =)
i = 5= - :
NGDR: + <5—25—J> (i # 7)
| 2 VmaxoaKT (1270)
# Vmax = 3kT (t= 200) g
------ nuA =0.0057 (t=200)
&
o %,
& My
ettasettaeadit’ : ¢’«g&#‘” +oad
_'ﬂ:ﬁ'-'ﬂ'ﬂ"lﬂ"#‘ u'“'ﬂ'n‘—‘ﬂ:ﬂ'_
3 |2 1 1|} 1 |2 3
theta



What determines the overtaking rate?

e 1D interaction potential: harmonic repulsion

— T 0'2 r o
v<r>={OVma><<1 vl /o)?  (Irl < o)

(Ir]> o)
e density pg = N/L

count overtaking events numerically
= compute v = fitting: ag~1/2 and a1 =~ 1/6

1
Vo = D <a0p—o + a1p8 BVmax> e~ PVmax (5 = —>
o kBT

Arrhenius-like, with a prefactor



1D potential reflects particle-to-channel size ratio

hard wall

0
o000 3 o,

e soft wall:
RO
Vi ~ —
MmMaxXx k‘BT
e hard wall:

Vmax ~ kBT In

no singularity

Ly — 20
singular for ¢ — L/2

Numerical values of v,
= plot it against confinement
strength such as &
Lucena et al., PRE 85 (2012)

cf. Angel plot



LLast question:
Is the MSD a “good variable”

to observe overtaking?



1D elastic fluctuation eclipses overtaking
cf. Shiba et al., PRL 117 (2016): ‘“eclipse” by 2D fluctuation

MSD in SED with L — oo and finite Vmax:

<R2> = (K\/Z -+ [correction]) 4+ 2Dt

elastic modes overtaking

remedies:

e Ultra-longtime simulation so that 2D,t dominates
e smaller system size L to suppress elastic fluctuation

e better statistical quantities (less sensitive to drift)



Remedy 1: longtime simulation

10° |
B xt
+ ]+ ,/”
&
CE:\ 102+ 107 — ng 107
“]027
1t =z
N e If
_2 -2 I I I I I
107 (Vi = keT, 2ksT, ... 8kgT 107 T
| | | | |

] 107 107
¢



Remedy 2: smaller system size

MSD in SFD with finite (N, L) and finite Vimax:

<R>NIEW()+%+2DQ

overtaking
C-0O-mass

7

elastic modes 2562 0o 1 — o—DSk?t K\t (A L)
Iew(t) = / 2 =28, 0 s
w/N 270 ( > )

A= A(t) = 2vD%

e clastic fluctuation, given by Igywy,
saturates when )\ reaches the system size L

e contribution from the center-of-mass motion
IS not negligible anymore



subtract center-of-mass motion:

(B?)

1000

100

MSD

10

2Dt

Tew(t) ~

------ N=50: raw MSD

------ N=50: CoM subtr'd
----N=200: raw MSD
— N=200: CoM subtr'd

Vmax =5kT
rho0 =N/L =05

10 100
time

1000

1e4

Kvt (A< L)
2260L  (A> L)

be carefull
the result still
depends on L



Remedy 3: statistical quantity less sensitive to drift

a “‘bad example”:

2

Q-based x4 x <Q2> — <Q> chid (self) for SFD: tho =0.2,a =05

0.8
overlap density 07 o mmulatmn (N SDD #smp—BDD}
_ ve «g theory
Q=3 8u(r;(t) —ri(0))  _ | 1D
1,J 2 | )

Lacevic et al.,, JCP 119 (2003) % Ej
E o
0.2
- 3D (schematic) 0

x3z does not grow in SFD with
vo = 0 because it is too

sensitive to drift!

L e T Ooshida et al., PRE 88 (2013)




A better bridge between theory & simulation?

e O-based x4 is too sensitive to drift

e (RR) is also subject to drift

e Since 1 is frame-independent, its
particle-based counterpart should
have the same property

proposal
elongation correlation:
analytical tractable variant of bond

breakage correlation
Ooshida & Otsuki, JPSJ 86 (2017)



Definitions: elongation correlation

Elongation for the pair of particles (i, 7): lo=L/N
def X;(¢) — X;(¢) X)) — X(t) — (5 —)lo
,]( ) h h —1= . .
X} - X; (7 —)o

natural distance

As a function of two times s, t (such that O < s <1¢) and
the label distance A = d/{g € Z,, we define

Ce(D,t,5) B 2263 (< (e, ](s)> .
=Nz<[ iralt) — Xy(t) —d|| z-+A<s>—Xi<s>—d‘}>

Equal-time correlation:

CO(A,5) = (D, 5,5) = %z ([Kiral® - X - d]7)



Effect of overtaking on elongation correlation

L4 o 1 — coskA J corr. of ¢
C:(A,t,s) = ——= C(k,t,s)dk + 4Dgys

TN? J—o k2 overtaking
. | | o C' = (YY) is insensitive to
) R N | overtaking; v is designed
1 i e | so as to measure the dis-
. g | tance from the “inherent

A structure”

ol : _ e C: = (ee) is subject to
_11:533%5%13;%&-11& L i) the disordered number-
ing due to the overtaking

C:z(k,t,s) VSt — s events before s



Concluding remarks

e A cage is not made of the first neighbors only;
rather, it is like a ‘space-time matryoshka”

e While the inner layers of the cage is broken by over-
taking, the outer layers are still governed by elastic
fluctuations alone

e SFD with overtaking is useful as a test bed of new
ideas of statistical quantity for 2D colloidal glasses
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