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Suspensions
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Solid particles suspended in
solvent fluid

Fluids are described by Stokes equa-
tion (Re — 0):

V-u=0
Vp =nVu

Suspensions rheology have unique
behavior!
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Discontinuous shear thickening (experimental observations)
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329 (1989).
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Discontinuous shear thickening (experimental observations)
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Discontinuous shear thickening (Stokesian Dynamics
simulations)
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al, 2017) (Brown'’s group)

» the contributions beneath the DST is still unclear
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Discontinuous shear thickening

No Theory
Possible explanations:

» Lubrication (Brady's group) .
» Friction (R. Seto, et al, 2013)

» Granular systems (Otsuki and Hayakawa, 2011)
» Brownian suspensions (R. Mari, et al, 2015)

> (Brown and Jaeger, 2012) and (Allen, et
al, 2017) (Brown’s group)
» the contributions beneath the DST is still unclear

Motivations:

» Recover DST using LBM
» Decompose all contributions to the shear stress
» Helpful for the theoretical construction
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Lattice Boltzmann vs Stokesian Dynamics
Lattice Boltzmann

Stokesian Dynamics

» Particle motion obey the
Newton equations.

» Hydrodynamic fields are
calculated by solving the
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calculation.
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Lattice Boltzmann vs Stokesian Dynamics

Stokesian Dynamics

» Particle motion obey the
Newton equations.

» Hydrodynamic fields are
calculated by solving the
resistance matrix

» Separate lubrication
calculation.

Lattice Boltzmann (susp3d)

¥ K K X K ¥
WO K K K K

* x

Hydrodynamic fields are
calculated locally at each

lattice point.

mesoscopic, possible to have
simple local rules between

fluid and solid

Particle motion obey the
Newton equations

Separate lubrication

calculation. 8/38
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Hydrodynamics: lattice Boltzmann method
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Hydrodynamics (lattice Boltzmann)
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x X ¥ ¥

*

By using LBM, we need to discretize the unit length a (particle radius) to
lattice unit Ax!
Our simulation used Ax = 0.1a

All quantities below are written in lattice units!
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History of LBM

> Initially devised as an extension of the Lattice Gas Automata
by McNamara and Zanetti (McNamara, Zanetti, 1988)

» Now, LBM is widely used for various computational fluid

dynamics simulation.
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From Boltzmann equation to LBE
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1
n(r,v, t) = w(v) T
1=0

A(’)”H,(’)(v)

only finite sets of velocities are needed! we can compute the integral
for A with Gauss-Hermite quadrature.

(p(v) — arbitrary polynomial of v, ¢; — discrete lattice velocity, w; — quadrature weight )

b
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the lattice Boltzmann method

Evolving equation:

ni(r+ci, t +1) = ni(r, t) + Ai(r, t)
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the lattice Boltzmann method

Evolving equation:

ni(r+ci, t +1) = ni(r, t) + Ai(r, t)

i 3
1 : 3 )
' / streaming collision
16! /5 17 Hydrodynamic fields:
: |
3 ATy densi —
4 /«:'/5 \ ‘ mass density p= Z n;
: x i
8 ‘4 ;A momentum density j= Z n;c;
. i -

momentum flux n= E n;c;c;
i
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LBM: Collision operator

Linearized collision operator
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LBM: Collision operator
Linearized collision operator
Ai(n) = Dy(nf7) + Y Ly
j
First, we find the discrete equilibrium distribution function nfq,
Maxwell-Boltzmann distribution:

3
g m 2 —m(v—u)-(v—u)
n _p(zwka) eXp( 2k T

Expanding with Hermite polynomials
up to 2nd order, with coefficients:

AL =
eq — P . ..
1 Weight coefficients:
Aeqg = pu
0__ 1
2= plu— ) F=12 d=2
a‘/§ =1
discrgte equilibrium distribution ¢s = vkp T — lattice sound speed
function: A : B — Tr(AB)
e (puu) (cici — c21)

niq <p+ s 2C§
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Linearized collision operator
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LBM: Collision operator IM"¢%*

N =nN—ne<  N=Yncq
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LBM: Collision operator IM"¢%*

n~ =1 - ne N=>",nicic;
nonequilibrium second moments obtained from the eigen equation of Lj:

Zﬁ,-j:O ZC,‘E,‘J‘:O Zﬁﬁ,l:)\w Zcizﬁij:)\ycjz

— 1
M7 = (14 )7+ 2(1+4,)(N7: 1)1

A and )\, are related to shear 1 and bulk 7, viscosities from the
multiscale analysis:

1 1 2 1
2 2
= —pcAt| —+ = v = —pcs At + =
g s t<)\ 2) K s <3)\l, 3)

What will happen on the solid boundary conditions (surface of the
particles) ?
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Solid-fluid boundary condition
Anthony Ladd’s bounce-back rule:

(a)
— > = - = <— = -

()
ﬁ»&éq—.—g

(¢)
-—>./ - @ - B —

2a pouyp - C
i (r, £+ A) = my(r, 1) — =L
S

Velocity of the boundary nodes:
u,=U+ Q2 x (r, — R)

R is the center of mass of the particle 18/38



Solid-fluid boundary condition

Forces exerted at the boundary
nodes:

1 AX3 * 2a°bpoub - Cp
f(rs, t+§At) = A7 2np(r, t)_T
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Solid-fluid boundary condition

. Sum over all boundary nodes
within a particle:

Forces exerted at the boundary
nodes:
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Solid-fluid boundary condition

. Sum over all boundary nodes
. within a particle:
h
. F'=2 f(rs)
b
¢ Th = Z rp X f(rb)
b
Forces exerted at the boundary h_
nodes: 7= zb: rof(rs)
1 AX3 * 226bpoub - Cp
f(rb, t+§At) = E 2nb(f, t)_T Ch
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Shared nodes
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Shared nodes

need separated lubrication forces calculation!
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Lubrications
If gap between particle is less than 1 lattice unit ..
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If gap between particle is less than 1 lattice unit ..
Grand-resistance formulation (Nguyen and Ladd, 2002)

Fi A;;  —Bi; By
T, By Cu Cp U
To|=—-]-Bx Cip Cyp Q
S; G  Hu  Hp Q,
S; G —Hx Hx

(Kim and Karilla, 1991)
Ui, = U; — U; relative velocity
Each coefficients can be expressed in terms of scalar function i.e
Hi2 = Yi(carsdsds + €5y5d5da)
d — displacement unit vector along axis. € — Levi-Civita symbol

Each scalar function is a function of gap hand = Z i.e
J

1 23%(1+7
Y/ =8log (h)ﬂnaiw
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Lubrications

Cutoff length § = 2entaet—dnvdro 44 5]low contact

dcontact
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Lubrications

Cutoff length § = 2entaet—dnvdro 44 5]low contact

dcontact

We used § = 0.01
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Particle contacts
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Contact model

Linear spring dashpot model (Luding, 2008)
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Contact model

Linear spring dashpot model (Luding, 2008) Ff; = F7*" + FZ?”

y

F;
F;

¥

w|Fy|
k,
|ug |

| " |

(Fleischmann, 2015)
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Contact model
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Contact model
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Electrostatic repulsive forces (Israelachvili, 2001)
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Electrostatic repulsive forces (Israelachvili, 2001)

FR = % (a,-afjaj> F* exp(—h/X)ij; A — Debye length
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Electrostatic repulsive forces (Israelachvili, 2001)

1 ..
ER = N (a,-afjaj> F*exp(—h/)\)f; A — Debye length
we used A = 0.2a

Stress contribution:
1
R _ _ ER
0l =1 2.2 RioFls
i i
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Sheared suspensions
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Sheared suspensions

<_

» wall moves with velocity uya to x and —x directions

> All simulation use N=512 particles.
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Rheology

Shear stress:
tan nor

Oaf = 0’2,8 + 008 0403 +04p
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Rheology

Shear stress:
nor

Oap = 025 + o+ ohy +ons
Apparent viscosity:

n=0as/Y
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Sheared Suspensions: L vs 4*, compared with results from

0

(Mari, et al, 2014)

10*
— $=057
o $=0.54
e $=0.48
3
10
SIS
10°
1 w
1G4y« 10° 107 107
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Sheared Suspensions: % vs o /no7, compared with results

from (Mari, et al, 2014)
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Sheared Suspensions: % vs o /no7, compared with results

from (Mari, et al, 2014)
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Contributions to shear viscosity for ¢ = 0.57
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all contributions ¢ =0.57
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Contributions to shear viscosity for ¢ = 0.54 and 0.48

300, all contributions ¢ =0.54
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Contributions to shear viscosity for ¢ = 0.54 and 0.48

300, all contributiol
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oo total

e—e hydrodynamic
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2500100 ol
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Time evolution of shear viscosity ¢ = 0.57 and ¢ = 0.48

2500 Time evolution of viscosity (¢=0.57)
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Time evolution of shear viscosity ¢ = 0.57 and ¢ = 0.48

Time evolution of viscosity (¢=0.57)
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Time evolution of contact number for ¢ = 0.57

3.T(i’me evolution of average contact number(¢ =0.57)
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Time evolution of contact number for ¢ = 0.57

3T(i’me evolution of average contact number(¢ =0.57. OTi@e evolution of average contact number (¢ =0.57)
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Evolution of the contact network (¢ = 0.57)

high shear rate low shear rate
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> Need to allow separate "switching” length between boundary
nodes and lubrication calculation for normal, tangential, and
rotation modes

> We need to find a suitable contact spring constant for every ¢

v

Contact force dominates the shear thickening regime

» Number of contact increased on high shear rate, creates force
chains from one side to another.

v

Electsrotatic repulsive force — shear thinning at low shear rate
» The computational cost highly depends on the size.

» Our simulation used Ax = 0.1a, to let Re < 1, one need
typical particle speed U < 0.016%.

» To travel a distance of its radius, one particles needs > 6200
time steps
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Future prospects

» Good starting point for the theoretical works
» friction scenario.

v

Analyze the percolation of the contact network
» Implement contact with rolling friction.

» Use more realistic boundary conditions
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