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Suspensions

Solid particles suspended in
solvent fluid

Fluids are described by Stokes equa-

tion (Re → 0):

∇ · u = 0

∇p = η∇2u

Suspensions rheology have unique
behavior!
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Discontinuous shear thickening (experimental observations)

I H. A. Barnes, J. Rheol. 33,
329 (1989).

I R. G. Egres and N. J.
Wagner J. Rheol. 49 3 ,
719-746(2015)
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Discontinuous shear thickening

No Theory
Possible explanations:

I Lubrication (Brady’s group) .
I Friction (R. Seto, et al, 2013)

I Granular systems (Otsuki and Hayakawa, 2011)
I Brownian suspensions (R. Mari, et al, 2015)

I Boundary effect (Brown and Jaeger, 2012) and (Allen, et
al, 2017) (Brown’s group)

I the contributions beneath the DST is still unclear

Motivations:

I Recover DST using LBM
I Decompose all contributions to the shear stress

I Helpful for the theoretical construction
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Lattice Boltzmann vs Stokesian Dynamics

Stokesian Dynamics

I Particle motion obey the
Newton equations.

I Hydrodynamic fields are
calculated by solving the
resistance matrix

I Separate lubrication
calculation.

Lattice Boltzmann

(susp3d)

I Hydrodynamic fields are
calculated locally at each
lattice point.

I mesoscopic, possible to have
simple local rules between
fluid and solid

I Particle motion obey the
Newton equations

I Separate lubrication
calculation.
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Outline of our model

Equation of motions:

m · d
dt

(
U
Ω

)
=
∑
α

(
Fα
Tα

)
∑
α

Fα = Fh + Fc + FR

∑
α

Tα = Th + Tc + TR

U(t + ∆t) = U(t) +
∆t

m
F(t)

Ω(t + ∆t) = Ω(t) +
∆t

m
T(t)

Hydrodynamics
(lattice Boltzmann)

Contact between
particles Electrostatic

repulsive forces
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Hydrodynamics: lattice Boltzmann method

Hydrodynamics (lattice Boltzmann)

By using LBM, we need to discretize the unit length a (particle radius) to
lattice unit ∆x!

Our simulation used ∆x = 0.1a
All quantities below are written in lattice units!
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History of LBM

I Initially devised as an extension of the Lattice Gas Automata
by McNamara and Zanetti (McNamara, Zanetti, 1988)

I Now, LBM is widely used for various computational fluid
dynamics simulation.



11/38

History of LBM

I Initially devised as an extension of the Lattice Gas Automata
by McNamara and Zanetti (McNamara, Zanetti, 1988)

I Now, LBM is widely used for various computational fluid
dynamics simulation.



12/38

The discrete distribution function (He and Luo, 1997)

n→particle velocity (v) distribution function on space time point (r, t)

time evolution of n in continuous
space:

∂tn + v · ∇n =

(
dn

dt

)
coll

we can project to the Hermite bases:

n(r, v, t) = ω(v)
∞∑
l=0

1

l!
A(l)H(l)(v)

the expansion coefficients:

A(l)(r, t) =

∫
dvn(r, v, t)H(l)(v)

which is linear combination of the
moments of n

The first few of the Hermite
polynomials (H(l)(v)):

H(0)(v) = 1

H(1)(v) = vα

H(2)(v) = vαvβ − c2
s δαβ

the Gaussian weight function:

ω(v) =
1

(2π)D/2
exp

(
− v2

2

)
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From Boltzmann equation to LBE
Truncate: (to several orders of K )

n(r, v, t) = ω(v)
K∑
l=0

1

l!
A(l)H(l)(v)

only finite sets of velocities are needed! we can compute the integral
for A with Gauss-Hermite quadrature.
(p(v)→ arbitrary polynomial of v, ci → discrete lattice velocity, wi → quadrature weight )∫

dvω(v)p(v) =
b∑

i=1

wip(ci )

∫
dvn(r, v, t)v · · · v =

∫
dv
ω(v)

ω(v)
n(r, v, t)v · · · v

=
b∑

i=1

wi
n(r, v, t)

ω(v)
ci · · · ci

=
b∑

i=1

ni (r, ci , t)ci · · · ci

discrete distribution function → ni (r, ci , t) = win(r, v, t)/ω(v)
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the lattice Boltzmann method

Evolving equation:

ni (r + ci , t + 1) = ni (r, t) + ∆i (r, t)

streaming collision
Hydrodynamic fields:

mass density ρ =
∑
i

ni

momentum density j =
∑
i

nici

momentum flux Π =
∑
i

nicici
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LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq
i ) +

∑
j

Lijn
neq
j

First, we find the discrete equilibrium distribution function neq
i ,

Maxwell-Boltzmann distribution:

neq = ρ

(
m

2πkbT

) 3
2

exp

(
−m(v − u) · (v − u)

2kbT

)
Expanding with Hermite polynomials
up to 2nd order, with coefficients:

A0
eq = ρ

A1
eq = ρu

A2
eq = ρ(u− c2

s )

discrete equilibrium distribution
function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)

Weight coefficients:

a0 = 12 a1 = 2

a
√

2 = 1

cs =
√
kbT → lattice sound speed

A : B = Tr(AB)
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LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij , use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)
Only the second moment of neq

i that is affected by collision
Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)
−→ Calculate Πneq,∗



16/38

LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij ,

use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)
Only the second moment of neq

i that is affected by collision
Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)
−→ Calculate Πneq,∗



16/38

LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij , use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)
Only the second moment of neq

i that is affected by collision
Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)
−→ Calculate Πneq,∗



16/38

LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij , use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)

Only the second moment of neq
i that is affected by collision

Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)
−→ Calculate Πneq,∗



16/38

LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij , use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)
Only the second moment of neq

i that is affected by collision

Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)
−→ Calculate Πneq,∗



16/38

LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij , use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)
Only the second moment of neq

i that is affected by collision
Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)

−→ Calculate Πneq,∗



16/38

LBM: Collision operator
Linearized collision operator

∆i (n) = ∆i (n
eq) +

∑
j

Lijn
neq
j

not necessary to construct and calculate Lij , use its eigen equation
instead!∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

cjcj → traceless

discrete equilibrium distribution function:

neq
i = aci

(
ρ+

j · ci

c2
s

+
(ρuu) : (cici − c2

s 1)

2c4
s

)
Only the second moment of neq

i that is affected by collision
Post collision distribution function:

n∗i = aci

(
ρ+

j · ci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s 1)

2c4
s

)
−→ Calculate Πneq,∗



17/38

LBM: Collision operator Πneq,∗

Πneq = Π−Πeq Π =
∑

i nicici

nonequilibrium second moments obtained from the eigen equation of Lij :∑
i

Lij = 0
∑
i

ciLij = 0
∑
i

ciciLij = λcjcj
∑
i

c2
i Lij = λνc

2
j

Πneq,∗ = (1 + λ)Π̄neq +
1

3
(1 + λν)(Πneq : 1)1

λ and λν are related to shear η and bulk ην viscosities from the
multiscale analysis:

η = −ρc2
s ∆t

(
1

λ
+

1

2

)
ην = −ρc2

s ∆t

(
2

3λν
+

1

3

)
What will happen on the solid boundary conditions (surface of the
particles) ?
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Solid-fluid boundary condition
Anthony Ladd’s bounce-back rule:

nb′(r, t + ∆t) = n∗b(r, t)− 2acbρ0ub · cb
c2
s

Velocity of the boundary nodes:

ub = U + Ω× (rb − R)

R is the center of mass of the particle
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Solid-fluid boundary condition

Forces exerted at the boundary
nodes:

f(rb, t+
1

2
∆t) =

∆x3

∆t

[
2n∗b (r, t)−2acbρ0ub · cb

c2
s

]
cb

Sum over all boundary nodes
within a particle:

Fh =
∑
b

f(rb)

Th =
∑
b

rb × f(rb)

σh =
∑
b

rbf(rb)
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Shared nodes

need separated lubrication forces calculation!
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Lubrications
If gap between particle is less than 1 lattice unit ..

Grand-resistance formulation (Nguyen and Ladd, 2002)
F1

T1

T2

S1

S2

 = −


A11 −B11 B22

B11 C11 C12

−B22 C12 C22

G11 H11 H12

G22 −H21 H22


U12

Ω1

Ω2


(Kim and Karilla, 1991)

U12 = U1 −U2 relative velocity

Each coefficients can be expressed in terms of scalar function i.e

H12 = Y H
12(εαγδdδdβ + εβγδdδdα)

d→ displacement unit vector along axis. ε→ Levi-Civita symbol

Each scalar function is a function of gap h and β = ai
aj

i.e

Y H
12 = 8 log

(
1

h

)
πηai

2β2(1 + 7β)

5(1 + β)5
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Lubrications

Cutoff length δ =
acontact−ahydro

acontact
to allow contact

We used δ = 0.01
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Particle contacts
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Contact model

Linear spring dashpot model (Luding, 2008)

Fc
ij = Fnor

ij + Ftan
ij

(Fleischmann, 2015)
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Contact model

Coulomb friction rules:
|Ftan

ij | ≥ µ(|Fnor
ij |)→

slip

|Ftan
ij | ≤ µ(|Fnor

ij |)→ stick

Stress contribution from contact:
Normal:

σnorαβ = − 1

2V

∑
i

∑
j 6=i

(rij ,αFnor
ij ,β + rij ,βFnor

ij ,α)

Tangential:

σtanαβ = − 1

V

∑
i

∑
j 6=i

rij ,αFtan
ij ,β
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ij |)→ stick

Stress contribution from contact:
Normal:

σnorαβ = − 1

2V

∑
i

∑
j 6=i

(rij ,αFnor
ij ,β + rij ,βFnor

ij ,α)

Tangential:

σtanαβ = − 1

V

∑
i

∑
j 6=i

rij ,αFtan
ij ,β
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Electrostatic repulsive forces (Israelachvili, 2001)

FR
ij =

1

λ

(
aiaj

ai + aj

)
F ∗ exp(−h/λ)n̂ij λ→ Debye length

we used λ = 0.2a

Stress contribution:

σR
αβ = − 1

V

∑
i

∑
j 6=i

Rij,αFR
ij,β
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Sheared suspensions

I wall moves with velocity uwall to x and −x directions

I All simulation use N=512 particles.
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Rheology

Shear stress:
σαβ = σhαβ + σtanαβ + σnorαβ + σrαβ

Apparent viscosity:

η = σαβ/γ̇

Dimensionless shear rate:

γ̇∗ =
6πη0a

2γ̇

F ∗
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Sheared Suspensions: η
η0

vs γ̇∗, compared with results from

(Mari, et al, 2014)
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Contributions to shear viscosity for φ = 0.57
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Contributions to shear viscosity for φ = 0.54 and 0.48
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Contributions to shear viscosity for φ = 0.54 and 0.48
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Time evolution of shear viscosity φ = 0.57 and φ = 0.48
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Time evolution of shear viscosity φ = 0.57 and φ = 0.48



34/38

Time evolution of contact number for φ = 0.57
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Time evolution of contact number for φ = 0.57
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Evolution of the contact network (φ = 0.57)

high shear rate low shear rate
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Discussions

I Slight deviation from Seto’s

I Need to allow separate ”switching” length between boundary
nodes and lubrication calculation for normal, tangential, and
rotation modes

I We need to find a suitable contact spring constant for every φ

I Contact force dominates the shear thickening regime

I Number of contact increased on high shear rate, creates force
chains from one side to another.

I Electsrotatic repulsive force → shear thinning at low shear rate

I The computational cost highly depends on the size.

I Our simulation used ∆x = 0.1a, to let Re < 1, one need
typical particle speed U < 0.016 ∆x

∆t .
I To travel a distance of its radius, one particles needs > 6200

time steps
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Future prospects

I Good starting point for the theoretical works

I friction scenario.

I Analyze the percolation of the contact network

I Implement contact with rolling friction.

I Use more realistic boundary conditions
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