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Part I 
Rounding of the localisation transition 

and breakdown of universality



Heterogeneous or porous media

Defining features:  

• At least two components 

• Separation of time scales 

Mass transport is anomalous
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in Fig. 3: A well-pronounced peak is present in SSi;Na!q"
and SNa;Na!q" at T # 2100 K and at T # 300 K. Thus, the
structure that leads to the peak at q1 # 0:9 !A$1 does not
at all disappear with increasing density. That the feature
at q1 seems to be absent in S!q;! # 0" at 300 K is due to
the fact that S!q;! # 0" is a linear combination of six
different partial structure factors: On the one hand, posi-
tive and negative contributions cancel each other [note the
negative amplitude of SSi;Na!q" at q1], and, on the other
hand, due to the overlap with the peak around q2 #
1:7 !A$1, SO;O!q" exhibits only a shoulder at q1, which is
less pronounced at T # 300 K. Because oxygen is the
majority component (about 60% of the particles in
NS3) and the coherent scattering length of oxygen is
significantly larger than that of sodium and silicon
(bO=bSi % 1:4 and bO=bNa % 1:6), SO;O!q" gives the major
contribution to S!q;! # 0", and, thus, the changes in
SO;O!q" are the main cause for the emerging prepeak in
the experimental and simulated S!q;! # 0" with increas-
ing temperature and decreasing density, respectively. A
closer inspection of SO;O!q" shows that the location of the
peak at q1 is essentially independent of T. At the same
time the peak at q2 shifts to smaller wave vectors since
the decrease in the density leads to a more open packing
of the tetrahedra. Thus, we see that although a decreasing
density does not really affect the nature of the channels,
the mentioned shift of the peak at q2 leads to an increase
of the signal at q1, since it adds intensity at q1, which in
turn makes this peak become more visible at high T, i.e.,
lower density (see Fig. 2).

The feature at q1 corresponds to a distribution of so-
dium ions that is not homogenous on a length scale of
6–8 Å. This is illustrated by the snapshot, Fig. 4, which
shows a molecular dynamics configuration of NS3 at T #
2100 K at the density 2:2 g=cm3. Here, the sodium ions
are represented by blue spheres that are connected to each
other by surfaces. For clarity, the Si and O atoms are
shown as small yellow and red spheres, respectively, that

are connected to each other by covalent bonds shown as
sticks. Note that the size of the latter spheres does not
mirror the real size of Si and O. The snapshot gives a clear
picture of a network of sodium channels that percolate
through the Si-O structure. The peak at q1 in the static
structure factor marks the characteristic length scale of
the latter network of channels.

Recently, Jund et al. [17] have shown in a molecular
dynamics simulation of NS4 that the sodium trajectories
form a network of pockets and channels where the dis-
tance between the pockets is of the order of 5–8 Å. Then,
Horbach et al. [18] have given evidence in the case of NS2
that the latter network is reflected by the prepeak at q1 in
the static structure factor. Figure 4 shows that the ‘‘struc-
ture of the sodium trajectories’’ is not seen only in the
dynamics as claimed by Jund et al. [17]. The sodium
trajectories are given by paths in a quasistatic structure
of sodium diffusion channels, the lifetime of which is
given by the characteristic relaxation time of the Si-O
network.

A change of the Na2O content (from NS4 to NS2) or of
the density does not significantly affect the position of
the prepeak at q1 as seen by molecular dynamics simu-
lations and neutron scattering. The effect that the prepeak
at q1 becomes more pronounced in S!q;! # 0" with in-
creasing Na2O concentration [Fig. 1(b)] can also be ex-
plained by the simulation [12]: The amplitude of the peak
around 1:7 !A$1 decreases with an increasing sodium
content indicating a stronger disruption of the Si-O net-
work if more sodium ions are added to the system.
Moreover, Na-Na correlations contribute with a larger
weight in the total structure factor and thus also the
amplitude of the prepeak at q1 increases. These findings
from the simulation explain the behavior of S!q;! # 0"
as seen in Fig. 1(b).

However, a change in the composition or the density
is accompanied by a significant change in the disrupted
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FIG. 3. Partial structure factors SO;O!q", SNa;Na!q", SSi;Na!q" as
obtained by the simulation in glassy and liquid sodium trisili-
cate at experimental densities. SO;O!q" & 0:1 for clarity.

FIG. 4 (color). Molecular dynamics snapshot of the structure
of sodium trisilicate at 2100 K at the density ! # 2:2 g=cm3:
The blue spheres that are connected to each other represent
the Na atoms. The Si-O network is drawn by yellow (Si) and
red (O) spheres that are connected to each other by covalent
bonds shown as sticks between Si and O spheres.
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The viscoelastic properties of the cytoplasm of living yeast cells were investigated by studying the
motion of lipid granules naturally occurring in the cytoplasm. A large frequency range of observation
was obtained by a combination of video-based and laser-based tracking methods. At time scales from
10!4 to 102 s, the granules typically perform subdiffusive motion with characteristics different from
previous measurements in living cells. This subdiffusive behavior is thought to be due to the presence of
polymer networks and membranous structures in the cytoplasm. Consistent with this hypothesis, we
observe that the motion becomes less subdiffusive upon actin disruption.
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The unravelling of the complex machinery of a living
cell is currently receiving substantial attention [1]. An
important constituent of this machinery is the cytoske-
leton which has a key role in many cell functions, such as
regulation of cell shape, cell motility, division, and intra-
cellular transport. Networks of cytoskeletal polymers
have been studied in vitro [2–5], and living cells have
been addressed through microrheology experiments [6–
9]. Still, the physical properties of the in vivo cytoskele-
ton remain to a large extent unknown.

In this work, we probe the mechanics within a living
cell on the nanometer scale. We study the fission yeast
Schizosaccharomyces pombe, which is characterized by a
stiff cell wall that is responsible for the cell shape and
resistance to deformation. Thus, the mechanics of the
cells studied here differ from that of the soft cells used
in previous microrheology studies [8,9].

In order to investigate the viscoelastic properties of the
cytoplasm and the contribution of the cytoskeleton to
those properties, we monitored the motion of small lipid
granules that occur naturally in the cytoplasm. The gran-
ules are highly refractive, almost spherical, and filled
with lipids [10]. The granules vary in size with a typical
diameter of "300 nm, whereas the whole cell is "12 !m
long and 4 !m wide. The granules are embedded in the
cytoskeleton, which consists of a sparse microtubule net-
work [11] and actin filaments [12]. Fluctuations of a
granule position may be limited by the polymer networks
of the cytoskeleton. We therefore performed experiments
in both intact cells and cells in which the actin network
was disrupted. In light microscopy the granules appear as
small black spheres (Fig. 1) that move in a seemingly
random fashion. By combining optical tweezers and
video-based image analysis, a wide frequency range of
observation was covered, from 0.01 Hz to above 10 kHz.

Biological specimen.—S. pombe cells were grown for
12–14 hours at 30 #C on plates containing AA medium
[13]. The cells were then transferred to a perfusion cham-

ber in a liquid medium where they firmly adhered in a
monolayer to a poly-L-lysine-covered glass coverslip.
This immobilization assured easy observation and mini-
mized drift. Experiments were performed on cells in
interphase. In order to disrupt actin filaments, the cells
were treated with 50 !M Cytochalasin D (CD) in 1%
dimethyl sulfoxide (DMSO) for 15–60 minutes. Control
cells were treated with 1% DMSO for 15–60 min.

Optical tweezers (OT) experiments.—The optical trap
was formed by a focused laser beam from a Nd:YVO4

laser within an inverted microscope [14]. A granule in-
side a cell was optically trapped in a very weak laser trap
with a trap stiffness of "5 $ 10!3 pN=nm, and its motion
was detected by a Si-PIN quadrant photodiode in the back
focal plane. This technique is nearly noninvasive; we
estimated the laser power in the sample to be "20 mW
and hence the heating effect of the trap <1 #C [15]. The
sampling rate was 22 kHz and the spatial resolution 1–
2 nm.

Multiple particle tracking (MPT).—The motion of
granules in the cell was also detected by video-based
image analysis with a sampling rate of 25 frames=s. A
correlation algorithm was used to determine the displace-
ment of individual granules at subpixel resolution [16].
The spatial resolution of this method was <10 nm, esti-

2 µm 

FIG. 1. Image of a fission yeast cell. Small black spheres are
lipid granules in the cytoplasm (arrow).

VOLUME 93, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S week ending
13 AUGUST 2004

078102-1 0031-9007=04=93(7)=078102(4)$22.50 © 2004 The American Physical Society 078102-1

Fission yeast,  
I. Tolić-Nørrelykke et al, PRL 93 (2004)

B Matrix Fluid

100 101 102 103

t (s)

10�1

100

101

102

�
r2

(t
)(

µ
m

2
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
�M

0.0

0.1

0.2

0.3

0.4

0.5

0.6

�
F

Line 0

Line 1

L1P1

L1P6

Line 2
L2P1

L2P4

a

b

c

Colloidal model experiment,  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PRL 111 (2013)
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Brownian motion
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Fat globules in milk

microscopy-uk.org.uk/amateurs/avi.html

1827 Robert Brown examines particles 
stemming from pollen in water and 
sees erratic motion 



Brownian motion
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Fat globules in milk

microscopy-uk.org.uk/amateurs/avi.html

1827 Robert Brown examines particles 
stemming from pollen in water and 
sees erratic motion 



Diffusion
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1905 Albert Einstein gives explanation for 
Brownian motion: 

Thermal motion of the fluid 

⇒ Frequent and disordered collisions of the 
fluid molecules with the particles 

⇒ Trajectory made of independent increments 

⇒ Generic result: Trajectory diffusive with 
Diffusion coefficient D.

Mean-squared 
displacement 
grows linearly

�r(t) = �
τ i<t

∆�r(τ i)

�r(t)� = �
δr�(t) ∶= �(r(t) − r(�))��

= �dDt



Diffusion on fractals
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E.g. Random walker on the Sierpinski 
gasket 

Self-similar geometry 

All sites are not equivalent 

Persistent correlations on all lengthscales 

⇒ Increments Δr not independent 
anymore 

⇒ Anomalous diffusion

δr�(t) ∼ t��z , with z = log �� log � ≈ �.�



Lorentz model

Non-interacting 

point-like tracers

Fixed, hard obstacles





















Lorentz model

• Localization transition of the tracer at 
percolation point of the void space 

• Dynamical Critical Phenomenon 

• Anomalous diffusion due to fractal structure 
of the system at the percolation point
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Quenched-annealed systems 
Kurzidim et al, PRE (2010)

Correlated hard-sphere obstacles, 
interacting mobile particles 

Localization transition with 
subdiffusion with modified exponent 
0.5 

Transition shifted to smaller matrix 
densities
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Figure 10: (Color online) Intermediate scattering functions
for a series of φm values at fixed φf = 0.10 and k = 7.0.
(a) Connected correlator Fc(k, t), (b) single-particle correlator
Fs(k, t). Error bars: see Fig. 2.

case, this observation holds also for very low φf , suggest-
ing that caging by fluid particles is not the only mecha-
nism effective in this regime. Most likely, at low φf the
drop in z is entirely due to the porous matrix, while at
larger φf both the pores and caging play a role.
For low φf , the range of decreasing z is followed by an

almost straight increase to z = 1, i.e., a direct approach
of the diffusive regime. Upon increasing φf , a distinct
intermediate-time plateau with z < 1 emerges in z(t),
which corresponds to a subdiffusive regime in δr2(t). The
estimated value z ≃ 0.78 in the subdiffusive regime is
only weakly dependent on φf ; merely for φf ≥ 0.26 the
value of z seems to systematically decrease. This decline,
however, may be due to insufficient equilibration of the
respective systems.

E. Path III: constant fluid density

Lastly we turn to a selection of state points at vary-
ing φm for a relatively low fixed φf = 0.10, i.e., along a
horizontal straight line in the kinetic diagrams, perpen-
dicular to paths I and II. This line will henceforth be
called “path III.”
In Fig. 10 we present Fc(k=7.0, t) and Fs(k=7.0, t) for

these state points. The correlators differ substantially
from each other and from their bulklike counterparts—
even more than was the case in Sec. III D. Most no-
tably, Fs(k, t) attains a sizeable nonzero value as time
approaches infinity, and does so more pronouncedly as φm

increases. By contrast, for all φm represented in Fig. 10
Fc(k, t) decays strictly to zero. On the other hand the
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Figure 11: (Color online) Mean-squared displacement (a) and
its logarithmic derivative (b) for a series of φm values at fixed
φf = 0.10. Error bars [only panel (a)]: see Fig. 2.

actual pattern of the decay to the long-time value is quite
similar in Fc(k, t) and Fs(k, t): unlike in Fig. 8, both cor-
relators decay in a single step, suggesting only type-A
transitions to be involved.

Comparison of Fig. 11 with Fig. 9 and 7 reveals the
functional form of δr2(t) to be more sensitive to φm than
to φf . As observed in Sec. III C, at low matrix densities
the initial ballistic behavior is directly followed by diffu-
sive behavior. For intermediate φm < 0.25 (cf. Sec. III D)
a region of very slowly increasing particle displacement
(z < 1) succeeds the ballistic range. The value of the
exponent z in this region decreases as φm increases. Sub-
sequently, diffusive behavior is recovered as z raises in an
almost linear fashion.

Upon further increasing φm, at some φ∗
m a geometric

percolation transition takes place in the space accessi-
ble to the fluid particles (“voids”), with a void stretching
through the whole system at φm ≤ φ∗

m. This transition is
intimately connected with the diffusion-localization tran-
sition predicted by MCT [27] and observed in our simu-
lations. As a hallmark of this transition, δr2(t) does not
approach diffusive behavior for φm ≃ 0.25 but instead re-
mains at an approximately constant z ≃ 0.5 for a window
covering about three decades in time. Since for that ma-
trix density z(t) ultimately increases beyond 0.5, one can
expect the diffusion-localization transition to take place
at slightly higher φm. An upper bound to that value is
φm = 0.2625, the smallest value presented that is larger
than 0.25. At this packing fraction of obstacles the win-
dow of constant z extends over roughly two decades in
time, with z ultimately decreasing below that plateau.

time
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Figure 4: (Color online) Kinetic diagram based on single-
particle properties (see text). Symbols: time ts needed for
Fs(k=7.0, t) to decay below F ∗

s = 0.1. Thick solid (blue)
line: interpolation through points for which ts ≃ 103. Thick
dotted (green) line: arrest line based on δr2(t) from [31] (ex-
tended to low φf values). Thin dashed and dotted (black)
lines: MCT transition lines pertaining to single-particle prop-
erties from [27].
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Figure 5: (Color online) Kinetic diagram based on collec-
tive properties (see text). Symbols: time tc needed for
Fc(k=7.0, t) to decay below F ∗

c = 0.1. Thick dash-dotted
(red) line: interpolation through points for which tc ≃ 100.
Thin dashed and solid (black) lines: MCT transition lines
pertaining to collective properties from [27].

B. Kinetic diagrams

Many features of the system under investigation can
be understood by means of kinetic diagrams in which
the “state” of a dynamic property is indicated in the
plane spanned by φm and φf . In an earlier work [31] we
presented a kinetic diagram based on the mean-squared
displacement δr2(t). In order to classify the state of the

system, we chose a mean-squared displacement δr2∗ = 100
and a simulation time t∗ = 30 000; if the system obeyed
δr2(t∗) > δr2∗ then it was considered “nonarrested,” and
otherwise “arrested.” The so-constructed kinetic dia-
gram qualitatively confirmed the behavior of the single-
particle dynamics of the system at hand as predicted by
MCT [27, 31]. The arrest line determined from this cri-
terion is indicated in Fig. 4.
In Fig. 4 we present a kinetic diagram of the system

under investigation based on the self-intermediate scat-
tering function

Fs(k, t) =

〈

ρt
k
(t)ρt−k

(0)
〉

〈

ρt
k
(0)ρt−k

(0)
〉

(4)

where ρt
k
(t) = exp{ik · rt(t)} is the density of a tagged

(superscript “t”) fluid particle in k space after some
time t has passed [50]. The symbols in the figure indicate
the times ts needed for Fs(k=7.0, t) to decay below the
value F ∗

s = 0.1. The value k = 7.0 was chosen to be close
to the main peak in S(k) in a typical high-density QA
system—for instance, for φm = 0.05 and φf = 0.50 (cf.
Fig. 2) the first peak in S(k) is located at k ≃ 7.2; for
φm = 0.25 and φf = 0.10 it is found at k ≃ 6.6.
If we let t∗s ≃ 103, discriminating whether for a state

point ts > t∗s (“arrested”) or ts < t∗s (“nonarrested”)
yields the thick solid (blue) line in Fig. 4. Obviously,
the latter is only slightly different from the thick dotted
(green) line that is obtained from the δr2(t) criterion de-
scribed above. This is not unexpected since both Fs(k, t)
and δr2(t) are single-particle properties, and in the Gaus-
sian limit it is even Fs(k, t) = exp{k2δr2(t)/6} [42].
Thus, the validity of the approach chosen in [31] is con-
firmed.
In order to complement the kinetic diagrams based

upon single-particle properties, in Fig. 5 we present for
the first time a kinetic diagram for a collective property
of the system. For comparison with the theory developed
in [25–27] we chose to operate with the connected part
of the intermediate scattering function

Fc(k, t) =
⟨δρk(t)δρ−k(0)⟩
⟨δρk(0)δρ−k(0)⟩

(5)

where δρk(t) = ρk(t) − ⟨ρk(0)⟩ is the fluctuating part of
ρk(t) =

∑

i exp{ik · rfi(t)} (cf. Sec. IV). Very much like
for the self-intermediate scattering function Fs(k, t), in
this figure we display the times tc needed for Fc(k=7.0, t)
to decay below the value F ∗

c = 0.1. The thick dash-
dotted (red) line in Fig. 5 interpolates through points
for which tc ≃ 100. The shape of this iso-tc line clearly
contradicts the MCT scenario [25, 26], which predicts
a re-entrance regime (a “bending-back” of the collective
glass transition line) for large values of φm.
Since the arrest line obtained from ts is situated at con-

siderably larger φm than the diffusion-localization line

delocalized

localized

12 Background

Figure 1.4: Redefinition of hard-
sphere radii. Mixture of two hard-
sphere species (red and green disks).
For the interaction between red and
green particles, only the sum of the radii
is relevant, which renders panels (a)–(c)
equivalent for the inter-species interac-
tion. The hard-sphere radii of the intra-
species interaction (red–red and green–
green) are not depicted.

(a) (b) (c)

where particles i and j belong to species s and t, respectively. For interactions between
particles of the same species, Eq. (1.4) then simply reverts to Eq. (1.3). For interactions
between two distinct species s and t, however, the HS radii may be redefined as

R̃(t)
i = R(t)

i + b(st) and

R̃(s)
j = R(s)

j − b(st) ,
(1.5)

the only restriction in the choice of b(st) being that all R̃(t)
i and R̃(s)

j have to be positive.

Since the sums R̃(t)
i +R̃(s)

j and R(t)
i +R(s)

j are identical by construction, none of the Hij ’s

are altered by the substitutions R(t)
i → R̃

(t)
i and R(s)

j → R̃
(s)
j .

A geometric interpretation of this procedure is provided in Fig. 1.4, which shows an
HS system with two distinct particle species encoded in red and green color. The only
difference between panels (a), (b), and (c) lies in the inter-species radii of the particles.
As is evidenced by the lack of overlaps between particles of distinct species in all panels,
the radii of a green and a red particle always add up to the same value. The “overlaps”
between particles of the same species are irrelevant since the green–green and red–red
interactions are based on HS radii that are not shown. Figure 1.4 thus underscores the
validity of replacing inter-species radii according to Eq. (1.5). This property will be
made extensive use of in the context of characterizing the geometry of porous matrices
(see Sec. 2.4 and Ref. [146]).

Another interesting feature of HS systems is their vanishing potential energy, U =
0. If the particles are subject to Newtonian motion, then the system can be described
by a Hamiltonian of the form H = K +U = E, where E is the system’s total energy
and K its kinetic energy. In this case, U = 0 yields E = K =

∑N
i=1 p2

i /2mi, where mi
is the mass of particle i and pi is its momentum. This entails that the particles
move along straight lines at all times, except for infinitesimal time spans during which
“impulse interactions” take place (see Sec. 2.2.1.1). The physics of these interactions
is invariant under a rescaling of time, as can be seen from Eq. (2.26) where prefixing
a factor a to each velocity on the right-hand side is tantamount to multiplying the
entire right-hand side with a. Moreover, using pi = mivi from your physics 101 class,
the relation

∑N
i=1mi(avi)

2/2 = a2E can be seen to hold, meaning that rescaling time



Soft quenched-annealed systems 
K. Kim et al, J. Phys. Condens. Matter 23 (2011)

Soft particles now! 

MCT prediction: Reentrance transition upon increase 
of the fluid number density 

In simulations: only found if fluid changes matrix 
during equilibration 

⇒ Modification of matrix structure leads to 
reentrance transition

J. Phys.: Condens. Matter 23 (2011) 234123 K Kim et al

Figure 4. (a) The α-relaxation time, τα , as a function of the inverse temperature Tg/T , for several Nis, Ni = 0, 100, 200, 500 and 800. Tg is
defined as the temperature at which τα = 104. (b) Ni dependence of the fragility index m.

Figure 5. Dynamic phase diagram of the monodisperse hard sphere system with a random matrix generated by the two different protocols:
(a) QA and (b) EM.

large size ratios (!3) by Kurita et al [24]. They indicated
that the fragility changed non-monotonically, though mildly,
by changing the size ratio of small and large particles and
their densities. It would be interesting to study how this trend
changes as the size ratio of the two components increases,
resulting in the time scales for each component becoming
decoupled.

We remark that the fragility, which behaves in a manner
that is qualitatively similarly to ours, has been experimentally
obtained in polymeric systems confined in porous media
recently [55], in which the crossover from a non-Arrhenius to
Arrhenius temperature dependence of the relaxation time was
observed as the pore size became smaller. It was speculated
that the decrease of the fragility as the effect of the confinement
is enhanced is universal and should be observed for other types
of confined systems such as those with the solid–liquid or air–
liquid interfaces [56].

Finally, it should be noted that even the largest values of m
reported here are still very small compared with conventional
molecular systems [57]. This discrepancy occurs because the

glass transition temperature Tg defined above is far higher than
those observed for real glasses, which is due to the limited
time windows that the simulations can access. It is noteworthy
that our simulation results still exhibited qualitatively similar
behavior for m as the experimental results, despite the large
time scale differences between them.

3.7. Re-entrant transition

In this subsection, we examine the effect of the configurations
of immobile particles on dynamics of the mobile particles
by comparing results obtained with the EM protocol to those
obtained with the QA protocol in the monodisperse hard sphere
system. We used the one-component hard spheres to study the
mechanism behind the configuration dependence of dynamics
near the type B–type A crossover without the results being
obscured by the softness of the potential or by the bidispersity
of the system. We calculated the MSD of the mobile particles
and determined the dynamic phase diagrams for both the QA
and EM systems. The results are plotted in figure 5. Here, the
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dynamic arrest line is determined as the points at which the
MSD reaches 102 in the simulation time t = 104. Figures 6
and 7 show the dependence of the MSD on ρm at several ρis
for both the QA and EM systems.

As indicated by figure 5(a), no re-entrant transition is
observed for the QA system. The dynamic arrest line
monotonically decreases as ρi increases, which is compatible
with the recent numerical simulations for the related QA
systems [41, 42]. Indeed, figure 6 indicates that the slope of
the MSD monotonically decreases as ρm increases at a fixed
ρi. On the one hand, this result is hardly surprising because the
slowing down of the mobile particle dynamics is mainly due
to the geometrical confinement by the immobile particles. On
the other hand, the EM system shows the re-entrant pocket at
a finite ρm, which is clearly seen in figure 5(b). The similar
re-entrance pocket has been observed in the binary soft-core
mixture (see figure 2). The dynamics of the mobile particles
are accelerated in spite of the increase in ρm. This re-entrance
can be clearly seen in figures 7(b) and (c); by increasing ρm

at the fixed large ρi, the slope of the MSD at long times first
increases and then gradually decreases.

In our previous study [39, 40], we speculated that the
origin of this re-entrance is due to the change of the equilibrium
structure of the immobile particles in the presence of the
mobile particles, which are equilibrated together when the
random matrix is generated. To verify this speculation, we

investigated the distribution of the pore size (or the free
volume available for the mobile particles) generated by the
immobile particles. The pore-size distribution is determined
as follows. Using a three-dimensional Delaunay triangulation
algorithm, the total space of the system is divided into non-
overlapping tetrahedrons. The vertices consist of the positions
of the immobile particles. The volume distribution of the
tetrahedrons, P(vpore), for EM systems is computed. If the
volume of the tetrahedron is much larger than that of the
particle, vpore > πσ 3/6 ≃ 0.52σ 3, the mobile particle can
access the pore. The available pore sizes for the mobile
particles are not identical to the available pathways that are
available to them, but their distribution function still provides
reliable information on the dynamics of the mobile particles in
geometrical confinement. As observed in figure 8, the height
of the tail of P(vpore) at vpore ! 0.52σ 3 increases as ρm

increases at a fixed value of ρi = 0.5 monotonically. This
result indicates that the free volumes available for the mobile
particles increases, which leads to the re-entrant behavior of
the MSD that is observed in figure 7(c). Note that the tails
monotonically increase (at least up to ρm = 0.4), but the
dynamics slow down again around ρm ≈ 0.2, as indicated by
figure 5(b). This result occurs because the glassy dynamics of
the mobile particles sets in while the localization effect (due to
the geometrical confinements) becomes smaller.
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of the tail of P(vpore) at vpore ! 0.52σ 3 increases as ρm

increases at a fixed value of ρi = 0.5 monotonically. This
result indicates that the free volumes available for the mobile
particles increases, which leads to the re-entrant behavior of
the MSD that is observed in figure 7(c). Note that the tails
monotonically increase (at least up to ρm = 0.4), but the
dynamics slow down again around ρm ≈ 0.2, as indicated by
figure 5(b). This result occurs because the glassy dynamics of
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Superparamagnetic colloids confined between glass 
plates
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Investigate connection between  
Lorentz model and heterogeneous media
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?

• Soft interactions 

• Interacting mobile 
component

• Hard interactions 
with obstacles 

• Non-interacting 
mobile component
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Soft-disk Lorentz model



Soft-disk system (2D)
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Molecular dynamics simulation 

Interaction potential: repulsive part of LJ
Fixed SOFT obstacles

SOFT tracers with 
variable size σF 

Finite barriers ➔ Energy scale now important:  

Mapping to hard disks σhd (σF, E)
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Soft-disk Lorentz model

Soft potential: set particles to 
same energy 

Localization-delocalization 
transition at σF ≈ 0.43 

Anomalous exponent 2/z as in 
Lorentz model
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Introduce 
energy distribution
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Single energy → Maxwell-Boltzmann distribution 

Obstacles form finite barriers 

⇒ Averaging of the dynamics 

Does not occur in hard-disk systems
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Confined ideal gas

 19

Averaging of the dynamics 

⇒ Localization transition rounded 

⇒ No anomalous exponent 2/z, 
effective exponents instead
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Confined ideal gas
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Averaging of the dynamics 

⇒ Localization transition rounded 

⇒ No anomalous exponent 2/z, 
effective exponents instead
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Hard-disk mapping

 20

U = E

�hs

�hs

Mapping of energy E and 
interaction diameter σF onto a 
single effective interaction 
diameter σhs: 

Mapping must conserve topology: 

• open channels stay open  

• closed channels stay closed 

⇒ need to exactly map 
situation where channel is 
about to close

� ������� ����� �� ���� ������� ��

Here, the conservation of the topology is accomplished with a mapping
onto hard-sphere obstacles with point-like tracers. In this mapping, the ef-
fective hard-sphere diameter of the obstacles σhs(σF, E) is calculated as the
distance between two obstacles forming a channel through which a tracer with
a diameter σF and energy E is barely able to pass.

U = E

�hs

�hs

Figure �.��: Sketch of two obstacles at the distance
where the channel between them vanishes for a tracer
with diameter σF and energy E. �e obstacle centers
are shown as points. �e height of the total potential
energyU —which is a function of σF — at each point
of the sketch is given in gray scale. �e equipotential
line where the potential energy U exactly matches
the particle energy E is shown in black and encloses
the area unavailable to the tracer. �e e�ective hard-
sphere diameter then corresponds to the obstacles
marked in red.

In two dimensions, a channel which connects two pockets is almost always
de�ned by two obstacles, see �g. �.�� for an illustration of the situation. A
tracer which is placed directly in the middle between two obstacles which
are placed at a distance σhs ∶= �r has at least the total potential energy U (see
eq. (�.�))

U = �VMF(r) = ���εMF ��
�σMF

σhs
�

��
− �

�σMF

σhs
�

�
� + εMF�Ψ �

σhs
�
� ,

with σMF = (σM + σF)��. In the following Ψ(r) will be neglected. �e tracer is
then just about unable to pass the gap if that potential energy equals its total
energy, �

� �is result is obtained by substituting with ρ ∶=(�σMF�σhs)� , solving the resulting quadratic equa-
tion, E = �ε(ρ� − ρ) + �ε, and picking the solution
which obeys ρ ≤ ��� (the cuto� condition of the ���
potential), ρ = ��� +�E�(�ε).

E !
= �εMF ��

�σMF

σhs
�

��
− �

�σMF

σhs
�

�
� + �εMF

⇒ σhs = �
�

�

�
�
+

�

E
�εMF

�

�

−���
σMF. (�.��)

�is is the same situation as for a point-like tracer encountering hard-
sphere obstacles with diameters of the same size as the distance between the
obstacles. �e described situations is therefore equivalent to a system of a
point-sized tracer and hard-sphere obstacles with diameter σhs. Equation (�.��)
thus provides a mapping from the so�-potential system with tracer energy
E and tracer diameter σF onto a hard-sphere matrix with diameter σhs and
point-like tracers.

In �g. �.��, the area available to the so�-sphere tracers lies outside the black
equipotential line where the tracers energy equals its potential energy, U = E.
A�er the mapping, the point-like tracer is assumed to be able to access the area
outside the two red circles marking the hard-sphere obstacles. �e resulting
di�erence in available area will be shown to be negligible for the dynamics.
�e same holds for modi�cations to the mapping from channels formed by
three or more obstacles.

�e eq. (�.��) implies the hard-sphere diameter can be used as the only
control parameter, i.e. that two systems with the same σhs would have the
same dynamics. �at this is true will be con�rmed in the discussion of the
con�ned ideal gas, in section �.�. Even before showing that dynamics are
correctly mapped it is important to repeat that, since the mapping respects the
topology of the matrix, the percolation point σ c

F is necessarily mapped onto
the percolation point σ c

hs correctly. �erefore, a percolating system will stay
percolating under the mapping and a localized system will stay localized.

�e mapping furthermore shows why it is relevant to set all tracer particles
to exactly the same energy to preserve a sharply-de�ned localization transition
in the system. Eq. (�.��) has been used to calculate the hard-sphere diameter
of the obstacles for displaying the matrix in �gs. �.� and �.�.



Hard-disk mapping

 21

Energy E of a particle → Hard-disk diameter σhd(σF, E) 

Energy distribution p(E) → Hard-disk diameter distribution p(σhd)

Energy-resolved dynamics 
matches the Lorentz model 

⇒ Confined ideal gas = 
energy average over 
Lorentz model
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Investigate connection between  
Lorentz model and heterogeneous media
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?

• Soft interactions 

• Interacting mobile 
component

• Hard interactions 
with obstacles 

• Non-interacting 
mobile component
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Introduce interactions  
between mobile particles



Interacting mobile particles 

Now 2 control parameters: 

• Particle diameter σF  

• Number density nF = N/L2 

⇒ Reduced number densities: 

• nM*= nM (σM + σF)2/4 

• nF*= nF σF2 

Study influence of interactions 
systematically by increasing nF from 0. 

Study localization transition at large nF 
by crossing it.

 24

2

σα = (0.85 + 0.3α/N)σM with α,β = 1, . . . , N . The
units of length and energy are set to σM and εM, respectively
(named σWCA

core and εWCA
core in ref. [7]). The temperature is set to

kBT/εM = 1.0. Numerical stability is improved by enforc-
ing continuity of the potential at rcut by multiplying it with a
smoothing function Ψ(r) := (r − rcut)4/[h4 + (r − rcut)4]
with width h = 0.005σM, with which any drift in the to-
tal energy becomes negligible in the microcanonical simu-
lations. The matrix particles are equilibrated using a sim-
plified Andersen thermostat [13] by randomly drawing their
velocities from a Maxwell distribution every 100 steps with
thermal velocity vth := (kBT/m)1/2. We use the Lennard-
Jones time t0 := σM/vth = [m(σM)2/εM]1/2 as unit of
time. Newton’s equations of motion are integrated numeri-
cally with the velocity-Verlet algorithm[14] with a timestep
of 7.2 · 10−4t0. For ensemble averaging, we use 100 statis-
tically independent matrix structures each for particle num-
bers N = 1000, 2 000, 4 000, and 16 000 at number density
nM := N/L2 = 0.278 (σM)−2, corresponding to system sizes
L/σM = 60, 84.8, 120, and 240, controlling for finite size
effects.

Fluid particles with interaction distance σF and number
density nF := NF/L2 are inserted into the frozen matrix, see
Fig. 1(a). The fluid particles interact with all matrix particles
identically via the smoothly truncated WCA potential, Eq. (1),
with coefficients εαβ := 0.1εM and σαβ := (σM+σF)/2 =: σ
(named σWCA in [7]). For the interaction of the tracers with
each other, we use Eq. (1) with coefficients εαβ = εM and
σαβ = σF. Newton’s equations of motion are integrated nu-
merically with the velocity-Verlet algorithm with the same
timestep as for the matrix particles. The fluid particles are
equilibrated using the simplified Andersen thermostat. The
equilibration time increases with nF, so that equilibration
times of at least 103t0 and up to 1.4 · 105 were required. Be-
tween 100 and 2400 fluid particles per host structure are used
for runs of up to nearly 106t0. For the calculation of time av-
erages, 10 time origins per run are used, spaced equidistantly
over the whole simulation time.

We use two control parameters: The interaction range be-
tween matrix and fluid particles σ := (σF +σM)/2 is tuned by
the diameter of the fluid particles σF. This defines the reduced
number density n∗

M := nMσ2 of the matrix (named n∗
WCA in

[7]). The interaction of the fluid particles with each other pro-
vides the number density of fluid particles nF. Variation of nF
and σF both change the reduced number density n∗

F := nFσ2
F

of the fluid. The control parameters map out the state dia-
gram of n∗

F and n∗
M, see Fig. 1(b). To determine the dynamic

state of the systems, the mean-squared displacement (MSD)
δr2(t) =

〈
|r⃗(t)− r⃗(0)|2

〉
was calculated from the particle

positions r⃗(t) as a time- and ensemble average. The systems
where the MSD became diffusive, i.e. δr2(t) ∼ 4Dt with dif-
fusion coefficient D for t < 7 · 105, are marked delocalized,
“D”; states where the MSD converged to a finite long-time
limit are marked localized, “L”. Points where the state of the
system could not be decided are marked as “?”. The colored
lines mark the paths along which the dynamics will be dis-

0.2 0.3 0.4 0.5
n⇤

M

0.0

0.1

0.2

0.3

0.4

n⇤ F

ICP

Figure 1. (a) All positions of the fluid particles recorded over a single
simulation run at n∗

M = 0.33 and n∗
F = 0.127 shown as black dots.

Obstacles in grey with the effective hard-disk diameter calculated
from the average tracer energy. (b) State diagram of the system with
D marking diffusive, L marking effectively localized states, and ?
marking states where the dynamic state could not be determined on
the time scale of the simulation. The path crossing the critical point
at finite n∗

F is denoted ICP (Interacting-particles Critical Path)

cussed. The path along n∗
F = 0 represents the ideal gas limit

of non-interacting tracers, for which the rounding of the tran-
sition was discussed recently [7]. Starting from this confined
ideal gas, n∗

F was increased for constant n∗
M to study the mod-

ification of the dynamics by the gradual increase of the inter-
action between the fluid particles. This was performed at the
densities n∗

M = 0.35, 0.43, and 0.51, to study the delocalized
dynamics, the dynamics close to the localization transition,
and the localized dynamics, respectively.

Effective matrix density distributions If the energy E of a
tracer is conserved, an effective hard-disk interaction diameter
σeff(E, n∗) can be calculated with which a mapping onto an
effective Lorentz model with matrix density n∗

eff := n(σ∗
eff)

2

can be achieved [7]. Here, however, the particles interact with
each other, exchange energy, and thus have a time-dependent
σeff. This means that a particle can switch between being lo-
calized and being delocalized if both states are energetically
possible in the system. While an exact mapping of a sin-
gle tracer’s dynamics onto the Lorentz model is not possi-
ble, the time-independent probability distribution p(n∗

eff) for
the whole system can be calculated. The energy of any given
tracer j is given by

Ej =
mv⃗2j
2

+
∑

k∈ M

VMF(|r⃗j − r⃗k|) +
1

2

∑

k ̸=j,
k∈ F

VFF(|r⃗j − r⃗k|).

With this, the single-particle energy distribution p(E) can be
calculated from the simulation as the histogram of tracer en-
ergy, see Fig. 2(a) for n∗

M = 0.43. The distributions have a
peak at small energies which decreases in height with increas-
ing n∗

F. The high-energy tail becomes more pronounced with
increasing n∗

F but always decays exponentially, see inset. The
same holds for n∗

M = 0.35 and 0.51 (not shown here). From
p(E) the effective density distribution p(n∗

eff) was calculated
as described in ref. 7, see Fig. 2(b). Large E are mapped

Localisation 
transition

SK Schnyder & J Horbach, PRL 120(7), 78001 (2018)



Speeding-up of the dynamics

Dynamics in delocalized system 

Increase number density of mobile particles 

⇒ Frequent exchange of energy 

⇒ Faster dynamics at long times 

⇒ Effective exponent becomes tuneable
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Cooperative dynamics

Finite potential barrier heights 

⇒ Particles can kick each other out of pores in the matrix 

⇒ Dynamics become fundamentally different from the hard-
disk case
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Cooperative dynamics

Finite potential barrier heights 
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disk case
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Reentrance transition
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Dynamics close to localization transition  

Delocalization of a previously localized 
system 

⇒ Reentrance transition 

Impossible for hard-disk systems with  
fixed obstacles
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Crossing the localization transition

 28

Dense system with nF = 0.625 

Effective rounded localization 
transition near nF* ≈ 0.43 
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σα = (0.85 + 0.3α/N)σM with α,β = 1, . . . , N . The
units of length and energy are set to σM and εM, respectively
(named σWCA

core and εWCA
core in ref. [7]). The temperature is set to

kBT/εM = 1.0. Numerical stability is improved by enforc-
ing continuity of the potential at rcut by multiplying it with a
smoothing function Ψ(r) := (r − rcut)4/[h4 + (r − rcut)4]
with width h = 0.005σM, with which any drift in the to-
tal energy becomes negligible in the microcanonical simu-
lations. The matrix particles are equilibrated using a sim-
plified Andersen thermostat [13] by randomly drawing their
velocities from a Maxwell distribution every 100 steps with
thermal velocity vth := (kBT/m)1/2. We use the Lennard-
Jones time t0 := σM/vth = [m(σM)2/εM]1/2 as unit of
time. Newton’s equations of motion are integrated numeri-
cally with the velocity-Verlet algorithm[14] with a timestep
of 7.2 · 10−4t0. For ensemble averaging, we use 100 statis-
tically independent matrix structures each for particle num-
bers N = 1000, 2 000, 4 000, and 16 000 at number density
nM := N/L2 = 0.278 (σM)−2, corresponding to system sizes
L/σM = 60, 84.8, 120, and 240, controlling for finite size
effects.

Fluid particles with interaction distance σF and number
density nF := NF/L2 are inserted into the frozen matrix, see
Fig. 1(a). The fluid particles interact with all matrix particles
identically via the smoothly truncated WCA potential, Eq. (1),
with coefficients εαβ := 0.1εM and σαβ := (σM+σF)/2 =: σ
(named σWCA in [7]). For the interaction of the tracers with
each other, we use Eq. (1) with coefficients εαβ = εM and
σαβ = σF. Newton’s equations of motion are integrated nu-
merically with the velocity-Verlet algorithm with the same
timestep as for the matrix particles. The fluid particles are
equilibrated using the simplified Andersen thermostat. The
equilibration time increases with nF, so that equilibration
times of at least 103t0 and up to 1.4 · 105 were required. Be-
tween 100 and 2400 fluid particles per host structure are used
for runs of up to nearly 106t0. For the calculation of time av-
erages, 10 time origins per run are used, spaced equidistantly
over the whole simulation time.

We use two control parameters: The interaction range be-
tween matrix and fluid particles σ := (σF +σM)/2 is tuned by
the diameter of the fluid particles σF. This defines the reduced
number density n∗

M := nMσ2 of the matrix (named n∗
WCA in

[7]). The interaction of the fluid particles with each other pro-
vides the number density of fluid particles nF. Variation of nF
and σF both change the reduced number density n∗

F := nFσ2
F

of the fluid. The control parameters map out the state dia-
gram of n∗

F and n∗
M, see Fig. 1(b). To determine the dynamic

state of the systems, the mean-squared displacement (MSD)
δr2(t) =

〈
|r⃗(t)− r⃗(0)|2

〉
was calculated from the particle

positions r⃗(t) as a time- and ensemble average. The systems
where the MSD became diffusive, i.e. δr2(t) ∼ 4Dt with dif-
fusion coefficient D for t < 7 · 105, are marked delocalized,
“D”; states where the MSD converged to a finite long-time
limit are marked localized, “L”. Points where the state of the
system could not be decided are marked as “?”. The colored
lines mark the paths along which the dynamics will be dis-
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n⇤
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ICP

Figure 1. (a) All positions of the fluid particles recorded over a single
simulation run at n∗

M = 0.33 and n∗
F = 0.127 shown as black dots.

Obstacles in grey with the effective hard-disk diameter calculated
from the average tracer energy. (b) State diagram of the system with
D marking diffusive, L marking effectively localized states, and ?
marking states where the dynamic state could not be determined on
the time scale of the simulation. The path crossing the critical point
at finite n∗

F is denoted ICP (Interacting-particles Critical Path)

cussed. The path along n∗
F = 0 represents the ideal gas limit

of non-interacting tracers, for which the rounding of the tran-
sition was discussed recently [7]. Starting from this confined
ideal gas, n∗

F was increased for constant n∗
M to study the mod-

ification of the dynamics by the gradual increase of the inter-
action between the fluid particles. This was performed at the
densities n∗

M = 0.35, 0.43, and 0.51, to study the delocalized
dynamics, the dynamics close to the localization transition,
and the localized dynamics, respectively.

Effective matrix density distributions If the energy E of a
tracer is conserved, an effective hard-disk interaction diameter
σeff(E, n∗) can be calculated with which a mapping onto an
effective Lorentz model with matrix density n∗

eff := n(σ∗
eff)

2

can be achieved [7]. Here, however, the particles interact with
each other, exchange energy, and thus have a time-dependent
σeff. This means that a particle can switch between being lo-
calized and being delocalized if both states are energetically
possible in the system. While an exact mapping of a sin-
gle tracer’s dynamics onto the Lorentz model is not possi-
ble, the time-independent probability distribution p(n∗

eff) for
the whole system can be calculated. The energy of any given
tracer j is given by

Ej =
mv⃗2j
2

+
∑

k∈ M

VMF(|r⃗j − r⃗k|) +
1

2

∑

k ̸=j,
k∈ F

VFF(|r⃗j − r⃗k|).

With this, the single-particle energy distribution p(E) can be
calculated from the simulation as the histogram of tracer en-
ergy, see Fig. 2(a) for n∗

M = 0.43. The distributions have a
peak at small energies which decreases in height with increas-
ing n∗

F. The high-energy tail becomes more pronounced with
increasing n∗

F but always decays exponentially, see inset. The
same holds for n∗

M = 0.35 and 0.51 (not shown here). From
p(E) the effective density distribution p(n∗

eff) was calculated
as described in ref. 7, see Fig. 2(b). Large E are mapped

Localisation transition



Conclusion I
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Soft potential systems are fundamentally different from 
hard potential systems: 

• The localization transition is rounded by the 
distribution of energies and the soft potential 

• Cooperation frees particles from pores 

• Only effective exponents, not related to the Lorentz 
model exponents 

⇒ Breakdown of universality



Part II 
Active non-linear micro-rheology in a 

glass-forming mixture 



Intro

 31

Active micro-rheology (AMR) can be seen as a tool to probe the 
mechanical response of bio- and soft matter systems on a local scale  

• Pull a tracer particle through a colloidal system with a constant 
external force f.  

• In the steady state, the tracer has a constant velocity v and one can 
define a friction coefficient ξ via ξ = f/v. 

Linear response 

• At small enough forces, ξ is independent of f 

• In glass-forming systems, the linear response regime shrinks to a 
window of very small forces and vanishes at the glass transition  

• We show in the following that the non-linear response in AMR is 
linked with anomalous diffusion dynamics.

Winter, D., & Horbach, J.,  J. Chem. Phys 138(12), 12A512 (2013)

Horbach, J., Siboni, N. H., & Schnyder, S. K., EPJ Special Topics 226(14), 3113–3128 (2017)

Winter, D., Horbach, J., Virnau, P., & Binder, K. PRL 108(2), 1–5 (2012)

f



Simulation setup

 32

• Molecular dynamics simulations of a 3D glass-forming binary AB Yukawa mixture  

• Equimolar mixture at number density n =0.675/d3 (with d the diameter of A 
particles) 

• Reduced critical mode coupling temperature is at T =0.14 

• Initial configurations for the AMR runs:  
Fully equilibrated configurations for 1.0 ≤ T ≤ 0.14, and glassy state at T =0.1 

AMR runs: 

• Single particles are pulled with constant external force F = (f, 0, 0) in x-direction, 
assuming periodic boundary conditions in all 3 spatial directions 

• Dissipative particle dynamics (DPD) thermostat to keep T constant 

• About 1000 independent trajectories of pulled particles at each force and 
temperature



Non-linear response in AMR
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which allows longer simulation runs for large forces (in the
latter case longer runs are required to avoid finite size
effects due to the periodic boundary conditions). All simu-
lation runs start with fully equilibrated configurations in
the temperature range 0:34 ! T ! 0:14. During the pro-
duction runs a constant force fwith 0:5 " f " 20 (in units
of kBT=d) was applied to one of the particles in the system.
These simulations were done for 100 000 to 3# 106 time
steps and were repeated for around 1000 different particles.
A dissipative particle dynamics thermostat [22] was ap-
plied to keep the temperature constant (for details see
Refs. [19,23]).

Results.—In the steady state, a particle pulled by a
constant force f in x direction moves with a constant
velocity v such that f ¼ !v. The friction coefficient ! as
a function of f is displayed in Fig. 1(a) for A particles and
different temperatures T. Here and in the following, we
show only the results for pulled A particles, because the

behavior of the B particles is similar. Three different force
regimes can be inferred from the figure: Toward small f,
the linear response regime is approached and ! is constant.
The nonlinear regime at intermediate f is characterized by
a decrease of ! with increasing f, while for very large
forces the friction coefficient becomes constant and inde-
pendent of temperature. A detailed discussion of the latter
‘‘force-dominated’’ regime can be found in Refs. [14,15]
and shall not be further considered here.
In order to quantify the effect of the external force f in

terms of a dimensionless number, we define a Peclet num-
ber [8,13] by Pe% ¼ "D

"f
, with "D the time scale of the

equilibrium diffusion (i.e., for f ¼ 0) and "f that is set

by the external force f. "D can be expressed as the time for
which a particle diffuses a distance equal to its diameter #,

"D ¼ #2=Deq , with Dð$Þ
eq the self-diffusion constant in

equilibrium. "f is the time the particle drifts with velocity

v over the distance #, "f ¼ #=v ¼ #!=f. With the scaled

force fscal ¼ f#=ðkBTÞ and the ‘‘Einstein’’ friction !0 ¼
kBT=Deq the Peclet number can be written as Pe% ¼
!0fscal=!. In the linear response regime, ! ¼ !0 holds
and thus, in this case, Pe% is equal to fscal.
Figure 1(b) shows Pe% for A particles and different

temperatures as a function of fscal. At the highest tempera-
ture, T ¼ 1:0, almost no deviations from linear response
are seen up to the high force regime (where Pe% ( 20).
With decreasing temperature, the linear response regime
shifts to smaller values of f. For low temperature T ¼
0:14, the aforementioned nonlinear regime of intermediate
forces corresponds to Pe% numbers in the range from about
10 to 1000. In the intermediate regime of Peclet numbers a
force-temperature superposition principle holds, as dem-
onstrated in the inset of Fig. 1(b). Here, we have plotted

Pe% as a function of fscal=f
Pe%¼50
scal with fPe

%¼50
scal the value of

fscal at Pe
% ¼ 50 for a given temperature. Obviously, the

data for the different temperature fall onto a master curve
at intermediate Pe% numbers.
The latter scaling regime marks the values of Pe% num-

bers where, at given temperature and force, the motion of
the pulled particle is strongly affected by the specific
properties of the cages formed by the surrounding parti-
cles. In contrast, at very high values of f the nonlinear
response of the pulled particle is independent of tempera-
ture and force and thus of the details of the cages. In the
following, we focus on the force-temperature superposi-
tion principle regime at the temperature T ¼ 0:14. We
shall see that the dynamics of the tagged particle is strongly
anisotropic in the long-time limit whereas at intermediate
times the motion of the particle in the cage is similar in the
directions parallel and perpendicular to f.
A simple quantity to analyze the diffusive transport

of a tagged particle is the mean-squared displace-
ment (MSD). For the directions perpendicular to the
force (y and z direction), the MSD is defined by
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FIG. 1 (color online). (a) Friction coefficient ! for A particles
and different temperatures T as function of force f. (b) Modified
Peclet number Pe% for A particles as function of the scaled force
fscal for different temperatures T. The solid line indicates the
linear response regime where Pe% ¼ fscal holds. The inset shows
Pe% as function of fscal=f

Pe%¼50
scal (see text).
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• Linear response regime exists at 
large temperatures 

• Approaching the glass transition in 
glass-forming systems, the linear 
response regime first shrinks to a 
window of very small forces and 
then disappears at the glass 
transition.  

• Non-linear response: strong 
decrease of the friction 
coefficient as function of the 
force f (analogous to shear-
thinning in macro-rheology)



Drift-corrected MSD and effective exponent

 34
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Fig. 3. (a) Mean-squared displacement ⟨∆x2(t)⟩ – ⟨∆x(t)⟩2 for pulled A particle at T = 0.14.
The curves correspond to the forces f = 0.0, 0.5, 1.0, 1.5, 2.5, 4.0, 6.0, and 10.0 (from right
to left). Note that for f ̸= 0, the MSDs are multiplied by a factor of 3 to allow for a direct
comparison with the f = 0 case. (b) Effective exponents α as a function of f for different
temperatures, as indicated. From reference [44].

configurations serve as initial configurations for the AMR runs where single parti-
cles are pulled with a constant external force F = (f, 0, 0) in x-direction, assuming
periodic boundary conditions in all three spatial directions. The force f was varied in
the range 5 ≤ f ≤ 30, with f in units of kBT/d. About 1000 independent trajectories
of pulled particles were simulated at each force and temperature to obtain data with
a reasonable statistics. A dissipative particle dynamics (DPD) thermostat is used to
keep the temperature of the system constant [54]. More details on the Yukawa model
and simulations can be found in reference [44].
Anomalous transport can be inferred from the drift-corrected MSD in x-direction,

i.e., in force direction, which is defined by ⟨∆x2(t)⟩ − ⟨∆x(t)⟩2 = ⟨(x(t)− x(0))2⟩ −
⟨(x(t)− x(0))⟩2. Figure 3a shows this MSD for the A particles at the temperature
T = 0.14 in the force range 0.0 ≤ f ≤ 10.0. With increasing f , the dynamics be-
comes faster and qualitatively different from the f = 0.0 case; a superlinear behavior
⟨∆x2(t)⟩ − ⟨∆x(t)⟩2 ∝ tα with α > 1, is seen at long times and intermediate forces.
This can be more clearly inferred from Figure 3b where the exponent α is plotted as
function of f for different temperatures. At T = 0.14, it first increases from about 1.3
to 1.5 in the interval 0.5 ≤ f ≤ 2.5, then it is constant around 1.5 between f = 2.5
and f = 6, before it decreases to 1.0 for f > 6. At higher temperatures the behavior

Infer anomalous transport from the drift-corrected 
MSD in x-direction (i.e. in force direction)

⌦
�x2(t)

↵
� h�x(t)i2 =

⌦
[x(t)� x(0)]2

↵
� h[x(t)� x(0)]i2

<latexit sha1_base64="feG9sy4E1wzYkp5eyO+e+pMxy+E="></latexit><latexit sha1_base64="feG9sy4E1wzYkp5eyO+e+pMxy+E="></latexit><latexit sha1_base64="feG9sy4E1wzYkp5eyO+e+pMxy+E="></latexit><latexit sha1_base64="feG9sy4E1wzYkp5eyO+e+pMxy+E="></latexit>

• At intermediate f, MSD is superlinear at long 
times 

• At high f, α decreases to 1.0 for f > 6 

• At higher temperatures, α is significantly lower 

⇒ Superdiffusion occurs where host fluid is quasi-
frozen on the time scale of the tracer particle. 

⇒ Superdiffusion is directly related to the time 
scale separation between the motion of the 
pulled tracer particle and that of the 
surrounding host fluid. 

But on time scales of host particle diffusion, one 
would expect a crossover to normal diffusion also 
for the tracer particle.



Cage hopping
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The time scale separation between the motion of the 
pulled tracer particle and the quasi-frozen host liquid is 
associated with cage hopping of the tracer  

• At high temperatures, trajectories are relatively smooth  

• At low temperatures, tracers reside in one cage and 
then hop to the next cage  

• Residence time τ in the cages is heterogeneous at low T  

• Waiting time distributions show broad tails 

• Reminiscent of random force field models by 
Bouchaud et al

Typical trajectories Residence time 
distribution

J.P. Bouchaud et al, Ann. Phys. 201, 285 (1990) 
and Phys. Rep. 195, 127 (1990)



Conclusion II
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• The non-linear response in AMR is linked with 
anomalous diffusion dynamics. 

• Superdiffusion of the pulled tracer is directly related 
to the time scale separation between the motion of 
the pulled tracer particle and that of the host fluid. 

• Still, on time scales where the host particles exhibit 
diffusive motion, one expects a crossover to normal 
diffusion also for the tracer particle.



Self-similarity
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Structure of the Matrix
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Fraction of particles in the percolating system
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Fraction of particles in the percolating system: 

Exponential approximation 

⇒ pperc >0 

⇒ No true localization transition possible
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Interacting mobile particles

Localized systems: 

Increase number density of the fluid 

⇒ Localization length increases
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Tuning subdiffusion
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Crossing the localization transition
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Dense system with nF = 0.625 

Effective localization transition near 
σF ≈ 0.6  

Critical exponent of the Lorentz 
model recovered due to 
homogenization of dynamics
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Dynamics of the pulled particle normal to force
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Data collapse onto master curve with an 
effective temperature Teff = T + Cf2 (with constant 
C) 

A similar f2 dependence of the effective 
temperature is predicted in a mean-field theory 
for Brownian particles in the presence of a 
strong external force by Santamaria-Holek and 
Perez-Madrid 

I. Santamaria-Holek, A. Perez-Madrid, J. Phys. Chem. B 115, 9439 (2011) 
and  J. Chem. Phys. 145, 134905 (2016)


