Discontinuous shear thickening on dense non-Brownian suspensions via lattice Boltzmann method

Pradipto and Hisao Hayakawa

Yukawa Insitute for Theoretical Physics Kyoto University

Rheology of disordered particle part 1, YITP, June 22nd 2018

Outline Introduction

> Outline of our model Hydrodynamics: lattice Boltzmann method Particle contacts Electrostatic repulsive forces Sheared suspensions simulations Results Discussions Future prospect

2/38

<□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□>

Solid particles suspended in solvent fluid

Solid particles suspended in solvent fluid

Fluids are described by Stokes equation ($Re \rightarrow 0$):

 $\nabla \cdot \mathbf{u} = \mathbf{0}$ $\nabla p = \eta \nabla^2 \mathbf{u}$

<ロト < 回 > < 目 > < 目 > 三日 のへで 3/38

Solid particles suspended in solvent fluid

Fluids are described by Stokes equation ($Re \rightarrow 0$):

 $\nabla \cdot \mathbf{u} = \mathbf{0}$ $\nabla p = \eta \nabla^2 \mathbf{u}$

Suspensions rheology have unique behavior!

Discontinuous shear thickening (experimental observations)

 H. A. Barnes, J. Rheol. 33, 329 (1989).

Discontinuous shear thickening (experimental observations)

 R. G. Egres and N. J.
Wagner J. Rheol. 49 3 , 719-746(2015)

 H. A. Barnes, J. Rheol. 33, 329 (1989).

5/38

Discontinuous shear thickening (Stokesian Dynamics simulations)

- Seto. et al, Phys. Rev. Lett 111, 218301 (2013)
- Mari. et al, J. Rheol.58(6):16931724(2014)

Discontinuous shear thickening (Stokesian Dynamics simulations)

- Seto. et al, Phys. Rev. Lett 111, 218301 (2013)
- Mari. et al, J. Rheol.58(6):16931724(2014)

Discontinuous shear thickening (Stokesian Dynamics simulations)

- Seto. et al, Phys. Rev. Lett 111, 218301 (2013)
- Mari. et al, J. Rheol.58(6):16931724(2014)

 $\phi = 0.5f$

 $\dot{\gamma}/\dot{\gamma}_0$

= 0.54

 10^{0}

 10^{1}

<ロト < 母 ト < 臣 ト < 臣 ト 王 目 の へ で 7/38

No Theory

No Theory

Possible explanations:

Lubrication (Brady's group)

No Theory

Possible explanations:

- Lubrication (Brady's group).
- Friction (R. Seto, et al, 2013)

No Theory

Possible explanations:

- Lubrication (Brady's group).
- Friction (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)

No Theory

Possible explanations:

- Lubrication (Brady's group).
- Friction (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
 - Brownian suspensions (R. Mari, et al, 2015)

No Theory

Possible explanations:

- Lubrication (Brady's group).
- Friction (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
 - Brownian suspensions (R. Mari, et al, 2015)
- Boundary effect (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown's group)
- the contributions beneath the DST is still unclear

Motivations:

Recover DST using LBM

No Theory

Possible explanations:

- Lubrication (Brady's group).
- Friction (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
 - Brownian suspensions (R. Mari, et al, 2015)
- Boundary effect (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown's group)
- the contributions beneath the DST is still unclear

Motivations:

- Recover DST using LBM
- Decompose all contributions to the shear stress

No Theory

Possible explanations:

- Lubrication (Brady's group).
- Friction (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
 - Brownian suspensions (R. Mari, et al, 2015)
- Boundary effect (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown's group)
- the contributions beneath the DST is still unclear

Motivations:

- Recover DST using LBM
- Decompose all contributions to the shear stress
 - Helpful for the theoretical construction

Lattice Boltzmann vs Stokesian Dynamics Lattice Boltzmann

Stokesian Dynamics

- Particle motion obey the Newton equations.
- Hydrodynamic fields are calculated by solving the resistance matrix
- Separate lubrication calculation.

Lattice Boltzmann vs Stokesian Dynamics Lattice Boltzmann (susp3d)

Stokesian Dynamics

- Particle motion obey the Newton equations.
- Hydrodynamic fields are calculated by solving the resistance matrix
- Separate lubrication calculation.

- Hydrodynamic fields are calculated *locally* at each lattice point.
- mesoscopic, possible to have simple local rules between fluid and solid
- Particle motion obey the Newton equations
- Separate lubrication calculation => < ≡> ≡ ⊙ Q € 8/38

Equation of motions:

$$m \cdot \frac{d}{dt} \begin{pmatrix} \mathbf{U} \\ \mathbf{\Omega} \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} \mathbf{F}_{\alpha} \\ \mathbf{T}_{\alpha} \end{pmatrix}$$
$$\sum_{\alpha} \mathbf{F}_{\alpha} = \mathbf{F}^{h} + \mathbf{F}^{c} + \mathbf{F}^{R}$$

$$\sum_{\alpha} \mathbf{T}_{\alpha} = \mathbf{T}^{h} + \mathbf{T}^{c} + \mathbf{T}^{R}$$
$$\mathbf{U}(t + \Delta t) = \mathbf{U}(t) + \frac{\Delta t}{m} \mathbf{F}(t)$$
$$\mathbf{\Omega}(t + \Delta t) = \mathbf{\Omega}(t) + \frac{\Delta t}{m} \mathbf{T}(t)$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 目 の へ の g/38

Equation of motions:

$$m \cdot \frac{d}{dt} \begin{pmatrix} \mathbf{U} \\ \mathbf{\Omega} \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} \mathbf{F}_{\alpha} \\ \mathbf{T}_{\alpha} \end{pmatrix}$$
$$\sum_{\alpha} \mathbf{F}_{\alpha} = \mathbf{F}^{h} + \mathbf{F}^{c} + \mathbf{F}^{R}$$
Hydrodynamics
lattice Boltzmann)

$$\sum_{\alpha} \mathbf{T}_{\alpha} = \mathbf{T}^{h} + \mathbf{T}^{c} + \mathbf{T}^{R}$$
$$\mathbf{U}(t + \Delta t) = \mathbf{U}(t) + \frac{\Delta t}{m} \mathbf{F}(t)$$
$$\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} \mathbf{T}(t)$$

Equation of motions:

$$m \cdot \frac{d}{dt} \begin{pmatrix} \mathbf{U} \\ \mathbf{\Omega} \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} \mathbf{F}_{\alpha} \\ \mathbf{T}_{\alpha} \end{pmatrix}$$

$$\sum \mathbf{F}_{\alpha} = \mathbf{F}^{h} + \mathbf{F}^{c} + \mathbf{F}^{R}$$

Hydrodynamics (lattice Boltzmann)

Contact between

particles

$$\sum_{\alpha} \mathbf{T}_{\alpha} = \mathbf{T}^{h} + \mathbf{T}^{c} + \mathbf{T}^{R}$$
$$\mathbf{U}(t + \Delta t) = \mathbf{U}(t) + \frac{\Delta t}{m} \mathbf{F}(t)$$
$$\mathbf{\Omega}(t + \Delta t) = \mathbf{\Omega}(t) + \frac{\Delta t}{m} \mathbf{T}(t)$$

<ロト < 母 > < 臣 > < 臣 > 臣 = のへで 9/38

Equation of motions:

$$m \cdot \frac{d}{dt} \begin{pmatrix} \mathbf{U} \\ \mathbf{\Omega} \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} \mathbf{F}_{\alpha} \\ \mathbf{T}_{\alpha} \end{pmatrix}$$

$$\sum \mathbf{F}_{\alpha} = \mathbf{F}^{h} + \mathbf{F}^{c} + \mathbf{F}^{R}$$

Contact between

 $\sum_{\alpha} \mathbf{T}_{\alpha} = \mathbf{T}^{h} + \mathbf{T}^{c} + \mathbf{T}^{R}$ $\mathbf{U}(t + \Delta t) = \mathbf{U}(t) + \frac{\Delta t}{m} \mathbf{F}(t)$ $\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} \mathbf{T}(t)$

Electrostatic repulsive forces

Equation of motions:

$$m \cdot \frac{d}{dt} \begin{pmatrix} \mathbf{U} \\ \mathbf{\Omega} \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} \mathbf{F}_{\alpha} \\ \mathbf{T}_{\alpha} \end{pmatrix}$$

$$\sum \mathbf{F}_{\alpha} = \mathbf{F}^{h} + \mathbf{F}^{c} + \mathbf{F}^{R}$$

Contact between

 $\sum_{\alpha} \mathbf{T}_{\alpha} = \mathbf{T}^{h} + \mathbf{T}^{c} + \mathbf{T}^{R}$ $\mathbf{U}(t + \Delta t) = \mathbf{U}(t) + \frac{\Delta t}{m} \mathbf{F}(t)$ $\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} \mathbf{T}(t)$

Electrostatic repulsive forces

Hydrodynamics (lattice Boltzmann)

Hydrodynamics (lattice Boltzmann)

By using LBM, we need to discretize the unit length a (particle radius) to lattice unit Δx !

Hydrodynamics (lattice Boltzmann)

By using LBM, we need to discretize the unit length a (particle radius) to lattice unit Δx ! Our simulation used $\Delta x = 0.1a$

Hydrodynamics (lattice Boltzmann)

By using LBM, we need to discretize the unit length *a* (particle radius) to lattice unit Δx ! Our simulation used $\Delta x = 0.1a$ All quantities below are written in lattice units!

History of LBM

 Initially devised as an extension of the Lattice Gas Automata by McNamara and Zanetti (McNamara, Zanetti, 1988)

History of LBM

 Initially devised as an extension of the Lattice Gas Automata by McNamara and Zanetti (McNamara, Zanetti, 1988)

► Now, LBM is widely used for various computational fluid dynamics simulation.

The discrete distribution function (He and Luo, 1997)

 $n \rightarrow$ particle velocity (**v**) distribution function on space time point (**r**, t)

The discrete distribution function (He and Luo, 1997)

 $n \rightarrow \text{particle velocity } (\mathbf{v})$ distribution function on space time point (\mathbf{r}, t) time evolution of n in continuous space:

$$\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt}\right)_{\text{coll}}$$
$n \rightarrow \text{particle velocity } (\mathbf{v})$ distribution function on space time point (\mathbf{r}, t) time evolution of n in continuous space:

<ロト < 母 ト < 臣 ト < 臣 ト 王 国 の Q C 12/38

$$\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt}\right)_{\text{coll}}$$

we can project to the Hermite bases:

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{\infty} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

 $n \rightarrow \text{particle velocity } (\mathbf{v})$ distribution function on space time point (\mathbf{r}, t) time evolution of n in continuous space:

<ロト < 母 ト < 臣 ト < 臣 ト 王 国 の Q C 12/38

$$\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt}\right)_{\text{coll}}$$

we can project to the Hermite bases:

$$n(\mathbf{r}, \mathbf{v}, t) = \omega(\mathbf{v}) \sum_{l=0}^{\infty} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

the expansion coefficients:

$$\mathbf{A}^{(l)}(\mathbf{r},t) = \int d\mathbf{v} n(\mathbf{r},\mathbf{v},t) \mathcal{H}^{(l)}(\mathbf{v})$$

 $n \rightarrow \text{particle velocity } (\mathbf{v})$ distribution function on space time point (\mathbf{r}, t) time evolution of n in continuous space:

$$\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt}\right)_{\text{coll}}$$

we can project to the Hermite bases:

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{\infty} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

the expansion coefficients:

$$\mathbf{A}^{(l)}(\mathbf{r},t) = \int d\mathbf{v} n(\mathbf{r},\mathbf{v},t) \mathcal{H}^{(l)}(\mathbf{v})$$

which is linear combination of the moments of n

The first few of the Hermite polynomials $(\mathcal{H}^{(l)}(\mathbf{v}))$:

$$egin{aligned} \mathcal{H}^{(0)}(\mathbf{v}) &= 1 \ \mathcal{H}^{(1)}(\mathbf{v}) &= v_lpha \ \mathcal{H}^{(2)}(\mathbf{v}) &= v_lpha v_eta - c_s^2 \delta_{lphaeta} \end{aligned}$$

the Gaussian weight function:

$$\omega(\mathbf{v}) = \frac{1}{(2\pi)^{D/2}} \exp\left(-\frac{\mathbf{v}^2}{2}\right)$$

<ロト < 目 ト < 王 ト < 王 ト 三 三 つへで 12/38

 $n \rightarrow \text{particle velocity } (\mathbf{v})$ distribution function on space time point (\mathbf{r}, t) time evolution of n in continuous space:

$$\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt}\right)_{\text{coll}}$$

we can project to the Hermite bases:

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{\infty} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

the expansion coefficients:

$$\mathbf{A}^{(l)}(\mathbf{r},t) = \int d\mathbf{v} n(\mathbf{r},\mathbf{v},t) \mathcal{H}^{(l)}(\mathbf{v})$$

which is linear combination of the moments of n

The first few of the Hermite polynomials $(\mathcal{H}^{(l)}(\mathbf{v}))$:

$$egin{aligned} \mathcal{H}^{(0)}(\mathbf{v}) &= 1 \ \mathcal{H}^{(1)}(\mathbf{v}) &= v_lpha \ \mathcal{H}^{(2)}(\mathbf{v}) &= v_lpha v_eta - c_s^2 \delta_{lphaeta} \end{aligned}$$

the Gaussian weight function:

$$\omega(\mathbf{v}) = \frac{1}{(2\pi)^{D/2}} \exp\left(-\frac{\mathbf{v}^2}{2}\right)$$

<ロト < 目 ト < 王 ト < 王 ト 三 三 つへで 12/38

Truncate: (to several orders of *K*)

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{K} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

Truncate: (to several orders of K)

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{K} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

only finite sets of velocities are needed!

Truncate: (to several orders of *K*)

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{K} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

only finite sets of velocities are needed! we can compute the integral for *A* with Gauss-Hermite quadrature.

 $(p(\mathbf{v}) \rightarrow \text{arbitrary polynomial of } \mathbf{v}, \mathbf{c}_i \rightarrow \text{discrete lattice velocity, } w_i \rightarrow \text{quadrature weight})$

$$\int d\mathbf{v}\omega(\mathbf{v})p(\mathbf{v}) = \sum_{i=1}^{b} w_i p(\mathbf{c}_i)$$

Truncate: (to several orders of *K*)

$$n(\mathbf{r}, \mathbf{v}, t) = \omega(\mathbf{v}) \sum_{l=0}^{K} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

only finite sets of velocities are needed! we can compute the integral for *A* with Gauss-Hermite quadrature.

 $(p(\mathbf{v}) \rightarrow \text{arbitrary polynomial of } \mathbf{v}, \mathbf{c}_i \rightarrow \text{discrete lattice velocity, } w_i \rightarrow \text{quadrature weight})$

$$\int d\mathbf{v}\omega(\mathbf{v})p(\mathbf{v}) = \sum_{i=1}^{b} w_i p(\mathbf{c}_i)$$
$$\int d\mathbf{v}n(\mathbf{r}, \mathbf{v}, t)\mathbf{v}\cdots\mathbf{v} = \int d\mathbf{v}\frac{\omega(\mathbf{v})}{\omega(\mathbf{v})}n(\mathbf{r}, \mathbf{v}, t)\mathbf{v}\cdots\mathbf{v}$$
$$= \sum_{i=1}^{b} w_i\frac{n(\mathbf{r}, \mathbf{v}, t)}{\omega(\mathbf{v})}\mathbf{c}_i\cdots\mathbf{c}_i$$
$$= \sum_{i=1}^{b} n_i(\mathbf{r}, \mathbf{c}_i, t)\mathbf{c}_i\cdots\mathbf{c}_i$$

Truncate: (to several orders of *K*)

$$n(\mathbf{r},\mathbf{v},t) = \omega(\mathbf{v}) \sum_{l=0}^{K} \frac{1}{l!} \mathbf{A}^{(l)} \mathcal{H}^{(l)}(\mathbf{v})$$

only finite sets of velocities are needed! we can compute the integral for *A* with Gauss-Hermite quadrature.

 $(p(\mathbf{v}) \rightarrow \text{arbitrary polynomial of } \mathbf{v}, \mathbf{c}_i \rightarrow \text{discrete lattice velocity, } w_i \rightarrow \text{quadrature weight})$

$$\int d\mathbf{v}\omega(\mathbf{v})p(\mathbf{v}) = \sum_{i=1}^{b} w_i p(\mathbf{c}_i)$$
$$\int d\mathbf{v}n(\mathbf{r}, \mathbf{v}, t)\mathbf{v}\cdots\mathbf{v} = \int d\mathbf{v}\frac{\omega(\mathbf{v})}{\omega(\mathbf{v})}n(\mathbf{r}, \mathbf{v}, t)\mathbf{v}\cdots\mathbf{v}$$
$$= \sum_{i=1}^{b} w_i\frac{n(\mathbf{r}, \mathbf{v}, t)}{\omega(\mathbf{v})}\mathbf{c}_i\cdots\mathbf{c}_i$$
$$= \sum_{i=1}^{b} n_i(\mathbf{r}, \mathbf{c}_i, t)\mathbf{c}_i\cdots\mathbf{c}_i$$

discrete distribution function $\rightarrow n_i(\mathbf{r}, \mathbf{c}_i, t) = w_i n(\mathbf{r}, \mathbf{v}, t) / \omega(\mathbf{v})$ and $m_i(\mathbf{r}, \mathbf{v}, t) / \omega(\mathbf{v})$

Evolving equation:

$$n_i(\mathbf{r}+\mathbf{c}_i,t+1)=n_i(\mathbf{r},t)+\Delta_i(\mathbf{r},t)$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 王 の Q C 14/38

Evolving equation:

$$n_i(\mathbf{r} + \mathbf{c}_i, t+1) = n_i(\mathbf{r}, t) + \Delta_i(\mathbf{r}, t)$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 E P へ C 14/38

streaming

Evolving equation:

$$n_i(\mathbf{r} + \mathbf{c}_i, t+1) = n_i(\mathbf{r}, t) + \Delta_i(\mathbf{r}, t)$$

streaming

collision

<ロト < 部 + < E ト < E ト 三 = の へ C 14/38

Evolving equation:

$$n_i(\mathbf{r} + \mathbf{c}_i, t+1) = n_i(\mathbf{r}, t) + \Delta_i(\mathbf{r}, t)$$

streaming collision Hydrodynamic fields:

mass density $\rho = \sum_{i} n_{i}$ momentum density $\mathbf{j} = \sum_{i} n_{i} \mathbf{c}_{i}$ momentum flux $\mathbf{\Pi} = \sum_{i} n_{i} \mathbf{c}_{i} \mathbf{c}_{i}$

<ロト < 母 ト < 臣 ト < 臣 ト 王 国 の Q C 14/38

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 E つ へ C 15/38

First, we find the discrete equilibrium distribution function n_i^{eq} ,

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

First, we find the discrete equilibrium distribution function n_i^{eq} , Maxwell-Boltzmann distribution:

$$n^{eq} = \rho\left(\frac{m}{2\pi k_b T}\right)^{\frac{3}{2}} \exp\left(\frac{-m(\mathbf{v}-\mathbf{u})\cdot(\mathbf{v}-\mathbf{u})}{2k_b T}\right)$$

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

First, we find the discrete equilibrium distribution function n_i^{eq} , Maxwell-Boltzmann distribution:

$$n^{eq} = \rho\left(\frac{m}{2\pi k_b T}\right)^{\frac{3}{2}} \exp\left(\frac{-m(\mathbf{v}-\mathbf{u})\cdot(\mathbf{v}-\mathbf{u})}{2k_b T}\right)$$

<ロト < 母 ト < 王 ト < 王 ト 三 H の へ C 15/38

Expanding with Hermite polynomials up to 2nd order, with coefficients:

$$\begin{aligned} A^0_{eq} &= \rho \\ A^1_{eq} &= \rho \mathbf{u} \\ A^2_{eq} &= \rho (\mathbf{u} - c_s^2) \end{aligned}$$

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

First, we find the discrete equilibrium distribution function n_i^{eq} , Maxwell-Boltzmann distribution:

$$n^{eq} = \rho\left(\frac{m}{2\pi k_b T}\right)^{\frac{3}{2}} \exp\left(\frac{-m(\mathbf{v}-\mathbf{u})\cdot(\mathbf{v}-\mathbf{u})}{2k_b T}\right)$$

Expanding with Hermite polynomials up to 2nd order, with coefficients:

$$\begin{aligned} \boldsymbol{A}_{eq}^{0} &= \rho \\ \boldsymbol{A}_{eq}^{1} &= \rho \mathbf{u} \\ \boldsymbol{A}_{eq}^{2} &= \rho (\mathbf{u} - c_{s}^{2}) \end{aligned}$$

discrete equilibrium distribution function:

$$n_i^{eq} = a^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{u} \mathbf{u}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

First, we find the discrete equilibrium distribution function n_i^{eq} , Maxwell-Boltzmann distribution:

$$n^{eq} = \rho\left(\frac{m}{2\pi k_b T}\right)^{\frac{3}{2}} \exp\left(\frac{-m(\mathbf{v}-\mathbf{u})\cdot(\mathbf{v}-\mathbf{u})}{2k_b T}\right)$$

Expanding with Hermite polynomials up to 2nd order, with coefficients:

$$\begin{aligned} \boldsymbol{A}_{eq}^{0} &= \rho \\ \boldsymbol{A}_{eq}^{1} &= \rho \mathbf{u} \\ \boldsymbol{A}_{eq}^{2} &= \rho (\mathbf{u} - c_{s}^{2}) \end{aligned}$$

discrete equilibrium distribution function:

$$n_i^{eq} = a^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{u} \mathbf{u}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

Weight coefficients:

$$a^0 = 12$$
 $a^1 = 2$
 $a^{\sqrt{2}} = 1$

 $c_s = \sqrt{k_b T} \rightarrow \text{lattice sound speed}$ $\mathbf{A} : \mathbf{B} = Tr(\mathbf{AB})$

<ロト < 回 ト < 臣 ト < 臣 ト 三 三 の Q @ 15/38

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

<ロト < 回 ト < E ト < E ト 王 E の へ C 16/38

not necessary to construct and calculate \mathcal{L}_{ij} ,

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

not necessary to construct and calculate $\mathcal{L}_{\textit{ij}},$ use its eigen equation instead!

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$

<ロト < 回 ト < E ト < E ト 王 E の へ C 16/38

 $\overline{\textbf{c}_{j}\textbf{c}_{j}} \rightarrow \text{traceless}$

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

not necessary to construct and calculate $\mathcal{L}_{\textit{ij}},$ use its eigen equation instead!

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$

 $\overline{\mathbf{c}_{j}\mathbf{c}_{j}} \rightarrow \mathsf{traceless}$

discrete equilibrium distribution function:

$$n_i^{eq} = \mathbf{a}^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{u} \mathbf{u}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

<ロト < 部ト < Eト < Eト E = のへで 16/38

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

not necessary to construct and calculate \mathcal{L}_{ij} , use its eigen equation instead!

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$

 $\overline{\mathbf{c}_{j}\mathbf{c}_{j}} \rightarrow \mathsf{traceless}$

discrete equilibrium distribution function:

$$n_i^{eq} = \mathbf{a}^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{u} \mathbf{u}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

Only the second moment of n_i^{eq} that is affected by collision

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

not necessary to construct and calculate \mathcal{L}_{ij} , use its eigen equation instead!

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$

 $\overline{\mathbf{c}_{j}\mathbf{c}_{j}} \rightarrow \mathsf{traceless}$

discrete equilibrium distribution function:

$$n_i^{eq} = \mathsf{a}^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathsf{uu}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

Only the second moment of n_i^{eq} that is affected by collision Post collision distribution function:

$$n_i^* = a^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{u} \mathbf{u} + \mathbf{\Pi}^{neq,*}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

<ロト < 母 ト < 王 ト < 王 ト 三 三 つへで 16/38

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq}$$

not necessary to construct and calculate \mathcal{L}_{ij} , use its eigen equation instead!

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$

 $\overline{\mathbf{c}_{j}\mathbf{c}_{j}} \rightarrow \mathsf{traceless}$

discrete equilibrium distribution function:

$$n_i^{eq} = \mathsf{a}^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathsf{uu}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

Only the second moment of n_i^{eq} that is affected by collision Post collision distribution function:

$$n_{i}^{*} = a^{c_{i}} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_{i}}{c_{s}^{2}} + \frac{(\rho \mathbf{u}\mathbf{u} + \mathbf{\Pi}^{neq,*}) : (\mathbf{c}_{i}\mathbf{c}_{i} - c_{s}^{2}\mathbf{1})}{2c_{s}^{4}} \right)$$
$$\longrightarrow \text{Calculate } \mathbf{\Pi}^{neq_{a}*, a} \in \mathbb{R} \times \mathbb{R} \times$$

$$\mathbf{\Pi}^{neq} = \mathbf{\Pi} - \mathbf{\Pi}^{eq} \qquad \mathbf{\Pi} = \sum_{i} n_i \mathbf{c}_i \mathbf{c}_i$$

<ロト < 母 ト < 差 ト < 差 ト 差 注 の へ C 17/38

$$\mathbf{\Pi}^{neq} = \mathbf{\Pi} - \mathbf{\Pi}^{eq} \qquad \mathbf{\Pi} = \sum_{i} n_i \mathbf{c}_i \mathbf{c}_i$$

nonequilibrium second moments obtained from the eigen equation of \mathcal{L}_{ij} :

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 E P のへで 17/38

$$\mathbf{\Pi}^{neq} = \mathbf{\Pi} - \mathbf{\Pi}^{eq} \qquad \mathbf{\Pi} = \sum_{i} n_i \mathbf{c}_i \mathbf{c}_i$$

nonequilibrium second moments obtained from the eigen equation of \mathcal{L}_{ij} :

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$
$$\mathbf{\Pi}^{neq,*} = (1+\lambda) \overline{\mathbf{\Pi}}^{neq} + \frac{1}{3} (1+\lambda_{\nu}) (\mathbf{\Pi}^{neq} : 1) 1$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 E P のへで 17/38

$$\mathbf{\Pi}^{neq} = \mathbf{\Pi} - \mathbf{\Pi}^{eq} \qquad \mathbf{\Pi} = \sum_{i} n_i \mathbf{c}_i \mathbf{c}_i$$

nonequilibrium second moments obtained from the eigen equation of \mathcal{L}_{ij} :

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$
$$\mathbf{\Pi}^{neq,*} = (1+\lambda) \overline{\mathbf{\Pi}}^{neq} + \frac{1}{3} (1+\lambda_{\nu}) (\mathbf{\Pi}^{neq}:1) \mathbf{1}$$

 λ and λ_{ν} are related to shear η and bulk η_{ν} viscosities from the multiscale analysis:

$$\eta = -\rho c_s^2 \Delta t \left(\frac{1}{\lambda} + \frac{1}{2}\right) \qquad \eta_\nu = -\rho c_s^2 \Delta t \left(\frac{2}{3\lambda_\nu} + \frac{1}{3}\right)$$

<ロト < 母 ト < 王 ト < 王 ト 三 H の へ C 17/38

$$\mathbf{\Pi}^{neq} = \mathbf{\Pi} - \mathbf{\Pi}^{eq} \qquad \mathbf{\Pi} = \sum_{i} n_i \mathbf{c}_i \mathbf{c}_i$$

nonequilibrium second moments obtained from the eigen equation of \mathcal{L}_{ij} :

$$\sum_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \mathbf{c}_{i} \mathcal{L}_{ij} = 0 \qquad \sum_{i} \overline{\mathbf{c}_{i} \mathbf{c}_{i}} \mathcal{L}_{ij} = \lambda \overline{\mathbf{c}_{j} \mathbf{c}_{j}} \qquad \sum_{i} c_{i}^{2} \mathcal{L}_{ij} = \lambda_{\nu} c_{j}^{2}$$
$$\mathbf{\Pi}^{neq,*} = (1+\lambda) \overline{\mathbf{\Pi}}^{neq} + \frac{1}{3} (1+\lambda_{\nu}) (\mathbf{\Pi}^{neq}:1) \mathbf{1}$$

 λ and λ_{ν} are related to shear η and bulk η_{ν} viscosities from the multiscale analysis:

$$\eta = -\rho c_s^2 \Delta t \left(\frac{1}{\lambda} + \frac{1}{2} \right) \qquad \eta_\nu = -\rho c_s^2 \Delta t \left(\frac{2}{3\lambda_\nu} + \frac{1}{3} \right)$$

What will happen on the solid boundary conditions (surface of the particles) ?

Anthony Ladd's bounce-back rule:

Velocity of the boundary nodes:

$$\mathbf{u}_b = \mathbf{U} + \mathbf{\Omega} imes (\mathbf{r}_b - \mathbf{R})$$

R is the center of mass of the particle, $A \equiv A = O \otimes O = 18/38$

Forces exerted at the boundary nodes:

$$\mathbf{f}(\mathbf{r}_b, t + \frac{1}{2}\Delta t) = \frac{\Delta x^3}{\Delta t} \left[2n_b^*(\mathbf{r}, t) - \frac{2a^{c_b}\rho_0\mathbf{u}_b \cdot \mathbf{c}_b}{c_s^2} \right] \mathbf{c}_b$$

(中) (문) (분) (분) (분) (19/38)

Sum over all boundary nodes within a particle:

(中) (문) (분) (분) (분) (19/38)

Forces exerted at the boundary nodes:

$$\mathbf{f}(\mathbf{r}_b, t + \frac{1}{2}\Delta t) = \frac{\Delta x^3}{\Delta t} \left[2n_b^*(\mathbf{r}, t) - \frac{2a^{c_b}\rho_0 \mathbf{u}_b \cdot \mathbf{c}_b}{c_s^2} \right] \mathbf{c}_b$$

Forces exerted at the boundary nodes:

$$\mathbf{f}(\mathbf{r}_b, t + \frac{1}{2}\Delta t) = \frac{\Delta x^3}{\Delta t} \left[2n_b^*(\mathbf{r}, t) - \frac{2a^{c_b}\rho_0 \mathbf{u}_b \cdot \mathbf{c}_b}{c_s^2} \right] \mathbf{c}_b$$

Sum over all boundary nodes within a particle:

 $\mathbf{F}^{h} = \sum_{b} \mathbf{f}(\mathbf{r}_{b})$ $\mathbf{T}^{h} = \sum_{b} \mathbf{r}_{b} \times \mathbf{f}(\mathbf{r}_{b})$ $\sigma^{h} = \sum_{b} \mathbf{r}_{b} \mathbf{f}(\mathbf{r}_{b})$

Shared nodes

Shared nodes

need separated lubrication forces calculation!

- うゃの 単則 スポット (ポット)

20/38

If gap between particle is less than 1 lattice unit ..

If gap between particle is less than 1 lattice unit .. Grand-resistance formulation (Nguyen and Ladd, 2002)

If gap between particle is less than 1 lattice unit .. Grand-resistance formulation (Nguyen and Ladd, 2002)

$$\begin{pmatrix} \textbf{F}_1 \\ \textbf{T}_1 \\ \textbf{T}_2 \\ \textbf{S}_1 \\ \textbf{S}_2 \end{pmatrix} = - \begin{pmatrix} \textbf{A}_{11} & -\textbf{B}_{11} & \textbf{B}_{22} \\ \textbf{B}_{11} & \textbf{C}_{11} & \textbf{C}_{12} \\ -\textbf{B}_{22} & \textbf{C}_{12} & \textbf{C}_{22} \\ \textbf{G}_{11} & \textbf{H}_{11} & \textbf{H}_{12} \\ \textbf{G}_{22} & -\textbf{H}_{21} & \textbf{H}_{22} \end{pmatrix} \begin{pmatrix} \textbf{U}_{12} \\ \textbf{\Omega}_1 \\ \textbf{\Omega}_2 \end{pmatrix}$$

(Kim and Karilla, 1991)

(中) (문) (토) (토) (토) (1/38)

If gap between particle is less than 1 lattice unit .. Grand-resistance formulation (Nguyen and Ladd, 2002)

$$\begin{pmatrix} \textbf{F}_1 \\ \textbf{T}_1 \\ \textbf{T}_2 \\ \textbf{S}_1 \\ \textbf{S}_2 \end{pmatrix} = - \begin{pmatrix} \textbf{A}_{11} & -\textbf{B}_{11} & \textbf{B}_{22} \\ \textbf{B}_{11} & \textbf{C}_{11} & \textbf{C}_{12} \\ -\textbf{B}_{22} & \textbf{C}_{12} & \textbf{C}_{22} \\ \textbf{G}_{11} & \textbf{H}_{11} & \textbf{H}_{12} \\ \textbf{G}_{22} & -\textbf{H}_{21} & \textbf{H}_{22} \end{pmatrix} \begin{pmatrix} \textbf{U}_{12} \\ \textbf{\Omega}_1 \\ \textbf{\Omega}_2 \end{pmatrix}$$

(Kim and Karilla, 1991)

 $\textbf{U}_{12} = \textbf{U}_1 - \textbf{U}_2$ relative velocity

If gap between particle is less than 1 lattice unit .. Grand-resistance formulation (Nguyen and Ladd, 2002)

$$\begin{pmatrix} \textbf{F}_1 \\ \textbf{T}_1 \\ \textbf{T}_2 \\ \textbf{S}_1 \\ \textbf{S}_2 \end{pmatrix} = - \begin{pmatrix} \textbf{A}_{11} & -\textbf{B}_{11} & \textbf{B}_{22} \\ \textbf{B}_{11} & \textbf{C}_{11} & \textbf{C}_{12} \\ -\textbf{B}_{22} & \textbf{C}_{12} & \textbf{C}_{22} \\ \textbf{G}_{11} & \textbf{H}_{11} & \textbf{H}_{12} \\ \textbf{G}_{22} & -\textbf{H}_{21} & \textbf{H}_{22} \end{pmatrix} \begin{pmatrix} \textbf{U}_{12} \\ \boldsymbol{\Omega}_1 \\ \boldsymbol{\Omega}_2 \end{pmatrix}$$
(Kim and Karilla, 1991)

 $\mathbf{U}_{12} = \mathbf{U}_1 - \mathbf{U}_2$ relative velocity

Each coefficients can be expressed in terms of scalar function i.e

If gap between particle is less than 1 lattice unit .. Grand-resistance formulation (Nguyen and Ladd, 2002)

$$\begin{pmatrix} \textbf{F}_1 \\ \textbf{T}_1 \\ \textbf{T}_2 \\ \textbf{S}_1 \\ \textbf{S}_2 \end{pmatrix} = - \begin{pmatrix} \textbf{A}_{11} & -\textbf{B}_{11} & \textbf{B}_{22} \\ \textbf{B}_{11} & \textbf{C}_{11} & \textbf{C}_{12} \\ -\textbf{B}_{22} & \textbf{C}_{12} & \textbf{C}_{22} \\ \textbf{G}_{11} & \textbf{H}_{11} & \textbf{H}_{12} \\ \textbf{G}_{22} & -\textbf{H}_{21} & \textbf{H}_{22} \end{pmatrix} \begin{pmatrix} \textbf{U}_{12} \\ \boldsymbol{\Omega}_1 \\ \boldsymbol{\Omega}_2 \end{pmatrix}$$
(Kim and Karilla, 1991)

 $\textbf{U}_{12} = \textbf{U}_1 - \textbf{U}_2$ relative velocity

Each coefficients can be expressed in terms of scalar function i.e

$$\mathbf{H}_{12} = Y_{12}^{H}(\epsilon_{lpha\gamma\delta}d_{\delta}d_{eta} + \epsilon_{eta\gamma\delta}d_{\delta}d_{lpha})$$

 $\mathbf{d} \rightarrow$ displacement unit vector along axis. $\epsilon \rightarrow$ Levi-Civita symbol

<ロト < 母 ト < 臣 ト < 臣 ト 王 国 の Q C 21/38

If gap between particle is less than 1 lattice unit .. Grand-resistance formulation (Nguyen and Ladd, 2002)

$$\begin{pmatrix} \textbf{F}_1 \\ \textbf{T}_1 \\ \textbf{T}_2 \\ \textbf{S}_1 \\ \textbf{S}_2 \end{pmatrix} = - \begin{pmatrix} \textbf{A}_{11} & -\textbf{B}_{11} & \textbf{B}_{22} \\ \textbf{B}_{11} & \textbf{C}_{11} & \textbf{C}_{12} \\ -\textbf{B}_{22} & \textbf{C}_{12} & \textbf{C}_{22} \\ \textbf{G}_{11} & \textbf{H}_{11} & \textbf{H}_{12} \\ \textbf{G}_{22} & -\textbf{H}_{21} & \textbf{H}_{22} \end{pmatrix} \begin{pmatrix} \textbf{U}_{12} \\ \boldsymbol{\Omega}_1 \\ \boldsymbol{\Omega}_2 \end{pmatrix}$$
(Kim and Karilla, 1991)

 $\boldsymbol{\mathsf{U}}_{12}=\boldsymbol{\mathsf{U}}_1-\boldsymbol{\mathsf{U}}_2$ relative velocity

Each coefficients can be expressed in terms of scalar function i.e

$$\mathbf{H}_{12} = Y_{12}^{H} (\epsilon_{\alpha\gamma\delta} d_{\delta} d_{\beta} + \epsilon_{\beta\gamma\delta} d_{\delta} d_{\alpha})$$

 $\mathbf{d} \rightarrow \mathbf{displacement}$ unit vector along axis. $\epsilon \rightarrow$ Levi-Civita symbol

Each scalar function is a function of gap h and $\beta = \frac{a_i}{a_i}$ i.e

$$Y_{12}^{H} = 8 \log\left(\frac{1}{h}\right) \pi \eta a_{i} \frac{2\beta^{2}(1+7\beta)}{5(1+\beta)^{5}}$$

Cutoff length $\delta = \frac{a_{\rm contact} - a_{\rm hydro}}{a_{\rm contact}}$ to allow contact

We used $\delta = 0.01$

Particle contacts

(中) (문) (분) (분) (분) (100 - 23/38)

Linear spring dashpot model (Luding, 2008)

(Fleischmann, 2015)

(中) (문) (분) (분) (분) (100 - 24/38)

Coulomb friction rules: $|\mathbf{F}_{ij}^{tan}| \geq \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow$

 $\begin{array}{l} \text{Coulomb friction rules:} \\ |\mathbf{F}_{ij}^{tan}| \geq \mu (|\mathbf{F}_{ij}^{nor}|) \rightarrow \text{slip} \end{array}$

Coulomb friction rules: $|\mathbf{F}_{ij}^{tan}| \ge \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \text{slip}$

$$|\mathbf{F}_{ij}^{tan}| \le \mu (|\mathbf{F}_{ij}^{nor}|) \to$$

Coulomb friction rules: $|\mathbf{F}_{ij}^{tan}| \ge \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \text{slip}$

 $|\mathbf{F}_{ij}^{tan}| \leq \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \mathsf{stick}$

Coulomb friction rules: $|\mathbf{F}_{ij}^{tan}| \ge \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \text{slip}$

$$|\mathbf{F}_{ij}^{tan}| \leq \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \mathsf{stick}$$

Stress contribution from contact: Normal:

$$\sigma_{\alpha\beta}^{nor} = -\frac{1}{2V} \sum_{i} \sum_{j \neq i} (\mathbf{r}_{ij,\alpha} \mathbf{F}_{ij,\beta}^{nor} + \mathbf{r}_{ij,\beta} \mathbf{F}_{ij,\alpha}^{nor})$$

Coulomb friction rules: $|\mathbf{F}_{ij}^{tan}| \ge \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \text{slip}$

$$|\mathbf{F}_{ij}^{tan}| \leq \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \mathsf{stick}$$

Stress contribution from contact: Normal:

$$\sigma_{\alpha\beta}^{nor} = -\frac{1}{2V} \sum_{i} \sum_{j \neq i} (\mathbf{r}_{ij,\alpha} \mathbf{F}_{ij,\beta}^{nor} + \mathbf{r}_{ij,\beta} \mathbf{F}_{ij,\alpha}^{nor})$$

Tangential:

$$\sigma^{tan}_{lphaeta} = -rac{1}{V}\sum_{i}\sum_{j
eq i}\mathbf{r}_{ij,lpha}\mathbf{F}^{tan}_{ij,eta}$$

Coulomb friction rules: $|\mathbf{F}_{ij}^{tan}| \ge \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \text{slip}$

$$|\mathbf{F}_{ij}^{tan}| \leq \mu(|\mathbf{F}_{ij}^{nor}|) \rightarrow \mathsf{stick}$$

Stress contribution from contact: Normal:

$$\sigma_{\alpha\beta}^{nor} = -\frac{1}{2V} \sum_{i} \sum_{j \neq i} (\mathbf{r}_{ij,\alpha} \mathbf{F}_{ij,\beta}^{nor} + \mathbf{r}_{ij,\beta} \mathbf{F}_{ij,\alpha}^{nor})$$

Tangential:

$$\sigma^{tan}_{lphaeta} = -rac{1}{V}\sum_{i}\sum_{j
eq i}\mathbf{r}_{ij,lpha}\mathbf{F}^{tan}_{ij,eta}$$

$$\mathbf{F}^R_{ij} = rac{1}{\lambda} igg(rac{a_i a_j}{a_i + a_j} igg) F^* \exp(-h/\lambda) \mathbf{\hat{n}}_{ij} \qquad \lambda o ext{Debye length}$$

(日)

∃▶ 三日 のへの

26/38

$$\mathbf{F}^R_{ij} = rac{1}{\lambda} igg(rac{a_i a_j}{a_i + a_j} igg) F^* \exp(-h/\lambda) \mathbf{\hat{n}}_{ij} \qquad \lambda o ext{Debye length}$$

we used $\lambda = 0.2a$

26/38

$$\mathbf{F}^{R}_{ij} = rac{1}{\lambda} \left(rac{a_i a_j}{a_i + a_j}
ight) F^* \exp(-h/\lambda) \mathbf{\hat{n}}_{ij} \qquad \lambda o ext{Debye length}$$

we used $\lambda = 0.2a$

Stress contribution:

$$\sigma_{\alpha\beta}^{R} = -\frac{1}{V}\sum_{i}\sum_{j\neq i}\mathsf{R}_{ij,\alpha}\mathsf{F}_{ij,\beta}^{R}$$

<ロト < 団ト < 臣ト < 臣ト < 臣ト 三国 = のへの 26/38

Sheared suspensions

Sheared suspensions

- wall moves with velocity u_{wall} to x and -x directions
- ► All simulation use N=512 particles.

Shear stress:

$$\sigma_{\alpha\beta} = \sigma^{h}_{\alpha\beta} + \sigma^{tan}_{\alpha\beta} + \sigma^{nor}_{\alpha\beta} + \sigma^{r}_{\alpha\beta}$$

(中) (문) (분) (분) (분) (100 - 28/38)

Shear stress:

$$\sigma_{\alpha\beta} = \sigma^{h}_{\alpha\beta} + \sigma^{tan}_{\alpha\beta} + \sigma^{nor}_{\alpha\beta} + \sigma^{r}_{\alpha\beta}$$

<ロト < 回 ト < E ト < E ト 王 E の Q C 28/38

Apparent viscosity:

$$\eta = \sigma_{\alpha\beta}/\dot{\gamma}$$

Shear stress:

$$\sigma_{\alpha\beta} = \sigma^{h}_{\alpha\beta} + \sigma^{tan}_{\alpha\beta} + \sigma^{nor}_{\alpha\beta} + \sigma^{r}_{\alpha\beta}$$

Apparent viscosity:

Dimensionless shear rate:

$$\eta = \sigma_{\alpha\beta}/\dot{\gamma}$$

$$\dot{\gamma}^* = \frac{6\pi\eta_0 a^2 \dot{\gamma}}{F^*}$$

<ロト < 回 ト < E ト < E ト 王 E の Q C 28/38

Shear stress:

$$\sigma_{\alpha\beta} = \sigma^{h}_{\alpha\beta} + \sigma^{tan}_{\alpha\beta} + \sigma^{nor}_{\alpha\beta} + \sigma^{r}_{\alpha\beta}$$

Apparent viscosity:

Dimensionless shear rate:

$$\eta = \sigma_{\alpha\beta}/\dot{\gamma}$$

$$\dot{\gamma}^* = \frac{6\pi\eta_0 a^2 \dot{\gamma}}{F^*}$$

<ロト < 回 ト < E ト < E ト 王 E の Q C 28/38

Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\dot{\gamma}^*$, compared with results from (Mari, et al, 2014)

Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\dot{\gamma}^*$, compared with results from (Mari, et al, 2014)

Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\sigma/\eta_0\dot{\gamma}$, compared with results from (Mari, et al, 2014)

<ロト < 目 > < 目 > < 目 > < 目 > のへの 30/38

Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\sigma/\eta_0\dot{\gamma}$, compared with results from (Mari, et al, 2014)

Contributions to shear viscosity for $\phi = 0.57$

<ロト < 部 + < E ト < E ト 三 = の へ C 31/38

Contributions to shear viscosity for $\phi = 0.57$

<ロト < 部 + < E ト < E ト 三 = の へ C 31/38
Contributions to shear viscosity for $\phi = 0.54$ and 0.48

Contributions to shear viscosity for $\phi = 0.54$ and 0.48

Time evolution of shear viscosity $\phi = 0.57$ and $\phi = 0.48$

Time evolution of shear viscosity $\phi = 0.57$ and $\phi = 0.48$

Time evolution of contact number for $\phi = 0.57$

Time evolution of contact number for $\phi = 0.57$

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Evolution of the contact network ($\phi = 0.57$)

high shear rate

low shear rate

<ロト < 母 ト < 臣 ト < 臣 ト 王 E の へ C 35/38

Slight deviation from Seto's

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes

<ロト < 目 > < 目 > < 三 > 三 = つへで 36/38

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes

<ロト < 母 ト < 臣 ト < 臣 ト 王 E つ へ C 36/38

 \blacktriangleright We need to find a suitable contact spring constant for every ϕ

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes

<ロト < 母 ト < 臣 ト < 臣 ト 王 E つ へ C 36/38

- \blacktriangleright We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- \blacktriangleright We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.

<ロト < 母 ト < 臣 ト < 臣 ト 王 E つ へ C 36/38

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- \blacktriangleright We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.

<ロト < 部 > < E > < E > E = のへで 36/38

 \blacktriangleright Electsrotatic repulsive force \rightarrow shear thinning at low shear rate

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- \blacktriangleright We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- \blacktriangleright Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
- The computational cost highly depends on the size.

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- \blacktriangleright We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- \blacktriangleright Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
- The computational cost highly depends on the size.
 - ➤ Our simulation used Δx = 0.1a, to let Re < 1, one need typical particle speed U < 0.016 Δx/Δt.</p>

- Slight deviation from Seto's
 - Need to allow separate "switching" length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- \blacktriangleright We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- \blacktriangleright Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
- The computational cost highly depends on the size.
 - Our simulation used $\Delta x = 0.1a$, to let Re < 1, one need typical particle speed $U < 0.016 \frac{\Delta x}{\Delta t}$.
 - To travel a distance of its radius, one particles needs > 6200 time steps

Good starting point for the theoretical works

- Good starting point for the theoretical works
 - ▶ friction scenario.

- Good starting point for the theoretical works
 friction scenario.
- Analyze the percolation of the contact network

<ロト < 部ト < Eト < Eト 手目目 のへで 37/38

- Good starting point for the theoretical works
 friction scenario.
- Analyze the percolation of the contact network
- Implement contact with rolling friction.

- Good starting point for the theoretical works
 friction scenario.
- Analyze the percolation of the contact network

<ロト < 母 ト < 臣 ト < 臣 ト 王 E つ へ C 37/38

- Implement contact with rolling friction.
- Use more realistic boundary conditions

References

- Ladd, A.J.C Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, *Journal of fluid mechanics*, vol 271, 285-309, 1994.
- Ladd, A.J.C Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical Results, *Journal of fluid mechanics*, vol 271, 311-339, 1994.
- N.Q. Nguyen and Ladd, A.J.C, Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. *Physical Review E* 66, 046708, 2002.
- Ladd, A.J.C, Susp3D, an open source code for simulating suspensions based on Lattice Boltzmann Method, 2003.
- Romain Mari, Ryohei Seto, Jeffrey F. Morris and Morton M. Denn, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, *Journal of Rheology* 58(6), 1693-1724, 2014.
- Stefan Luding, Cohesive, frictional powders: contact models for tension, *Granular Matter* 10:235246, 2008.
- Ryohei Seto,Romain Mari,Jeffrey F. Morris, and Morton M. Denn, Discontinuous Shear Thickening of Frictional Hard-Sphere Suspensions, *Physical Review Letters* 111, 218301, 2013.
- Image: S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, MA, 1991.

 Image: S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, MA, 1991.