Discontinuous shear thickening on dense non-Brownian suspensions via lattice Boltzmann method

Pradipto and Hisao Hayakawa

Yukawa Institute for Theoretical Physics
Kyoto University

Rheology of disordered particle part 1, YITP, June 22nd 2018
Outline

Introduction
 Outline of our model
Hydrodynamics: lattice Boltzmann method
Particle contacts
Electrostatic repulsive forces
Sheared suspensions simulations
Results
Discussions
Future prospect
Suspensions

Solid particles suspended in solvent fluid

Fluids are described by Stokes equation ($\text{Re} \rightarrow 0$):

$$\nabla \cdot \mathbf{u} = 0$$

$$\nabla \mathbf{p} = \eta \nabla^2 \mathbf{u}$$

Suspensions rheology have unique behavior!
Suspensions

Solid particles suspended in solvent fluid

Fluids are described by Stokes equation ($Re \to 0$):

$$\nabla \cdot u = 0$$

$$\nabla p = \eta \nabla^2 u$$

Suspensions rheology have unique behavior!
Suspensions

Solid particles suspended in solvent fluid

Fluids are described by Stokes equation ($Re \to 0$):

\[\nabla \cdot \mathbf{u} = 0 \]
\[\nabla p = \eta \nabla^2 \mathbf{u} \]
Suspensions

Solid particles suspended in solvent fluid

Fluids are described by Stokes equation ($Re \to 0$):

\[\nabla \cdot \mathbf{u} = 0 \]
\[\nabla p = \eta \nabla^2 \mathbf{u} \]

Suspensions rheology have unique behavior!
Discontinuous shear thickening
Discontinuous shear thickening (experimental observations)

Discontinuous shear thickening (experimental observations)

Discontinuous shear thickening (Stokesian Dynamics simulations)

Discontinuous shear thickening (Stokesian Dynamics simulations)

Discontinuous shear thickening (Stokesian Dynamics simulations)

Discontinuous shear thickening

Possible explanations:
- Lubrication (Brady’s group)
- Granular systems (Otsuki and Hayakawa, 2011)
- Boundary effect (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown’s group)

Motivations:
- Recover DST using LBM
- Decompose all contributions to the shear stress
- Helpful for the theoretical construction
Discontinuous shear thickening

No Theory

Possible explanations:

▶ Lubrication (Brady's group)
▶ Granular systems (Otsuki and Hayakawa, 2011)
▶ Boundary effect (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown's group)

The contributions beneath the DST is still unclear

Motivations:

▶ Recover DST using LBM
▶ Decompose all contributions to the shear stress
▶ Helpful for the theoretical construction
Discontinuous shear thickening

No Theory
Possible explanations:

- **Lubrication** (Brady’s group)
Discontinuous shear thickening

No Theory
Possible explanations:

► Lubrication (Brady’s group).
Discontinuous shear thickening

No Theory
Possible explanations:

- Lubrication (Brady’s group).
 - Granular systems (Otsuki and Hayakawa, 2011)

Motivations:
- Recover DST using LBM
- Decompose all contributions to the shear stress
- Helpful for the theoretical construction
Discontinuous shear thickening

No Theory
Possible explanations:

- **Lubrication** (Brady’s group).
- **Friction** (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
Discontinuous shear thickening

No Theory
Possible explanations:

- **Lubrication** (Brady’s group).
- **Friction** (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
- **Boundary effect** (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown’s group)

- the contributions beneath the DST is still unclear

Motivations:
- Recover DST using LBM
Discontinuous shear thickening

No Theory
Possible explanations:

- **Lubrication** (Brady’s group).
- **Friction** (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
- **Boundary effect** (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown’s group)
- the contributions beneath the DST is still unclear

Motivations:

- Recover DST using LBM
- Decompose all contributions to the shear stress
Discontinuous shear thickening

No Theory
Possible explanations:

- **Lubrication** (Brady’s group).
- **Friction** (R. Seto, et al, 2013)
 - Granular systems (Otsuki and Hayakawa, 2011)
- **Boundary effect** (Brown and Jaeger, 2012) and (Allen, et al, 2017) (Brown’s group)

- the contributions beneath the DST is still unclear

Motivations:

- Recover DST using LBM
- Decompose all contributions to the shear stress
 - Helpful for the theoretical construction
Stokesian Dynamics

- Particle motion obey the Newton equations.
- Hydrodynamic fields are calculated by solving the resistance matrix.
- Separate lubrication calculation.
Lattice Boltzmann vs Stokesian Dynamics

Stokesian Dynamics

- Particle motion obey the Newton equations.
- Hydrodynamic fields are calculated by solving the resistance matrix.
- Separate lubrication calculation.

Lattice Boltzmann (susp3d)

- Hydrodynamic fields are calculated \textit{locally} at each lattice point.
- \textit{mesoscopic}, possible to have simple local rules between fluid and solid.
- Particle motion obey the Newton equations.
- Separate lubrication calculation.
Outline of our model

Equation of motions:

\[m \cdot \frac{d}{dt} \begin{pmatrix} U \\ \Omega \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} F_{\alpha} \\ T_{\alpha} \end{pmatrix} \]

\[\sum_{\alpha} F_{\alpha} = F^h + F^c + F^R \]

\[\sum_{\alpha} T_{\alpha} = T^h + T^c + T^R \]

\[U(t + \Delta t) = U(t) + \frac{\Delta t}{m} F(t) \]

\[\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} T(t) \]
Outline of our model

Equation of motions:

\[m \cdot \frac{d}{dt} \begin{pmatrix} U \\ \Omega \end{pmatrix} = \sum_\alpha \begin{pmatrix} F_\alpha \\ T_\alpha \end{pmatrix} \]

\[\sum_\alpha F_\alpha = F^h + F^c + F^R \]

Hydrodynamics (lattice Boltzmann)

\[\sum_\alpha T_\alpha = T^h + T^c + T^R \]

\[U(t + \Delta t) = U(t) + \frac{\Delta t}{m} F(t) \]

\[\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} T(t) \]
Outline of our model

Equation of motions:

\[m \cdot \frac{d}{dt} \begin{pmatrix} U \\ \Omega \end{pmatrix} = \sum_\alpha \begin{pmatrix} F_\alpha \\ T_\alpha \end{pmatrix} \]

\[\sum_\alpha F_\alpha = F^h + F^c + F^R \]

Hydrodynamics (lattice Boltzmann)

\[\sum_\alpha T_\alpha = T^h + T^c + T^R \]

\[U(t + \Delta t) = U(t) + \frac{\Delta t}{m} F(t) \]

\[\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} T(t) \]

Contact between particles
Outline of our model

Equation of motions:

\[m \cdot \frac{d}{dt} \begin{pmatrix} U \\ \Omega \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} F_{\alpha} \\ T_{\alpha} \end{pmatrix} \]

\[\sum_{\alpha} F_{\alpha} = F^h + F^c + F^R \]

Hydrodynamics (lattice Boltzmann)

Contact between particles

Electrostatic repulsive forces

\[\sum_{\alpha} T_{\alpha} = T^h + T^c + T^R \]

\[U(t + \Delta t) = U(t) + \frac{\Delta t}{m} F(t) \]

\[\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} T(t) \]
Outline of our model

Equation of motions:

\[m \cdot \frac{d}{dt} \begin{pmatrix} U \\ \Omega \end{pmatrix} = \sum_{\alpha} \begin{pmatrix} F_{\alpha} \\ T_{\alpha} \end{pmatrix} \]

\[\sum_{\alpha} F_{\alpha} = F^h + F^c + F^R \]

Hydrodynamics (lattice Boltzmann)

Contact between particles

Electrostatic repulsive forces

\[\sum_{\alpha} T_{\alpha} = T^h + T^c + T^R \]

\[U(t + \Delta t) = U(t) + \frac{\Delta t}{m} F(t) \]

\[\Omega(t + \Delta t) = \Omega(t) + \frac{\Delta t}{m} T(t) \]
By using LBM, we need to discretize the unit length \(a \) (particle radius) to lattice unit \(\Delta x \)!

Our simulation used \(\Delta x = 0.1 \).

All quantities below are written in lattice units!
By using LBM, we need to discretize the unit length a (particle radius) to lattice unit Δx!
By using LBM, we need to discretize the unit length a (particle radius) to lattice unit Δx!
Our simulation used $\Delta x = 0.1a$
By using LBM, we need to discretize the unit length a (particle radius) to lattice unit Δx!
Our simulation used $\Delta x = 0.1a$
All quantities below are written in lattice units!
History of LBM

- Initially devised as an extension of the Lattice Gas Automata by McNamara and Zanetti (McNamara, Zanetti, 1988)
History of LBM

- Initially devised as an extension of the Lattice Gas Automata by McNamara and Zanetti (McNamara, Zanetti, 1988)

- Now, LBM is widely used for various computational fluid dynamics simulation.
The discrete distribution function (He and Luo, 1997)

$n \rightarrow$ particle velocity (v) distribution function on space time point (r, t)
The discrete distribution function (He and Luo, 1997)

\(n \rightarrow \) particle velocity (\(\mathbf{v} \)) distribution function on space time point (\(\mathbf{r}, t \))

time evolution of \(n \) in continuous space:

\[
\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt} \right)_{\text{coll}}
\]
The discrete distribution function (He and Luo, 1997)

\[n \rightarrow \text{particle velocity } (v) \text{ distribution function on space time point } (r, t) \]

time evolution of \(n\) in continuous space:

\[
\partial_t n + v \cdot \nabla n = \left(\frac{dn}{dt} \right)_{\text{coll}}
\]

we can project to the Hermite bases:

\[
n(r, v, t) = \omega(v) \sum_{l=0}^{\infty} \frac{1}{l!} A^{(l)} H^{(l)}(v)
\]
The discrete distribution function (He and Luo, 1997)

\[n \rightarrow \text{particle velocity (v) distribution function on space time point (r, t)} \]

Time evolution of \(n \) in continuous space:

\[
\frac{\partial_t n}{n} + v \cdot \nabla n = \left(\frac{dn}{dt} \right)_{\text{coll}}
\]

We can project to the Hermite bases:

\[
n(r, v, t) = \omega(v) \sum_{l=0}^{\infty} \frac{1}{l!} A^{(l)} H^{(l)}(v)
\]

The expansion coefficients:

\[
A^{(l)}(r, t) = \int dv n(r, v, t) H^{(l)}(v)
\]
The discrete distribution function (He and Luo, 1997)

\[n \rightarrow \text{particle velocity (} v \text{) distribution function on space time point (} r, t \text{)} \]

time evolution of \(n \) in continuous space:

\[
\partial_t n + v \cdot \nabla n = \left(\frac{dn}{dt} \right)_{\text{coll}}
\]

we can project to the Hermite bases:

\[
n(r, v, t) = \omega(v) \sum_{l=0}^{\infty} \frac{1}{l!} A^{(l)} H^{(l)}(v)
\]

the expansion coefficients:

\[
A^{(l)}(r, t) = \int dvn(r, v, t) H^{(l)}(v)
\]

which is linear combination of the moments of \(n \)

The first few of the Hermite polynomials (\(H^{(l)}(v) \)):

\[
H^{(0)}(v) = 1 \\
H^{(1)}(v) = v_\alpha \\
H^{(2)}(v) = v_\alpha v_\beta - c_s^2 \delta_{\alpha\beta}
\]

the Gaussian weight function:

\[
\omega(v) = \frac{1}{(2\pi)^{D/2}} \exp \left(-\frac{v^2}{2} \right)
\]
The discrete distribution function (He and Luo, 1997)

\(n \rightarrow \) particle velocity (\(\mathbf{v} \)) distribution function on space time point (\(\mathbf{r}, t \))

time evolution of \(n \) in continuous space:

\[
\partial_t n + \mathbf{v} \cdot \nabla n = \left(\frac{dn}{dt} \right)_{\text{coll}}
\]

we can project to the Hermite bases:

\[
n(\mathbf{r}, \mathbf{v}, t) = \omega(\mathbf{v}) \sum_{l=0}^{\infty} \frac{1}{l!} A^{(l)} H^{(l)}(\mathbf{v})
\]

the expansion coefficients:

\[
A^{(l)}(\mathbf{r}, t) = \int d\mathbf{v} n(\mathbf{r}, \mathbf{v}, t) H^{(l)}(\mathbf{v})
\]

which is linear combination of the moments of \(n \)

The first few of the Hermite polynomials (\(H^{(l)}(\mathbf{v}) \)):

\[
\begin{align*}
H^{(0)}(\mathbf{v}) &= 1 \\
H^{(1)}(\mathbf{v}) &= v_\alpha \\
H^{(2)}(\mathbf{v}) &= v_\alpha v_\beta - c_s^2 \delta_{\alpha\beta}
\end{align*}
\]

the Gaussian weight function:

\[
\omega(\mathbf{v}) = \frac{1}{(2\pi)^{D/2}} \exp \left(-\frac{\mathbf{v}^2}{2} \right)
\]
From Boltzmann equation to LBE

Truncate: (to several orders of K)

$$n(r, v, t) = \omega(v) \sum_{l=0}^{K} \frac{1}{l!} A^{(l)} H^{(l)}(v)$$
From Boltzmann equation to LBE

Truncate: (to several orders of K)

$$n(r, v, t) = \omega(v) \sum_{l=0}^{K} \frac{1}{l!} A^{(l)} H^{(l)}(v)$$

only finite sets of velocities are needed!
From Boltzmann equation to LBE

Truncate: (to several orders of K)

$$n(r, v, t) = \omega(v) \sum_{l=0}^{K} \frac{1}{l!} A^{(l)} H^{(l)}(v)$$

only finite sets of velocities are needed! we can compute the integral for A with Gauss-Hermite quadrature.

$(\rho(v) \rightarrow \text{arbitrary polynomial of } v, c_i \rightarrow \text{discrete lattice velocity}, w_i \rightarrow \text{quadrature weight})$

$$\int d\mathbf{v} \omega(v) \rho(v) = \sum_{i=1}^{b} w_i \rho(c_i)$$
From Boltzmann equation to LBE

Truncate: (to several orders of K)

$$n(r, v, t) = \omega(v) \sum_{l=0}^{K} \frac{1}{l!} A^{(l)} H^{(l)}(v)$$

Only finite sets of velocities are needed! we can compute the integral for A with Gauss-Hermite quadrature.
($\rho(v) \rightarrow$ arbitrary polynomial of v, $c_i \rightarrow$ discrete lattice velocity, $w_i \rightarrow$ quadrature weight)

$$\int d\mathbf{v} \omega(\mathbf{v}) \rho(\mathbf{v}) = \sum_{i=1}^{b} w_i \rho(c_i)$$

$$\int d\mathbf{v} n(r, v, t) \mathbf{v} \cdots \mathbf{v} = \int d\mathbf{v} \frac{\omega(\mathbf{v})}{\omega(\mathbf{v})} n(r, v, t) \mathbf{v} \cdots \mathbf{v}$$

$$= \sum_{i=1}^{b} w_i \frac{n(r, v, t)}{\omega(\mathbf{v})} c_i \cdots c_i$$

$$= \sum_{i=1}^{b} n_i(r, c_i, t) c_i \cdots c_i$$
From Boltzmann equation to LBE

Truncate: (to several orders of K)

$$n(r, v, t) = \omega(v) \sum_{l=0}^{K} \frac{1}{l!} A^{(l)} H^{(l)}(v)$$

only finite sets of velocities are needed! we can compute the integral for A with Gauss-Hermite quadrature.

$(\rho(v) \rightarrow$ arbitrary polynomial of $v, c_i \rightarrow$ discrete lattice velocity, $w_i \rightarrow$ quadrature weight $)$

$$\int dv \omega(v) \rho(v) = \sum_{i=1}^{b} w_i \rho(c_i)$$

$$\int dv n(r, v, t)v \cdots v = \int dv \frac{\omega(v)}{\omega(v)} n(r, v, t)v \cdots v$$

$$= \sum_{i=1}^{b} w_i n(r, v, t) \frac{v}{\omega(v)} c_i \cdots c_i$$

$$= \sum_{i=1}^{b} n_i(r, c_i, t) c_i \cdots c_i$$

discrete distribution function $\rightarrow n_i(r, c_i, t) = w_i n(r, v, t) / \omega(v)$
the lattice Boltzmann method

Evolving equation:

\[n_i(r + c_i, t + 1) = n_i(r, t) + \Delta_i(r, t) \]
the lattice Boltzmann method

Evolving equation:

\[n_i(r + c_i, t + 1) = n_i(r, t) + \Delta_i(r, t) \]

streaming
the lattice Boltzmann method

Evolving equation:

\[n_i(r + c_i, t + 1) = n_i(r, t) + \Delta_i(r, t) \]

streaming collision
the lattice Boltzmann method

Evolving equation:

\[n_i(r + c_i, t + 1) = n_i(r, t) + \Delta_i(r, t) \]

Hydrodynamic fields:

Mass density \[\rho = \sum_i n_i \]

Momentum density \[j = \sum_i n_i \mathbf{c}_i \]

Momentum flux \[\Pi = \sum_i n_i \mathbf{c}_i \mathbf{c}_i \]
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j L_{ij} n_j^{neq} \]
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j L_{ij} n_j^{neq} \]

First, we find the discrete equilibrium distribution function \(n_i^{eq} \),
LBM: Collision operator
Linearized collision operator

\[\Delta_i(n) = \Delta_i(n_{eq}^i) + \sum_j L_{ij} n_{eq}^j \]

First, we find the discrete equilibrium distribution function \(n_{eq}^i \), Maxwell-Boltzmann distribution:

\[n_{eq}^i = \rho \left(\frac{m}{2\pi k_b T} \right)^{\frac{3}{2}} \exp \left(\frac{-m(v - u) \cdot (v - u)}{2k_b T} \right) \]

Weight coefficients:

\[a_0 = 12 \]
\[a_1 = 2 \]
\[a_\sqrt{2} = 1 \]
\[c_s = \sqrt{k_b T} \rightarrow \text{lattice sound speed} \]
\[A : B = \text{Tr}(AB) \]
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j L_{ij} n_j^{neq} \]

First, we find the discrete equilibrium distribution function \(n_i^{eq} \), Maxwell-Boltzmann distribution:

\[n^{eq} = \rho \left(\frac{m}{2\pi k_b T} \right)^{\frac{3}{2}} \exp \left(\frac{-m(v - u) \cdot (v - u)}{2k_b T} \right) \]

Expanding with Hermite polynomials up to 2nd order, with coefficients:

\[A^0_{eq} = \rho \]
\[A^1_{eq} = \rho u \]
\[A^2_{eq} = \rho (u - c_s^2) \]
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n_{i}^{eq}) + \sum_j L_{ij} n_{j}^{neq} \]

First, we find the discrete equilibrium distribution function \(n_{i}^{eq} \), Maxwell-Boltzmann distribution:

\[n_{i}^{eq} = \rho \left(\frac{m}{2\pi k_b T} \right)^{\frac{3}{2}} \exp \left(-\frac{m(v - u) \cdot (v - u)}{2k_b T} \right) \]

Expanding with Hermite polynomials up to 2nd order, with coefficients:

\[A_{eq}^0 = \rho \]
\[A_{eq}^1 = \rho u \]
\[A_{eq}^2 = \rho (u - c_s^2) \]

Discrete equilibrium distribution function:

\[n_{i}^{eq} = a^c_i \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho uu) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right) \]
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n_i^{eq}) + \sum_j \mathcal{L}_{ij} n_j^{neq} \]

First, we find the discrete equilibrium distribution function \(n_i^{eq} \), Maxwell-Boltzmann distribution:

\[n^{eq} = \rho \left(\frac{m}{2\pi k_b T} \right)^{\frac{3}{2}} \exp \left(-\frac{m(v - u) \cdot (v - u)}{2k_b T} \right) \]

Expanding with Hermite polynomials up to 2nd order, with coefficients:

\[
\begin{align*}
A^0_{eq} &= \rho \\
A^1_{eq} &= \rho u \\
A^2_{eq} &= \rho(u - c_s^2)
\end{align*}
\]

Discrete equilibrium distribution function:

\[n_i^{eq} = a^c_i \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho u \mathbf{u}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right) \]

Weight coefficients:

\[
\begin{align*}
a^0 &= 12 \\
a^1 &= 2 \\
a^\sqrt{2} &= 1
\end{align*}
\]

\(c_s = \sqrt{k_b T} \rightarrow \text{lattice sound speed} \\
\mathbf{A} : \mathbf{B} = Tr(\mathbf{AB}) \)
LBM: Collision operator

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j L_{ij} n_{j}^{neq}$$
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j L_{ij} n_{j}^{neq} \]

not necessary to construct and calculate \(L_{ij} \),
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j L_{ij} n_j^{neq} \]

not necessary to construct and calculate \(L_{ij} \), use its eigen equation instead!

\[\sum_i L_{ij} = 0 \quad \sum_i c_i L_{ij} = 0 \quad \sum_i c_i c_i L_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 L_{ij} = \lambda \nu c_j^2 \]

\(c_j c_j \rightarrow \) traceless
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j L_{ij} n^{neq}_j \]

not necessary to construct and calculate \(L_{ij} \), use its eigen equation instead!

\[
\begin{align*}
\sum_i L_{ij} &= 0 \\
\sum_i c_i L_{ij} &= 0 \\
\sum_i c_i c_i L_{ij} &= \lambda c_j c_j \\
\sum_i c_i^2 L_{ij} &= \lambda \nu c_j^2
\end{align*}
\]

\(\overline{c_j c_j} \rightarrow \text{traceless} \)

discrete equilibrium distribution function:

\[n^{eq}_i = a^c_i \left(\rho + \frac{j \cdot c_i}{c_s^2} + \frac{(\rho uu) \cdot (c_i c_i - c_s^2 1)}{2c_s^4} \right) \]
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j L_{ij} n_j^{neq} \]

not necessary to construct and calculate \(L_{ij} \), use its eigen equation instead!

\[\sum_i L_{ij} = 0 \]
\[\sum_i c_i L_{ij} = 0 \]
\[\sum_i c_i^2 L_{ij} = \lambda c_j^2 \]
\[\sum_i c_i^2 L_{ij} = \lambda \nu c_j^2 \]

\(c_j c_j \rightarrow \) traceless

discrete equilibrium distribution function:

\[n_i^{eq} = a^c_i \left(\rho + \frac{j \cdot c_i}{c_s^2} + \frac{(\rho u u) : (c_i c_i - c_s^2 1)}{2 c_s^4} \right) \]

Only the second moment of \(n_i^{eq} \) that is affected by collision
LBM: Collision operator

Linearized collision operator

\[\Delta_i(n) = \Delta_i(n^{eq}) + \sum_j L_{ij} n_j^{neq} \]

not necessary to construct and calculate \(L_{ij} \), use its eigen equation instead!

\[\sum_i L_{ij} = 0 \quad \sum_i c_i L_{ij} = 0 \quad \sum_i c_i c_i L_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 L_{ij} = \lambda \nu c_j^2 \]

\(c_j c_j \rightarrow \text{traceless} \)

discrete equilibrium distribution function:

\[n_i^{eq} = a^c_i \left(\rho + \frac{j \cdot c_i}{c_s^2} + \frac{(\rho uu) : (c_i c_i - c_s^2 1)}{2c_s^4} \right) \]

Only the second moment of \(n_i^{eq} \) that is affected by collision

Post collision distribution function:

\[n_i^* = a^c_i \left(\rho + \frac{j \cdot c_i}{c_s^2} + \frac{(\rho uu + \Pi^{neq,*}) : (c_i c_i - c_s^2 1)}{2c_s^4} \right) \]
LBM: Collision operator

Linearized collision operator

$$\Delta_i(n) = \Delta_i(n_{eq}) + \sum_j L_{ij} n_{j\,eq}$$

not necessary to construct and calculate L_{ij}, use its eigen equation instead!

$$\sum_i L_{ij} = 0 \quad \sum_i c_i L_{ij} = 0 \quad \sum_i c_i c_i L_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 L_{ij} = \lambda \nu c_j^2$$

$c_j c_j \to$ traceless

discrete equilibrium distribution function:

$$n_{i\,eq}^c = a_i \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{uu}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

Only the second moment of $n_{i\,eq}^c$ that is affected by collision

Post collision distribution function:

$$n_i^* = a_i \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{uu} + \Pi_{neq,\,*}^{\text{eq}}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$

\longrightarrow Calculate $\Pi_{neq,\,*}^{\text{eq}}$
LBM: Collision operator $\Pi^{neq,*}$

\[
\Pi^{neq} = \Pi - \Pi^{eq} \quad \Pi = \sum_i n_i c_i c_i
\]
LBM: Collision operator $\Pi^{neq,*}$

$$\Pi^{neq} = \Pi - \Pi^{eq} \quad \Pi = \sum_i n_i c_i c_i$$
	nonequilibrium second moments obtained from the eigen equation of L_{ij}:

$$\sum_i L_{ij} = 0 \quad \sum_i c_i L_{ij} = 0 \quad \sum_i c_i c_i L_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 L_{ij} = \lambda_\nu c_j^2$$

What will happen on the solid boundary conditions (surface of the particles)?
LBM: Collision operator $\Pi^{neq,*}$

\[
\Pi^{neq} = \Pi - \Pi^{eq} \quad \Pi = \sum_i n_i c_i c_i
\]

nonequilibrium second moments obtained from the eigen equation of L_{ij}:

\[
\sum_i L_{ij} = 0 \quad \sum_i c_i L_{ij} = 0 \quad \sum_i c_i c_i L_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 L_{ij} = \lambda_\nu c_j^2
\]

\[
\Pi^{neq,*} = (1 + \lambda)\tilde{\Pi}^{neq} + \frac{1}{3}(1 + \lambda_\nu)(\Pi^{neq} : 1)1
\]
LBM: Collision operator $\Pi^{neq,*}$

$$\Pi^{neq} = \Pi - \Pi^{eq} \quad \Pi = \sum_i n_i c_i c_i$$

nonequilibrium second moments obtained from the eigen equation of \mathcal{L}_{ij}:

$$\sum_i \mathcal{L}_{ij} = 0 \quad \sum_i c_i \mathcal{L}_{ij} = 0 \quad \sum_i c_i c_i \mathcal{L}_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 \mathcal{L}_{ij} = \lambda_\nu c_j^2$$

$$\Pi^{neq,*} = (1 + \lambda)\tilde{\Pi}^{neq} + \frac{1}{3}(1 + \lambda_\nu)(\Pi^{neq} : 1)$$

λ and λ_ν are related to shear η and bulk η_ν viscosities from the multiscale analysis:

$$\eta = -\rho c_s^2 \Delta t \left(\frac{1}{\lambda} + \frac{1}{2} \right) \quad \eta_\nu = -\rho c_s^2 \Delta t \left(\frac{2}{3\lambda_\nu} + \frac{1}{3} \right)$$
LBM: Collision operator $\Pi^{neq,*}$

$$\Pi^{neq} = \Pi - \Pi^{eq} \quad \Pi = \sum_i n_i c_i c_i$$

nonequilibrium second moments obtained from the eigen equation of L_{ij}:

$$\sum_i L_{ij} = 0 \quad \sum_i c_i L_{ij} = 0 \quad \sum_i c_i c_i L_{ij} = \lambda c_j c_j \quad \sum_i c_i^2 L_{ij} = \lambda_\nu c_j^2$$

$$\Pi^{neq,*} = (1 + \lambda) \bar{\Pi}^{neq} + \frac{1}{3} (1 + \lambda_\nu)(\Pi^{neq} : 1)$$

λ and λ_ν are related to shear η and bulk η_ν viscosities from the multiscale analysis:

$$\eta = -\rho c_s^2 \Delta t \left(\frac{1}{\lambda} + \frac{1}{2} \right) \quad \eta_\nu = -\rho c_s^2 \Delta t \left(\frac{2}{3\lambda_\nu} + \frac{1}{3} \right)$$

What will happen on the solid boundary conditions (surface of the particles)?
Solid-fluid boundary condition

Anthony Ladd’s bounce-back rule:

(a)

\[n_b'(r, t + \Delta t) = n_b^*(r, t) - \frac{2a_c \rho_0 u_b \cdot c_b}{c_s^2} \]

Velocity of the boundary nodes:

\[u_b = U + \Omega \times (r_b - R) \]

R is the center of mass of the particle.
Solid-fluid boundary condition

Forces exerted at the boundary nodes:

\[f(r_b, t + \frac{1}{2} \Delta t) = \frac{\Delta x^3}{\Delta t} \left[2n_b^*(r, t) - \frac{2a_c \rho_0 u_b \cdot c_b}{c_s^2} \right] c_b \]
Solid-fluid boundary condition

Forces exerted at the boundary nodes:

$$f(r_b, t + \frac{1}{2} \Delta t) = \frac{\Delta x^3}{\Delta t} \left[2n^*_b(r, t) - \frac{2a^c \rho_0 u_b \cdot c_b}{c_s^2} \right] c_b$$

Sum over all boundary nodes within a particle:
Solid-fluid boundary condition

Forces exerted at the boundary nodes:

\[f(r_b, t + \frac{1}{2} \Delta t) = \frac{\Delta x^3}{\Delta t} \left[2n^*_b(r, t) - \frac{2a_c^b \rho_0 u_b \cdot c_b}{c_s^2} \right] c_b \]

Sum over all boundary nodes within a particle:

\[F^h = \sum_b f(r_b) \]
\[T^h = \sum_b r_b \times f(r_b) \]
\[\sigma^h = \sum_b r_b f(r_b) \]
Shared nodes

need separated lubrication forces calculation!
Shared nodes

need separated lubrication forces calculation!
Lubrications

If gap between particle is less than 1 lattice unit ..
Lubrications

If gap between particle is less than 1 lattice unit..
Grand-resistance formulation (Nguyen and Ladd, 2002)
Lubrications

If gap between particle is less than 1 lattice unit...

Grand-resistance formulation (Nguyen and Ladd, 2002)

\[
\begin{pmatrix}
F_1 \\
T_1 \\
T_2 \\
S_1 \\
S_2
\end{pmatrix} = -
\begin{pmatrix}
A_{11} & -B_{11} & B_{22} \\
B_{11} & C_{11} & C_{12} \\
-B_{22} & C_{12} & C_{22} \\
G_{11} & H_{11} & H_{12} \\
G_{22} & -H_{21} & H_{22}
\end{pmatrix}
\begin{pmatrix}
U_{12} \\
\Omega_1 \\
\Omega_2
\end{pmatrix}
\]

(Kim and Karilla, 1991)
Lubrications

If gap between particle is less than 1 lattice unit..
Grand-resistance formulation (Nguyen and Ladd, 2002)

$$\begin{pmatrix} F_1 \\ T_1 \\ T_2 \\ S_1 \\ S_2 \end{pmatrix} = - \begin{pmatrix} A_{11} & -B_{11} & B_{22} \\ B_{11} & C_{11} & C_{12} \\ -B_{22} & C_{12} & C_{22} \\ G_{11} & H_{11} & H_{12} \\ G_{22} & -H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} U_{12} \\ \Omega_1 \\ \Omega_2 \end{pmatrix}$$

(Kim and Karilla, 1991)

$$U_{12} = U_1 - U_2$$ relative velocity
Lubrications

If gap between particle is less than 1 lattice unit...
Grand-resistance formulation (Nguyen and Ladd, 2002)

\[
\begin{pmatrix}
F_1 \\
T_1 \\
T_2 \\
S_1 \\
S_2
\end{pmatrix}
=
-\begin{pmatrix}
A_{11} & -B_{11} & B_{22} \\
B_{11} & C_{11} & C_{12} \\
-B_{22} & C_{12} & C_{22} \\
G_{11} & H_{11} & H_{12} \\
G_{22} & -H_{21} & H_{22}
\end{pmatrix}
\begin{pmatrix}
U_{12} \\
\Omega_1 \\
\Omega_2
\end{pmatrix}
\]

(Kim and Karilla, 1991)

\(U_{12} = U_1 - U_2\) relative velocity

Each coefficients can be expressed in terms of scalar function i.e
Lubrications

If gap between particle is less than 1 lattice unit.

Grand-resistance formulation (Nguyen and Ladd, 2002)

\[
\begin{pmatrix}
F_1 \\
T_1 \\
T_2 \\
S_1 \\
S_2
\end{pmatrix}
= -
\begin{pmatrix}
A_{11} & -B_{11} & B_{22} \\
B_{11} & C_{11} & C_{12} \\
-B_{22} & C_{12} & C_{22} \\
G_{11} & H_{11} & H_{12} \\
G_{22} & -H_{21} & H_{22}
\end{pmatrix}
\begin{pmatrix}
U_{12} \\
\Omega_1 \\
\Omega_2
\end{pmatrix}
\]

(Kim and Karilla, 1991)

\(U_{12} = U_1 - U_2\) relative velocity

Each coefficients can be expressed in terms of scalar function i.e

\(H_{12} = Y_{12}^H (\epsilon_{\alpha\gamma\delta} d_\delta d_\beta + \epsilon_{\beta\gamma\delta} d_\delta d_\alpha)\)

\(d \rightarrow\) displacement unit vector along axis. \(\epsilon \rightarrow\) Levi-Civita symbol
Lubrications

If gap between particle is less than 1 lattice unit..
Grand-resistance formulation (Nguyen and Ladd, 2002)

\[
\begin{pmatrix}
 F_1 \\
 T_1 \\
 T_2 \\
 S_1 \\
 S_2
\end{pmatrix}
= - \begin{pmatrix}
 A_{11} & -B_{11} & B_{22} \\
 B_{11} & C_{11} & C_{12} \\
 -B_{22} & C_{12} & C_{22} \\
 G_{11} & H_{11} & H_{12} \\
 G_{22} & -H_{21} & H_{22}
\end{pmatrix}
\begin{pmatrix}
 U_{12} \\
 \Omega_1 \\
 \Omega_2
\end{pmatrix}
\]

(Kim and Karilla, 1991)

\[U_{12} = U_1 - U_2\] relative velocity

Each coefficients can be expressed in terms of scalar function i.e

\[H_{12} = Y_{12}^H (\epsilon_{\alpha\gamma\delta} d_\delta d_\beta + \epsilon_{\beta\gamma\delta} d_\delta d_\alpha)\]

\[d \rightarrow \text{displacement unit vector along axis. } \epsilon \rightarrow \text{Levi-Civita symbol}\]

Each scalar function is a function of gap \(h\) and \(\beta = \frac{a_i}{a_j}\) i.e

\[Y_{12}^H = 8 \log \left(\frac{1}{h}\right) \pi \eta a_i \frac{2\beta^2(1 + 7\beta)}{5(1 + \beta)^5}\]
Lubrications

Cutoff length \(\delta = \frac{a_{\text{contact}} - a_{\text{hydro}}}{a_{\text{contact}}} \) to allow contact
Lubrications

Cutoff length $\delta = \frac{a_{contact} - a_{hydro}}{a_{contact}}$ to allow contact

We used $\delta = 0.01$
Particle contacts
Contact model

Linear spring dashpot model (Luding, 2008)
Contact model

Linear spring dashpot model (Luding, 2008) \(\mathbf{F}_{ij}^c = \mathbf{F}_{ij}^{nor} + \mathbf{F}_{ij}^{tan} \)

(Fleischmann, 2015)
Contact model

Coulomb friction rules:

\[|\mathbf{F}_{ij}^{\tan}| \geq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \]
Contact model

Coulomb friction rules:
\[|F_{ij}^{\text{tan}}| \geq \mu(|F_{ij}^{\text{nor}}|) \rightarrow \text{slip} \]
Contact model

Coulomb friction rules:
\[|\mathbf{F}_{ij}^{\text{tan}}| \geq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \text{slip} \]

\[|\mathbf{F}_{ij}^{\text{tan}}| \leq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \]
Contact model

Coulomb friction rules:
\[|F_{ij}^{\tan}| \geq \mu(|F_{ij}^{\text{nor}}|) \rightarrow \text{slip} \]

\[|F_{ij}^{\tan}| \leq \mu(|F_{ij}^{\text{nor}}|) \rightarrow \text{stick} \]
Contact model

Coulomb friction rules:
\[|\mathbf{F}_{ij}^{\text{tan}}| \geq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \text{slip} \]
\[|\mathbf{F}_{ij}^{\text{tan}}| \leq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \text{stick} \]

Stress contribution from contact:
Normal:
\[\sigma_{\alpha\beta}^{\text{nor}} = -\frac{1}{2V} \sum_i \sum_{j \neq i} (r_{ij,\alpha} \mathbf{F}_{ij,\beta}^{\text{nor}} + r_{ij,\beta} \mathbf{F}_{ij,\alpha}^{\text{nor}}) \]
Contact model

Coulomb friction rules:
\[|F_{ij}^{\text{tan}}| \geq \mu(|F_{ij}^{\text{nor}}|) \rightarrow \text{slip} \]
\[|F_{ij}^{\text{tan}}| \leq \mu(|F_{ij}^{\text{nor}}|) \rightarrow \text{stick} \]

Stress contribution from contact:
Normal:
\[\sigma_{\alpha\beta}^{\text{nor}} = -\frac{1}{2V} \sum_i \sum_{j \neq i} (r_{ij,\alpha} F_{ij,\beta}^{\text{nor}} + r_{ij,\beta} F_{ij,\alpha}^{\text{nor}}) \]

Tangential:
\[\sigma_{\alpha\beta}^{\text{tan}} = -\frac{1}{V} \sum_i \sum_{j \neq i} r_{ij,\alpha} F_{ij,\beta}^{\text{tan}} \]
Contact model

Coulomb friction rules:
\[|\mathbf{F}_{ij}^{\tan}| \geq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \text{slip} \]
\[|\mathbf{F}_{ij}^{\tan}| \leq \mu(|\mathbf{F}_{ij}^{\text{nor}}|) \rightarrow \text{stick} \]

Stress contribution from contact:

Normal:
\[\sigma_{\alpha\beta}^{\text{nor}} = -\frac{1}{2V} \sum_i \sum_{j \neq i} (r_{ij,\alpha} \mathbf{F}_{ij,\beta}^{\text{nor}} + r_{ij,\beta} \mathbf{F}_{ij,\alpha}^{\text{nor}}) \]

Tangential:
\[\sigma_{\alpha\beta}^{\text{tan}} = -\frac{1}{V} \sum_i \sum_{j \neq i} r_{ij,\alpha} \mathbf{F}_{ij,\beta}^{\text{tan}} \]
Electrostatic repulsive forces (Israelachvili, 2001)

\[F_{ij} = \frac{1}{\lambda} \left(a_i a_j + a_j a_i \right) F^* \exp(-h/\lambda) \hat{n}_{ij} \lambda \rightarrow \text{Debye length} \]

Stress contribution:

\[\sigma_{R\alpha\beta} = -\frac{1}{V} \sum_i \sum_{j \neq i} R_{ij},_{\alpha} F_{R_{ij},\beta} \]
Electrostatic repulsive forces (Israelachvili, 2001)

\[F^{R}_{ij} = \frac{1}{\lambda} \left(\frac{a_i a_j}{a_i + a_j} \right) F^* \exp\left(-h/\lambda\right) \hat{n}_{ij} \quad \lambda \rightarrow \text{Debye length} \]
Electrostatic repulsive forces (Israelachvili, 2001)

\[F_{ij}^R = \frac{1}{\lambda} \left(\frac{a_i a_j}{a_i + a_j} \right) F^* \exp\left(-\frac{h}{\lambda}\right) \hat{n}_{ij} \quad \lambda \rightarrow \text{Debye length} \]

we used \(\lambda = 0.2a \)
Electrostatic repulsive forces (Israelachvili, 2001)

\[
F_{ij}^R = \frac{1}{\lambda} \left(\frac{a_i a_j}{a_i + a_j} \right) F^* \exp(-h/\lambda) \hat{n}_{ij} \quad \lambda \rightarrow \text{Debye length}
\]

we used \(\lambda = 0.2a \)

Stress contribution:

\[
\sigma_{\alpha\beta}^R = -\frac{1}{V} \sum_i \sum_{j \neq i} R_{ij,\alpha} F_{ij,\beta}^R
\]
Sheared suspensions

Wall moves with velocity u_{wall} to x and $-x$ directions.

All simulation uses $N=512$ particles.
Sheared suspensions

- wall moves with velocity u_{wall} to x and $-x$ directions
- All simulation use $N=512$ particles.
Rheology

Shear stress:

$$\sigma_{\alpha\beta} = \sigma^h_{\alpha\beta} + \sigma^{tan}_{\alpha\beta} + \sigma^{nor}_{\alpha\beta} + \sigma^r_{\alpha\beta}$$
Rheology

Shear stress:

\[\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^h + \sigma_{\alpha\beta}^{tan} + \sigma_{\alpha\beta}^{nor} + \sigma_{\alpha\beta}^{r} \]

Apparent viscosity:

\[\eta = \frac{\sigma_{\alpha\beta}}{\dot{\gamma}} \]
Rheology

Shear stress:

\[\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^h + \sigma_{\alpha\beta}^{tan} + \sigma_{\alpha\beta}^{nor} + \sigma_{\alpha\beta}^r \]

Apparent viscosity:

\[\eta = \sigma_{\alpha\beta} / \dot{\gamma} \]

Dimensionless shear rate:

\[\dot{\gamma}^* = \frac{6\pi \eta_0 a^2 \dot{\gamma}}{F^*} \]
Rheology

Shear stress:
\[\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^h + \sigma_{\alpha\beta}^{tan} + \sigma_{\alpha\beta}^{nor} + \sigma_{\alpha\beta}^r \]

Apparent viscosity:
\[\eta = \frac{\sigma_{\alpha\beta}}{\dot{\gamma}} \]

Dimensionless shear rate:
\[\dot{\gamma}^* = \frac{6\pi \eta_0 a^2 \dot{\gamma}}{F^*} \]
Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\dot{\gamma}^*$, compared with results from (Mari, et al, 2014)
Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\dot{\gamma}^*$, compared with results from (Mari, et al, 2014)
Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\sigma/\eta_0 \dot{\gamma}$, compared with results from (Mari, et al, 2014)
Sheared Suspensions: $\frac{\eta}{\eta_0}$ vs $\sigma/\eta_0 \dot{\gamma}$, compared with results from (Mari, et al, 2014)
Contributions to shear viscosity for $\phi = 0.57$
Contributions to shear viscosity for $\phi = 0.57$
Contributions to shear viscosity for $\phi = 0.54$ and 0.48
Contributions to shear viscosity for $\phi = 0.54$ and 0.48
Time evolution of shear viscosity $\phi = 0.57$ and $\phi = 0.48$
Time evolution of shear viscosity $\phi = 0.57$ and $\phi = 0.48$
Time evolution of contact number for $\phi = 0.57$
Time evolution of contact number for $\phi = 0.57$
Evolution of the contact network ($\phi = 0.57$)

- high shear rate
- low shear rate
Discussions

- Slight deviation from Seto’s
Discussions

- Slight deviation from Seto’s
 - Need to allow separate ”switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
Discussions

- Slight deviation from Seto’s
 - Need to allow separate “switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
Discussions

- Slight deviation from Seto’s
 - Need to allow separate “switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
Discussions

- Slight deviation from Seto’s
 - Need to allow separate ”switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
Discussions

- Slight deviation from Seto’s
 - Need to allow separate ”switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
Discussions

- Slight deviation from Seto’s
 - Need to allow separate “switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
- The computational cost highly depends on the size.
Discussions

- Slight deviation from Seto’s
 - Need to allow separate ”switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
- The computational cost highly depends on the size.
 - Our simulation used $\Delta x = 0.1a$, to let $Re < 1$, one need typical particle speed $U < 0.016 \frac{\Delta x}{\Delta t}$.

To travel a distance of its radius, one particles needs >6200 time steps.
Discussions

- Slight deviation from Seto’s
 - Need to allow separate ”switching” length between boundary nodes and lubrication calculation for normal, tangential, and rotation modes
- We need to find a suitable contact spring constant for every ϕ
- Contact force dominates the shear thickening regime
 - Number of contact increased on high shear rate, creates force chains from one side to another.
- Electsrotatic repulsive force \rightarrow shear thinning at low shear rate
- The computational cost highly depends on the size.
 - Our simulation used $\Delta x = 0.1a$, to let $Re < 1$, one need typical particle speed $U < 0.016 \frac{\Delta x}{\Delta t}$.
 - To travel a distance of its radius, one particles needs > 6200 time steps
Future prospects

- Good starting point for the theoretical works
Future prospects

▶ Good starting point for the theoretical works
 ▶ friction scenario.
Future prospects

- Good starting point for the theoretical works
 - friction scenario.
- Analyze the percolation of the contact network
Future prospects

- Good starting point for the theoretical works
 - friction scenario.
- Analyze the percolation of the contact network
- Implement contact with rolling friction.
Future prospects

- Good starting point for the theoretical works
 - friction scenario.
- Analyze the percolation of the contact network
- Implement contact with rolling friction.
- Use more realistic boundary conditions
References

